Antimony and antimony oxidegraphene oxide obtained by the peroxide route as anodes for lithium-ion batteries
Zero-valent antimony and antimony oxide were deposited on graphene oxide by the recently introduced peroxide deposition route. The antimonygraphene oxide (GO) anode exhibits a charging capacity of 340 mAh g-1 with excellent stability at a current rate of 250 mA g-1 after 50 cycles of lithiation, whi...
Ausführliche Beschreibung
Autor*in: |
Yu Denis Y.W. [verfasserIn] Batabyal Sudip K. [verfasserIn] Gun Jenny [verfasserIn] Sladkevich Sergey [verfasserIn] Mikhaylov Alexey A. [verfasserIn] Medvedev Alexander G. [verfasserIn] Novotortsev Vladimir M. [verfasserIn] Lev Ovadia [verfasserIn] Prikhodchenko Petr V. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Main Group Metal Chemistry - De Gruyter, 2019, 38(2015), 1-2, Seite 43-50 |
---|---|
Übergeordnetes Werk: |
volume:38 ; year:2015 ; number:1-2 ; pages:43-50 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.1515/mgmc-2015-0001 |
---|
Katalog-ID: |
DOAJ061014737 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ061014737 | ||
003 | DE-627 | ||
005 | 20230309005406.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1515/mgmc-2015-0001 |2 doi | |
035 | |a (DE-627)DOAJ061014737 | ||
035 | |a (DE-599)DOAJ90324aec3766404892ae85b07c96b376 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QD1-999 | |
100 | 0 | |a Yu Denis Y.W. |e verfasserin |4 aut | |
245 | 1 | 9 | |a Antimony and antimony oxidegraphene oxide obtained by the peroxide route as anodes for lithium-ion batteries |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Zero-valent antimony and antimony oxide were deposited on graphene oxide by the recently introduced peroxide deposition route. The antimonygraphene oxide (GO) anode exhibits a charging capacity of 340 mAh g-1 with excellent stability at a current rate of 250 mA g-1 after 50 cycles of lithiation, which is superior to all other forms of antimony anodes that have been reported thus far. The electrode also exhibits a good rate performance, with a capacity of 230 and 180 mAh g-1 at a rate of 500 and 1000 mA g-1, respectively. We attribute the superior performance of the antimony@GO anodes to our coating protocol, which provides a thin layer of nanometric antimony coating on the graphene oxide, and to a small amount of antimony oxide that is left in the anode material after heat treatment and imparts some flexibility. The efficient charge distribution by the large surface area of reduced GO and the expansion buffering of the elastic graphene sheets also contributed to the superior stability of the anode. | ||
650 | 4 | |a antimony | |
650 | 4 | |a antimony oxide | |
650 | 4 | |a hydroperoxoantimonate | |
650 | 4 | |a lithium-ion battery | |
650 | 4 | |a reduced graphene oxide | |
653 | 0 | |a Chemistry | |
700 | 0 | |a Batabyal Sudip K. |e verfasserin |4 aut | |
700 | 0 | |a Gun Jenny |e verfasserin |4 aut | |
700 | 0 | |a Sladkevich Sergey |e verfasserin |4 aut | |
700 | 0 | |a Mikhaylov Alexey A. |e verfasserin |4 aut | |
700 | 0 | |a Medvedev Alexander G. |e verfasserin |4 aut | |
700 | 0 | |a Novotortsev Vladimir M. |e verfasserin |4 aut | |
700 | 0 | |a Lev Ovadia |e verfasserin |4 aut | |
700 | 0 | |a Prikhodchenko Petr V. |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Main Group Metal Chemistry |d De Gruyter, 2019 |g 38(2015), 1-2, Seite 43-50 |w (DE-627)656019840 |w (DE-600)2602433-0 |x 21910219 |7 nnns |
773 | 1 | 8 | |g volume:38 |g year:2015 |g number:1-2 |g pages:43-50 |
856 | 4 | 0 | |u https://doi.org/10.1515/mgmc-2015-0001 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/90324aec3766404892ae85b07c96b376 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1515/mgmc-2015-0001 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/0792-1241 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2191-0219 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 38 |j 2015 |e 1-2 |h 43-50 |
author_variant |
y d y ydy b s k bsk g j gj s s ss m a a maa m a g mag n v m nvm l o lo p p v ppv |
---|---|
matchkey_str |
article:21910219:2015----::nioynatmnoierpeexdotiebteeoieotaao |
hierarchy_sort_str |
2015 |
callnumber-subject-code |
QD |
publishDate |
2015 |
allfields |
10.1515/mgmc-2015-0001 doi (DE-627)DOAJ061014737 (DE-599)DOAJ90324aec3766404892ae85b07c96b376 DE-627 ger DE-627 rakwb eng QD1-999 Yu Denis Y.W. verfasserin aut Antimony and antimony oxidegraphene oxide obtained by the peroxide route as anodes for lithium-ion batteries 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Zero-valent antimony and antimony oxide were deposited on graphene oxide by the recently introduced peroxide deposition route. The antimonygraphene oxide (GO) anode exhibits a charging capacity of 340 mAh g-1 with excellent stability at a current rate of 250 mA g-1 after 50 cycles of lithiation, which is superior to all other forms of antimony anodes that have been reported thus far. The electrode also exhibits a good rate performance, with a capacity of 230 and 180 mAh g-1 at a rate of 500 and 1000 mA g-1, respectively. We attribute the superior performance of the antimony@GO anodes to our coating protocol, which provides a thin layer of nanometric antimony coating on the graphene oxide, and to a small amount of antimony oxide that is left in the anode material after heat treatment and imparts some flexibility. The efficient charge distribution by the large surface area of reduced GO and the expansion buffering of the elastic graphene sheets also contributed to the superior stability of the anode. antimony antimony oxide hydroperoxoantimonate lithium-ion battery reduced graphene oxide Chemistry Batabyal Sudip K. verfasserin aut Gun Jenny verfasserin aut Sladkevich Sergey verfasserin aut Mikhaylov Alexey A. verfasserin aut Medvedev Alexander G. verfasserin aut Novotortsev Vladimir M. verfasserin aut Lev Ovadia verfasserin aut Prikhodchenko Petr V. verfasserin aut In Main Group Metal Chemistry De Gruyter, 2019 38(2015), 1-2, Seite 43-50 (DE-627)656019840 (DE-600)2602433-0 21910219 nnns volume:38 year:2015 number:1-2 pages:43-50 https://doi.org/10.1515/mgmc-2015-0001 kostenfrei https://doaj.org/article/90324aec3766404892ae85b07c96b376 kostenfrei https://doi.org/10.1515/mgmc-2015-0001 kostenfrei https://doaj.org/toc/0792-1241 Journal toc kostenfrei https://doaj.org/toc/2191-0219 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 38 2015 1-2 43-50 |
spelling |
10.1515/mgmc-2015-0001 doi (DE-627)DOAJ061014737 (DE-599)DOAJ90324aec3766404892ae85b07c96b376 DE-627 ger DE-627 rakwb eng QD1-999 Yu Denis Y.W. verfasserin aut Antimony and antimony oxidegraphene oxide obtained by the peroxide route as anodes for lithium-ion batteries 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Zero-valent antimony and antimony oxide were deposited on graphene oxide by the recently introduced peroxide deposition route. The antimonygraphene oxide (GO) anode exhibits a charging capacity of 340 mAh g-1 with excellent stability at a current rate of 250 mA g-1 after 50 cycles of lithiation, which is superior to all other forms of antimony anodes that have been reported thus far. The electrode also exhibits a good rate performance, with a capacity of 230 and 180 mAh g-1 at a rate of 500 and 1000 mA g-1, respectively. We attribute the superior performance of the antimony@GO anodes to our coating protocol, which provides a thin layer of nanometric antimony coating on the graphene oxide, and to a small amount of antimony oxide that is left in the anode material after heat treatment and imparts some flexibility. The efficient charge distribution by the large surface area of reduced GO and the expansion buffering of the elastic graphene sheets also contributed to the superior stability of the anode. antimony antimony oxide hydroperoxoantimonate lithium-ion battery reduced graphene oxide Chemistry Batabyal Sudip K. verfasserin aut Gun Jenny verfasserin aut Sladkevich Sergey verfasserin aut Mikhaylov Alexey A. verfasserin aut Medvedev Alexander G. verfasserin aut Novotortsev Vladimir M. verfasserin aut Lev Ovadia verfasserin aut Prikhodchenko Petr V. verfasserin aut In Main Group Metal Chemistry De Gruyter, 2019 38(2015), 1-2, Seite 43-50 (DE-627)656019840 (DE-600)2602433-0 21910219 nnns volume:38 year:2015 number:1-2 pages:43-50 https://doi.org/10.1515/mgmc-2015-0001 kostenfrei https://doaj.org/article/90324aec3766404892ae85b07c96b376 kostenfrei https://doi.org/10.1515/mgmc-2015-0001 kostenfrei https://doaj.org/toc/0792-1241 Journal toc kostenfrei https://doaj.org/toc/2191-0219 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 38 2015 1-2 43-50 |
allfields_unstemmed |
10.1515/mgmc-2015-0001 doi (DE-627)DOAJ061014737 (DE-599)DOAJ90324aec3766404892ae85b07c96b376 DE-627 ger DE-627 rakwb eng QD1-999 Yu Denis Y.W. verfasserin aut Antimony and antimony oxidegraphene oxide obtained by the peroxide route as anodes for lithium-ion batteries 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Zero-valent antimony and antimony oxide were deposited on graphene oxide by the recently introduced peroxide deposition route. The antimonygraphene oxide (GO) anode exhibits a charging capacity of 340 mAh g-1 with excellent stability at a current rate of 250 mA g-1 after 50 cycles of lithiation, which is superior to all other forms of antimony anodes that have been reported thus far. The electrode also exhibits a good rate performance, with a capacity of 230 and 180 mAh g-1 at a rate of 500 and 1000 mA g-1, respectively. We attribute the superior performance of the antimony@GO anodes to our coating protocol, which provides a thin layer of nanometric antimony coating on the graphene oxide, and to a small amount of antimony oxide that is left in the anode material after heat treatment and imparts some flexibility. The efficient charge distribution by the large surface area of reduced GO and the expansion buffering of the elastic graphene sheets also contributed to the superior stability of the anode. antimony antimony oxide hydroperoxoantimonate lithium-ion battery reduced graphene oxide Chemistry Batabyal Sudip K. verfasserin aut Gun Jenny verfasserin aut Sladkevich Sergey verfasserin aut Mikhaylov Alexey A. verfasserin aut Medvedev Alexander G. verfasserin aut Novotortsev Vladimir M. verfasserin aut Lev Ovadia verfasserin aut Prikhodchenko Petr V. verfasserin aut In Main Group Metal Chemistry De Gruyter, 2019 38(2015), 1-2, Seite 43-50 (DE-627)656019840 (DE-600)2602433-0 21910219 nnns volume:38 year:2015 number:1-2 pages:43-50 https://doi.org/10.1515/mgmc-2015-0001 kostenfrei https://doaj.org/article/90324aec3766404892ae85b07c96b376 kostenfrei https://doi.org/10.1515/mgmc-2015-0001 kostenfrei https://doaj.org/toc/0792-1241 Journal toc kostenfrei https://doaj.org/toc/2191-0219 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 38 2015 1-2 43-50 |
allfieldsGer |
10.1515/mgmc-2015-0001 doi (DE-627)DOAJ061014737 (DE-599)DOAJ90324aec3766404892ae85b07c96b376 DE-627 ger DE-627 rakwb eng QD1-999 Yu Denis Y.W. verfasserin aut Antimony and antimony oxidegraphene oxide obtained by the peroxide route as anodes for lithium-ion batteries 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Zero-valent antimony and antimony oxide were deposited on graphene oxide by the recently introduced peroxide deposition route. The antimonygraphene oxide (GO) anode exhibits a charging capacity of 340 mAh g-1 with excellent stability at a current rate of 250 mA g-1 after 50 cycles of lithiation, which is superior to all other forms of antimony anodes that have been reported thus far. The electrode also exhibits a good rate performance, with a capacity of 230 and 180 mAh g-1 at a rate of 500 and 1000 mA g-1, respectively. We attribute the superior performance of the antimony@GO anodes to our coating protocol, which provides a thin layer of nanometric antimony coating on the graphene oxide, and to a small amount of antimony oxide that is left in the anode material after heat treatment and imparts some flexibility. The efficient charge distribution by the large surface area of reduced GO and the expansion buffering of the elastic graphene sheets also contributed to the superior stability of the anode. antimony antimony oxide hydroperoxoantimonate lithium-ion battery reduced graphene oxide Chemistry Batabyal Sudip K. verfasserin aut Gun Jenny verfasserin aut Sladkevich Sergey verfasserin aut Mikhaylov Alexey A. verfasserin aut Medvedev Alexander G. verfasserin aut Novotortsev Vladimir M. verfasserin aut Lev Ovadia verfasserin aut Prikhodchenko Petr V. verfasserin aut In Main Group Metal Chemistry De Gruyter, 2019 38(2015), 1-2, Seite 43-50 (DE-627)656019840 (DE-600)2602433-0 21910219 nnns volume:38 year:2015 number:1-2 pages:43-50 https://doi.org/10.1515/mgmc-2015-0001 kostenfrei https://doaj.org/article/90324aec3766404892ae85b07c96b376 kostenfrei https://doi.org/10.1515/mgmc-2015-0001 kostenfrei https://doaj.org/toc/0792-1241 Journal toc kostenfrei https://doaj.org/toc/2191-0219 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 38 2015 1-2 43-50 |
allfieldsSound |
10.1515/mgmc-2015-0001 doi (DE-627)DOAJ061014737 (DE-599)DOAJ90324aec3766404892ae85b07c96b376 DE-627 ger DE-627 rakwb eng QD1-999 Yu Denis Y.W. verfasserin aut Antimony and antimony oxidegraphene oxide obtained by the peroxide route as anodes for lithium-ion batteries 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Zero-valent antimony and antimony oxide were deposited on graphene oxide by the recently introduced peroxide deposition route. The antimonygraphene oxide (GO) anode exhibits a charging capacity of 340 mAh g-1 with excellent stability at a current rate of 250 mA g-1 after 50 cycles of lithiation, which is superior to all other forms of antimony anodes that have been reported thus far. The electrode also exhibits a good rate performance, with a capacity of 230 and 180 mAh g-1 at a rate of 500 and 1000 mA g-1, respectively. We attribute the superior performance of the antimony@GO anodes to our coating protocol, which provides a thin layer of nanometric antimony coating on the graphene oxide, and to a small amount of antimony oxide that is left in the anode material after heat treatment and imparts some flexibility. The efficient charge distribution by the large surface area of reduced GO and the expansion buffering of the elastic graphene sheets also contributed to the superior stability of the anode. antimony antimony oxide hydroperoxoantimonate lithium-ion battery reduced graphene oxide Chemistry Batabyal Sudip K. verfasserin aut Gun Jenny verfasserin aut Sladkevich Sergey verfasserin aut Mikhaylov Alexey A. verfasserin aut Medvedev Alexander G. verfasserin aut Novotortsev Vladimir M. verfasserin aut Lev Ovadia verfasserin aut Prikhodchenko Petr V. verfasserin aut In Main Group Metal Chemistry De Gruyter, 2019 38(2015), 1-2, Seite 43-50 (DE-627)656019840 (DE-600)2602433-0 21910219 nnns volume:38 year:2015 number:1-2 pages:43-50 https://doi.org/10.1515/mgmc-2015-0001 kostenfrei https://doaj.org/article/90324aec3766404892ae85b07c96b376 kostenfrei https://doi.org/10.1515/mgmc-2015-0001 kostenfrei https://doaj.org/toc/0792-1241 Journal toc kostenfrei https://doaj.org/toc/2191-0219 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 38 2015 1-2 43-50 |
language |
English |
source |
In Main Group Metal Chemistry 38(2015), 1-2, Seite 43-50 volume:38 year:2015 number:1-2 pages:43-50 |
sourceStr |
In Main Group Metal Chemistry 38(2015), 1-2, Seite 43-50 volume:38 year:2015 number:1-2 pages:43-50 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
antimony antimony oxide hydroperoxoantimonate lithium-ion battery reduced graphene oxide Chemistry |
isfreeaccess_bool |
true |
container_title |
Main Group Metal Chemistry |
authorswithroles_txt_mv |
Yu Denis Y.W. @@aut@@ Batabyal Sudip K. @@aut@@ Gun Jenny @@aut@@ Sladkevich Sergey @@aut@@ Mikhaylov Alexey A. @@aut@@ Medvedev Alexander G. @@aut@@ Novotortsev Vladimir M. @@aut@@ Lev Ovadia @@aut@@ Prikhodchenko Petr V. @@aut@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
656019840 |
id |
DOAJ061014737 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ061014737</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309005406.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/mgmc-2015-0001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ061014737</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ90324aec3766404892ae85b07c96b376</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yu Denis Y.W.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="9"><subfield code="a">Antimony and antimony oxidegraphene oxide obtained by the peroxide route as anodes for lithium-ion batteries</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Zero-valent antimony and antimony oxide were deposited on graphene oxide by the recently introduced peroxide deposition route. The antimonygraphene oxide (GO) anode exhibits a charging capacity of 340 mAh g-1 with excellent stability at a current rate of 250 mA g-1 after 50 cycles of lithiation, which is superior to all other forms of antimony anodes that have been reported thus far. The electrode also exhibits a good rate performance, with a capacity of 230 and 180 mAh g-1 at a rate of 500 and 1000 mA g-1, respectively. We attribute the superior performance of the antimony@GO anodes to our coating protocol, which provides a thin layer of nanometric antimony coating on the graphene oxide, and to a small amount of antimony oxide that is left in the anode material after heat treatment and imparts some flexibility. The efficient charge distribution by the large surface area of reduced GO and the expansion buffering of the elastic graphene sheets also contributed to the superior stability of the anode.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">antimony</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">antimony oxide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hydroperoxoantimonate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">lithium-ion battery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reduced graphene oxide</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Batabyal Sudip K.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gun Jenny</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sladkevich Sergey</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mikhaylov Alexey A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Medvedev Alexander G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Novotortsev Vladimir M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lev Ovadia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Prikhodchenko Petr V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Main Group Metal Chemistry</subfield><subfield code="d">De Gruyter, 2019</subfield><subfield code="g">38(2015), 1-2, Seite 43-50</subfield><subfield code="w">(DE-627)656019840</subfield><subfield code="w">(DE-600)2602433-0</subfield><subfield code="x">21910219</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:38</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1-2</subfield><subfield code="g">pages:43-50</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/mgmc-2015-0001</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/90324aec3766404892ae85b07c96b376</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/mgmc-2015-0001</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0792-1241</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2191-0219</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">38</subfield><subfield code="j">2015</subfield><subfield code="e">1-2</subfield><subfield code="h">43-50</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Yu Denis Y.W. |
spellingShingle |
Yu Denis Y.W. misc QD1-999 misc antimony misc antimony oxide misc hydroperoxoantimonate misc lithium-ion battery misc reduced graphene oxide misc Chemistry Antimony and antimony oxidegraphene oxide obtained by the peroxide route as anodes for lithium-ion batteries |
authorStr |
Yu Denis Y.W. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)656019840 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QD1-999 |
illustrated |
Not Illustrated |
issn |
21910219 |
topic_title |
QD1-999 Antimony and antimony oxidegraphene oxide obtained by the peroxide route as anodes for lithium-ion batteries antimony antimony oxide hydroperoxoantimonate lithium-ion battery reduced graphene oxide |
topic |
misc QD1-999 misc antimony misc antimony oxide misc hydroperoxoantimonate misc lithium-ion battery misc reduced graphene oxide misc Chemistry |
topic_unstemmed |
misc QD1-999 misc antimony misc antimony oxide misc hydroperoxoantimonate misc lithium-ion battery misc reduced graphene oxide misc Chemistry |
topic_browse |
misc QD1-999 misc antimony misc antimony oxide misc hydroperoxoantimonate misc lithium-ion battery misc reduced graphene oxide misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Main Group Metal Chemistry |
hierarchy_parent_id |
656019840 |
hierarchy_top_title |
Main Group Metal Chemistry |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)656019840 (DE-600)2602433-0 |
title |
Antimony and antimony oxidegraphene oxide obtained by the peroxide route as anodes for lithium-ion batteries |
ctrlnum |
(DE-627)DOAJ061014737 (DE-599)DOAJ90324aec3766404892ae85b07c96b376 |
title_full |
Antimony and antimony oxidegraphene oxide obtained by the peroxide route as anodes for lithium-ion batteries |
author_sort |
Yu Denis Y.W. |
journal |
Main Group Metal Chemistry |
journalStr |
Main Group Metal Chemistry |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
43 |
author_browse |
Yu Denis Y.W. Batabyal Sudip K. Gun Jenny Sladkevich Sergey Mikhaylov Alexey A. Medvedev Alexander G. Novotortsev Vladimir M. Lev Ovadia Prikhodchenko Petr V. |
container_volume |
38 |
class |
QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Yu Denis Y.W. |
doi_str_mv |
10.1515/mgmc-2015-0001 |
author2-role |
verfasserin |
title_sort |
and antimony oxidegraphene oxide obtained by the peroxide route as anodes for lithium-ion batteries |
callnumber |
QD1-999 |
title_auth |
Antimony and antimony oxidegraphene oxide obtained by the peroxide route as anodes for lithium-ion batteries |
abstract |
Zero-valent antimony and antimony oxide were deposited on graphene oxide by the recently introduced peroxide deposition route. The antimonygraphene oxide (GO) anode exhibits a charging capacity of 340 mAh g-1 with excellent stability at a current rate of 250 mA g-1 after 50 cycles of lithiation, which is superior to all other forms of antimony anodes that have been reported thus far. The electrode also exhibits a good rate performance, with a capacity of 230 and 180 mAh g-1 at a rate of 500 and 1000 mA g-1, respectively. We attribute the superior performance of the antimony@GO anodes to our coating protocol, which provides a thin layer of nanometric antimony coating on the graphene oxide, and to a small amount of antimony oxide that is left in the anode material after heat treatment and imparts some flexibility. The efficient charge distribution by the large surface area of reduced GO and the expansion buffering of the elastic graphene sheets also contributed to the superior stability of the anode. |
abstractGer |
Zero-valent antimony and antimony oxide were deposited on graphene oxide by the recently introduced peroxide deposition route. The antimonygraphene oxide (GO) anode exhibits a charging capacity of 340 mAh g-1 with excellent stability at a current rate of 250 mA g-1 after 50 cycles of lithiation, which is superior to all other forms of antimony anodes that have been reported thus far. The electrode also exhibits a good rate performance, with a capacity of 230 and 180 mAh g-1 at a rate of 500 and 1000 mA g-1, respectively. We attribute the superior performance of the antimony@GO anodes to our coating protocol, which provides a thin layer of nanometric antimony coating on the graphene oxide, and to a small amount of antimony oxide that is left in the anode material after heat treatment and imparts some flexibility. The efficient charge distribution by the large surface area of reduced GO and the expansion buffering of the elastic graphene sheets also contributed to the superior stability of the anode. |
abstract_unstemmed |
Zero-valent antimony and antimony oxide were deposited on graphene oxide by the recently introduced peroxide deposition route. The antimonygraphene oxide (GO) anode exhibits a charging capacity of 340 mAh g-1 with excellent stability at a current rate of 250 mA g-1 after 50 cycles of lithiation, which is superior to all other forms of antimony anodes that have been reported thus far. The electrode also exhibits a good rate performance, with a capacity of 230 and 180 mAh g-1 at a rate of 500 and 1000 mA g-1, respectively. We attribute the superior performance of the antimony@GO anodes to our coating protocol, which provides a thin layer of nanometric antimony coating on the graphene oxide, and to a small amount of antimony oxide that is left in the anode material after heat treatment and imparts some flexibility. The efficient charge distribution by the large surface area of reduced GO and the expansion buffering of the elastic graphene sheets also contributed to the superior stability of the anode. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1-2 |
title_short |
Antimony and antimony oxidegraphene oxide obtained by the peroxide route as anodes for lithium-ion batteries |
url |
https://doi.org/10.1515/mgmc-2015-0001 https://doaj.org/article/90324aec3766404892ae85b07c96b376 https://doaj.org/toc/0792-1241 https://doaj.org/toc/2191-0219 |
remote_bool |
true |
author2 |
Batabyal Sudip K. Gun Jenny Sladkevich Sergey Mikhaylov Alexey A. Medvedev Alexander G. Novotortsev Vladimir M. Lev Ovadia Prikhodchenko Petr V. |
author2Str |
Batabyal Sudip K. Gun Jenny Sladkevich Sergey Mikhaylov Alexey A. Medvedev Alexander G. Novotortsev Vladimir M. Lev Ovadia Prikhodchenko Petr V. |
ppnlink |
656019840 |
callnumber-subject |
QD - Chemistry |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1515/mgmc-2015-0001 |
callnumber-a |
QD1-999 |
up_date |
2024-07-03T18:20:49.953Z |
_version_ |
1803583068523462656 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ061014737</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309005406.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/mgmc-2015-0001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ061014737</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ90324aec3766404892ae85b07c96b376</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yu Denis Y.W.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="9"><subfield code="a">Antimony and antimony oxidegraphene oxide obtained by the peroxide route as anodes for lithium-ion batteries</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Zero-valent antimony and antimony oxide were deposited on graphene oxide by the recently introduced peroxide deposition route. The antimonygraphene oxide (GO) anode exhibits a charging capacity of 340 mAh g-1 with excellent stability at a current rate of 250 mA g-1 after 50 cycles of lithiation, which is superior to all other forms of antimony anodes that have been reported thus far. The electrode also exhibits a good rate performance, with a capacity of 230 and 180 mAh g-1 at a rate of 500 and 1000 mA g-1, respectively. We attribute the superior performance of the antimony@GO anodes to our coating protocol, which provides a thin layer of nanometric antimony coating on the graphene oxide, and to a small amount of antimony oxide that is left in the anode material after heat treatment and imparts some flexibility. The efficient charge distribution by the large surface area of reduced GO and the expansion buffering of the elastic graphene sheets also contributed to the superior stability of the anode.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">antimony</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">antimony oxide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hydroperoxoantimonate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">lithium-ion battery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reduced graphene oxide</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Batabyal Sudip K.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gun Jenny</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sladkevich Sergey</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mikhaylov Alexey A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Medvedev Alexander G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Novotortsev Vladimir M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lev Ovadia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Prikhodchenko Petr V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Main Group Metal Chemistry</subfield><subfield code="d">De Gruyter, 2019</subfield><subfield code="g">38(2015), 1-2, Seite 43-50</subfield><subfield code="w">(DE-627)656019840</subfield><subfield code="w">(DE-600)2602433-0</subfield><subfield code="x">21910219</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:38</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1-2</subfield><subfield code="g">pages:43-50</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/mgmc-2015-0001</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/90324aec3766404892ae85b07c96b376</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/mgmc-2015-0001</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0792-1241</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2191-0219</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">38</subfield><subfield code="j">2015</subfield><subfield code="e">1-2</subfield><subfield code="h">43-50</subfield></datafield></record></collection>
|
score |
7.401079 |