Linking Ecosystem Services and the SDGs to Farm-Level Assessment Tools and Models
A number of tools and models have been developed to assess farm-level sustainability. However, it is unclear how well they potentially incorporate ecosystem services (ES), or how they may contribute to attaining the United Nations Sustainable Development Goals (SDGs). Understanding how farm-level as...
Ausführliche Beschreibung
Autor*in: |
Joseph MacPherson [verfasserIn] Carsten Paul [verfasserIn] Katharina Helming [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Sustainability - MDPI AG, 2009, 12(2020), 16, p 6617 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2020 ; number:16, p 6617 |
Links: |
---|
DOI / URN: |
10.3390/su12166617 |
---|
Katalog-ID: |
DOAJ061222860 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ061222860 | ||
003 | DE-627 | ||
005 | 20240412220452.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/su12166617 |2 doi | |
035 | |a (DE-627)DOAJ061222860 | ||
035 | |a (DE-599)DOAJa5f9b119da48465ca80bddef08271a2a | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TD194-195 | |
050 | 0 | |a TJ807-830 | |
050 | 0 | |a GE1-350 | |
100 | 0 | |a Joseph MacPherson |e verfasserin |4 aut | |
245 | 1 | 0 | |a Linking Ecosystem Services and the SDGs to Farm-Level Assessment Tools and Models |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a A number of tools and models have been developed to assess farm-level sustainability. However, it is unclear how well they potentially incorporate ecosystem services (ES), or how they may contribute to attaining the United Nations Sustainable Development Goals (SDGs). Understanding how farm-level assessment tools and models converge on these new paradigms of sustainability is important for drawing comparison on sustainability performances of farming systems, conducting meta-analyses and upscaling local responses to global driving forces. In this study, a coverage analysis was performed for several farm-level sustainability assessment (SA) tools (SAFA, RISE, KSNL, DLG) and models (MODAM, MONICA, APSIM), in regard to their potential for incorporating ES and contribution to attaining the SDGs. Lists of agricultural-relevant CICES classes and SDG targets were compiled and matched against the indicators of the tools and models. The results showed that SAFA possessed the most comprehensive coverage of ES and SDGs, followed by RISE and KSNL. In comparison to models, SA tools were observed to have a higher degree of potential for covering ES and SDGs, which was attributed to larger and broader indicators sets. However, this study also suggested that, overall, current tools and models do not sufficiently articulate the concept of ecosystem services. | ||
650 | 4 | |a agriculture | |
650 | 4 | |a SA | |
650 | 4 | |a ecosystem services | |
650 | 4 | |a SDGs CICES | |
650 | 4 | |a tools | |
650 | 4 | |a models | |
653 | 0 | |a Environmental effects of industries and plants | |
653 | 0 | |a Renewable energy sources | |
653 | 0 | |a Environmental sciences | |
700 | 0 | |a Carsten Paul |e verfasserin |4 aut | |
700 | 0 | |a Katharina Helming |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Sustainability |d MDPI AG, 2009 |g 12(2020), 16, p 6617 |w (DE-627)610604120 |w (DE-600)2518383-7 |x 20711050 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2020 |g number:16, p 6617 |
856 | 4 | 0 | |u https://doi.org/10.3390/su12166617 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/a5f9b119da48465ca80bddef08271a2a |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2071-1050/12/16/6617 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2071-1050 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2020 |e 16, p 6617 |
author_variant |
j m jm c p cp k h kh |
---|---|
matchkey_str |
article:20711050:2020----::ikneoytmevcsntedsoameeass |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
TD |
publishDate |
2020 |
allfields |
10.3390/su12166617 doi (DE-627)DOAJ061222860 (DE-599)DOAJa5f9b119da48465ca80bddef08271a2a DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Joseph MacPherson verfasserin aut Linking Ecosystem Services and the SDGs to Farm-Level Assessment Tools and Models 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A number of tools and models have been developed to assess farm-level sustainability. However, it is unclear how well they potentially incorporate ecosystem services (ES), or how they may contribute to attaining the United Nations Sustainable Development Goals (SDGs). Understanding how farm-level assessment tools and models converge on these new paradigms of sustainability is important for drawing comparison on sustainability performances of farming systems, conducting meta-analyses and upscaling local responses to global driving forces. In this study, a coverage analysis was performed for several farm-level sustainability assessment (SA) tools (SAFA, RISE, KSNL, DLG) and models (MODAM, MONICA, APSIM), in regard to their potential for incorporating ES and contribution to attaining the SDGs. Lists of agricultural-relevant CICES classes and SDG targets were compiled and matched against the indicators of the tools and models. The results showed that SAFA possessed the most comprehensive coverage of ES and SDGs, followed by RISE and KSNL. In comparison to models, SA tools were observed to have a higher degree of potential for covering ES and SDGs, which was attributed to larger and broader indicators sets. However, this study also suggested that, overall, current tools and models do not sufficiently articulate the concept of ecosystem services. agriculture SA ecosystem services SDGs CICES tools models Environmental effects of industries and plants Renewable energy sources Environmental sciences Carsten Paul verfasserin aut Katharina Helming verfasserin aut In Sustainability MDPI AG, 2009 12(2020), 16, p 6617 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:12 year:2020 number:16, p 6617 https://doi.org/10.3390/su12166617 kostenfrei https://doaj.org/article/a5f9b119da48465ca80bddef08271a2a kostenfrei https://www.mdpi.com/2071-1050/12/16/6617 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 12 2020 16, p 6617 |
spelling |
10.3390/su12166617 doi (DE-627)DOAJ061222860 (DE-599)DOAJa5f9b119da48465ca80bddef08271a2a DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Joseph MacPherson verfasserin aut Linking Ecosystem Services and the SDGs to Farm-Level Assessment Tools and Models 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A number of tools and models have been developed to assess farm-level sustainability. However, it is unclear how well they potentially incorporate ecosystem services (ES), or how they may contribute to attaining the United Nations Sustainable Development Goals (SDGs). Understanding how farm-level assessment tools and models converge on these new paradigms of sustainability is important for drawing comparison on sustainability performances of farming systems, conducting meta-analyses and upscaling local responses to global driving forces. In this study, a coverage analysis was performed for several farm-level sustainability assessment (SA) tools (SAFA, RISE, KSNL, DLG) and models (MODAM, MONICA, APSIM), in regard to their potential for incorporating ES and contribution to attaining the SDGs. Lists of agricultural-relevant CICES classes and SDG targets were compiled and matched against the indicators of the tools and models. The results showed that SAFA possessed the most comprehensive coverage of ES and SDGs, followed by RISE and KSNL. In comparison to models, SA tools were observed to have a higher degree of potential for covering ES and SDGs, which was attributed to larger and broader indicators sets. However, this study also suggested that, overall, current tools and models do not sufficiently articulate the concept of ecosystem services. agriculture SA ecosystem services SDGs CICES tools models Environmental effects of industries and plants Renewable energy sources Environmental sciences Carsten Paul verfasserin aut Katharina Helming verfasserin aut In Sustainability MDPI AG, 2009 12(2020), 16, p 6617 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:12 year:2020 number:16, p 6617 https://doi.org/10.3390/su12166617 kostenfrei https://doaj.org/article/a5f9b119da48465ca80bddef08271a2a kostenfrei https://www.mdpi.com/2071-1050/12/16/6617 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 12 2020 16, p 6617 |
allfields_unstemmed |
10.3390/su12166617 doi (DE-627)DOAJ061222860 (DE-599)DOAJa5f9b119da48465ca80bddef08271a2a DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Joseph MacPherson verfasserin aut Linking Ecosystem Services and the SDGs to Farm-Level Assessment Tools and Models 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A number of tools and models have been developed to assess farm-level sustainability. However, it is unclear how well they potentially incorporate ecosystem services (ES), or how they may contribute to attaining the United Nations Sustainable Development Goals (SDGs). Understanding how farm-level assessment tools and models converge on these new paradigms of sustainability is important for drawing comparison on sustainability performances of farming systems, conducting meta-analyses and upscaling local responses to global driving forces. In this study, a coverage analysis was performed for several farm-level sustainability assessment (SA) tools (SAFA, RISE, KSNL, DLG) and models (MODAM, MONICA, APSIM), in regard to their potential for incorporating ES and contribution to attaining the SDGs. Lists of agricultural-relevant CICES classes and SDG targets were compiled and matched against the indicators of the tools and models. The results showed that SAFA possessed the most comprehensive coverage of ES and SDGs, followed by RISE and KSNL. In comparison to models, SA tools were observed to have a higher degree of potential for covering ES and SDGs, which was attributed to larger and broader indicators sets. However, this study also suggested that, overall, current tools and models do not sufficiently articulate the concept of ecosystem services. agriculture SA ecosystem services SDGs CICES tools models Environmental effects of industries and plants Renewable energy sources Environmental sciences Carsten Paul verfasserin aut Katharina Helming verfasserin aut In Sustainability MDPI AG, 2009 12(2020), 16, p 6617 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:12 year:2020 number:16, p 6617 https://doi.org/10.3390/su12166617 kostenfrei https://doaj.org/article/a5f9b119da48465ca80bddef08271a2a kostenfrei https://www.mdpi.com/2071-1050/12/16/6617 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 12 2020 16, p 6617 |
allfieldsGer |
10.3390/su12166617 doi (DE-627)DOAJ061222860 (DE-599)DOAJa5f9b119da48465ca80bddef08271a2a DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Joseph MacPherson verfasserin aut Linking Ecosystem Services and the SDGs to Farm-Level Assessment Tools and Models 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A number of tools and models have been developed to assess farm-level sustainability. However, it is unclear how well they potentially incorporate ecosystem services (ES), or how they may contribute to attaining the United Nations Sustainable Development Goals (SDGs). Understanding how farm-level assessment tools and models converge on these new paradigms of sustainability is important for drawing comparison on sustainability performances of farming systems, conducting meta-analyses and upscaling local responses to global driving forces. In this study, a coverage analysis was performed for several farm-level sustainability assessment (SA) tools (SAFA, RISE, KSNL, DLG) and models (MODAM, MONICA, APSIM), in regard to their potential for incorporating ES and contribution to attaining the SDGs. Lists of agricultural-relevant CICES classes and SDG targets were compiled and matched against the indicators of the tools and models. The results showed that SAFA possessed the most comprehensive coverage of ES and SDGs, followed by RISE and KSNL. In comparison to models, SA tools were observed to have a higher degree of potential for covering ES and SDGs, which was attributed to larger and broader indicators sets. However, this study also suggested that, overall, current tools and models do not sufficiently articulate the concept of ecosystem services. agriculture SA ecosystem services SDGs CICES tools models Environmental effects of industries and plants Renewable energy sources Environmental sciences Carsten Paul verfasserin aut Katharina Helming verfasserin aut In Sustainability MDPI AG, 2009 12(2020), 16, p 6617 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:12 year:2020 number:16, p 6617 https://doi.org/10.3390/su12166617 kostenfrei https://doaj.org/article/a5f9b119da48465ca80bddef08271a2a kostenfrei https://www.mdpi.com/2071-1050/12/16/6617 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 12 2020 16, p 6617 |
allfieldsSound |
10.3390/su12166617 doi (DE-627)DOAJ061222860 (DE-599)DOAJa5f9b119da48465ca80bddef08271a2a DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Joseph MacPherson verfasserin aut Linking Ecosystem Services and the SDGs to Farm-Level Assessment Tools and Models 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A number of tools and models have been developed to assess farm-level sustainability. However, it is unclear how well they potentially incorporate ecosystem services (ES), or how they may contribute to attaining the United Nations Sustainable Development Goals (SDGs). Understanding how farm-level assessment tools and models converge on these new paradigms of sustainability is important for drawing comparison on sustainability performances of farming systems, conducting meta-analyses and upscaling local responses to global driving forces. In this study, a coverage analysis was performed for several farm-level sustainability assessment (SA) tools (SAFA, RISE, KSNL, DLG) and models (MODAM, MONICA, APSIM), in regard to their potential for incorporating ES and contribution to attaining the SDGs. Lists of agricultural-relevant CICES classes and SDG targets were compiled and matched against the indicators of the tools and models. The results showed that SAFA possessed the most comprehensive coverage of ES and SDGs, followed by RISE and KSNL. In comparison to models, SA tools were observed to have a higher degree of potential for covering ES and SDGs, which was attributed to larger and broader indicators sets. However, this study also suggested that, overall, current tools and models do not sufficiently articulate the concept of ecosystem services. agriculture SA ecosystem services SDGs CICES tools models Environmental effects of industries and plants Renewable energy sources Environmental sciences Carsten Paul verfasserin aut Katharina Helming verfasserin aut In Sustainability MDPI AG, 2009 12(2020), 16, p 6617 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:12 year:2020 number:16, p 6617 https://doi.org/10.3390/su12166617 kostenfrei https://doaj.org/article/a5f9b119da48465ca80bddef08271a2a kostenfrei https://www.mdpi.com/2071-1050/12/16/6617 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 12 2020 16, p 6617 |
language |
English |
source |
In Sustainability 12(2020), 16, p 6617 volume:12 year:2020 number:16, p 6617 |
sourceStr |
In Sustainability 12(2020), 16, p 6617 volume:12 year:2020 number:16, p 6617 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
agriculture SA ecosystem services SDGs CICES tools models Environmental effects of industries and plants Renewable energy sources Environmental sciences |
isfreeaccess_bool |
true |
container_title |
Sustainability |
authorswithroles_txt_mv |
Joseph MacPherson @@aut@@ Carsten Paul @@aut@@ Katharina Helming @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
610604120 |
id |
DOAJ061222860 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ061222860</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412220452.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/su12166617</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ061222860</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa5f9b119da48465ca80bddef08271a2a</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD194-195</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ807-830</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Joseph MacPherson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Linking Ecosystem Services and the SDGs to Farm-Level Assessment Tools and Models</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A number of tools and models have been developed to assess farm-level sustainability. However, it is unclear how well they potentially incorporate ecosystem services (ES), or how they may contribute to attaining the United Nations Sustainable Development Goals (SDGs). Understanding how farm-level assessment tools and models converge on these new paradigms of sustainability is important for drawing comparison on sustainability performances of farming systems, conducting meta-analyses and upscaling local responses to global driving forces. In this study, a coverage analysis was performed for several farm-level sustainability assessment (SA) tools (SAFA, RISE, KSNL, DLG) and models (MODAM, MONICA, APSIM), in regard to their potential for incorporating ES and contribution to attaining the SDGs. Lists of agricultural-relevant CICES classes and SDG targets were compiled and matched against the indicators of the tools and models. The results showed that SAFA possessed the most comprehensive coverage of ES and SDGs, followed by RISE and KSNL. In comparison to models, SA tools were observed to have a higher degree of potential for covering ES and SDGs, which was attributed to larger and broader indicators sets. However, this study also suggested that, overall, current tools and models do not sufficiently articulate the concept of ecosystem services.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">agriculture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ecosystem services</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SDGs CICES</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tools</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">models</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental effects of industries and plants</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Renewable energy sources</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Carsten Paul</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Katharina Helming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sustainability</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">12(2020), 16, p 6617</subfield><subfield code="w">(DE-627)610604120</subfield><subfield code="w">(DE-600)2518383-7</subfield><subfield code="x">20711050</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:16, p 6617</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/su12166617</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a5f9b119da48465ca80bddef08271a2a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2071-1050/12/16/6617</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2071-1050</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2020</subfield><subfield code="e">16, p 6617</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Joseph MacPherson |
spellingShingle |
Joseph MacPherson misc TD194-195 misc TJ807-830 misc GE1-350 misc agriculture misc SA misc ecosystem services misc SDGs CICES misc tools misc models misc Environmental effects of industries and plants misc Renewable energy sources misc Environmental sciences Linking Ecosystem Services and the SDGs to Farm-Level Assessment Tools and Models |
authorStr |
Joseph MacPherson |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)610604120 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TD194-195 |
illustrated |
Not Illustrated |
issn |
20711050 |
topic_title |
TD194-195 TJ807-830 GE1-350 Linking Ecosystem Services and the SDGs to Farm-Level Assessment Tools and Models agriculture SA ecosystem services SDGs CICES tools models |
topic |
misc TD194-195 misc TJ807-830 misc GE1-350 misc agriculture misc SA misc ecosystem services misc SDGs CICES misc tools misc models misc Environmental effects of industries and plants misc Renewable energy sources misc Environmental sciences |
topic_unstemmed |
misc TD194-195 misc TJ807-830 misc GE1-350 misc agriculture misc SA misc ecosystem services misc SDGs CICES misc tools misc models misc Environmental effects of industries and plants misc Renewable energy sources misc Environmental sciences |
topic_browse |
misc TD194-195 misc TJ807-830 misc GE1-350 misc agriculture misc SA misc ecosystem services misc SDGs CICES misc tools misc models misc Environmental effects of industries and plants misc Renewable energy sources misc Environmental sciences |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Sustainability |
hierarchy_parent_id |
610604120 |
hierarchy_top_title |
Sustainability |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)610604120 (DE-600)2518383-7 |
title |
Linking Ecosystem Services and the SDGs to Farm-Level Assessment Tools and Models |
ctrlnum |
(DE-627)DOAJ061222860 (DE-599)DOAJa5f9b119da48465ca80bddef08271a2a |
title_full |
Linking Ecosystem Services and the SDGs to Farm-Level Assessment Tools and Models |
author_sort |
Joseph MacPherson |
journal |
Sustainability |
journalStr |
Sustainability |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Joseph MacPherson Carsten Paul Katharina Helming |
container_volume |
12 |
class |
TD194-195 TJ807-830 GE1-350 |
format_se |
Elektronische Aufsätze |
author-letter |
Joseph MacPherson |
doi_str_mv |
10.3390/su12166617 |
author2-role |
verfasserin |
title_sort |
linking ecosystem services and the sdgs to farm-level assessment tools and models |
callnumber |
TD194-195 |
title_auth |
Linking Ecosystem Services and the SDGs to Farm-Level Assessment Tools and Models |
abstract |
A number of tools and models have been developed to assess farm-level sustainability. However, it is unclear how well they potentially incorporate ecosystem services (ES), or how they may contribute to attaining the United Nations Sustainable Development Goals (SDGs). Understanding how farm-level assessment tools and models converge on these new paradigms of sustainability is important for drawing comparison on sustainability performances of farming systems, conducting meta-analyses and upscaling local responses to global driving forces. In this study, a coverage analysis was performed for several farm-level sustainability assessment (SA) tools (SAFA, RISE, KSNL, DLG) and models (MODAM, MONICA, APSIM), in regard to their potential for incorporating ES and contribution to attaining the SDGs. Lists of agricultural-relevant CICES classes and SDG targets were compiled and matched against the indicators of the tools and models. The results showed that SAFA possessed the most comprehensive coverage of ES and SDGs, followed by RISE and KSNL. In comparison to models, SA tools were observed to have a higher degree of potential for covering ES and SDGs, which was attributed to larger and broader indicators sets. However, this study also suggested that, overall, current tools and models do not sufficiently articulate the concept of ecosystem services. |
abstractGer |
A number of tools and models have been developed to assess farm-level sustainability. However, it is unclear how well they potentially incorporate ecosystem services (ES), or how they may contribute to attaining the United Nations Sustainable Development Goals (SDGs). Understanding how farm-level assessment tools and models converge on these new paradigms of sustainability is important for drawing comparison on sustainability performances of farming systems, conducting meta-analyses and upscaling local responses to global driving forces. In this study, a coverage analysis was performed for several farm-level sustainability assessment (SA) tools (SAFA, RISE, KSNL, DLG) and models (MODAM, MONICA, APSIM), in regard to their potential for incorporating ES and contribution to attaining the SDGs. Lists of agricultural-relevant CICES classes and SDG targets were compiled and matched against the indicators of the tools and models. The results showed that SAFA possessed the most comprehensive coverage of ES and SDGs, followed by RISE and KSNL. In comparison to models, SA tools were observed to have a higher degree of potential for covering ES and SDGs, which was attributed to larger and broader indicators sets. However, this study also suggested that, overall, current tools and models do not sufficiently articulate the concept of ecosystem services. |
abstract_unstemmed |
A number of tools and models have been developed to assess farm-level sustainability. However, it is unclear how well they potentially incorporate ecosystem services (ES), or how they may contribute to attaining the United Nations Sustainable Development Goals (SDGs). Understanding how farm-level assessment tools and models converge on these new paradigms of sustainability is important for drawing comparison on sustainability performances of farming systems, conducting meta-analyses and upscaling local responses to global driving forces. In this study, a coverage analysis was performed for several farm-level sustainability assessment (SA) tools (SAFA, RISE, KSNL, DLG) and models (MODAM, MONICA, APSIM), in regard to their potential for incorporating ES and contribution to attaining the SDGs. Lists of agricultural-relevant CICES classes and SDG targets were compiled and matched against the indicators of the tools and models. The results showed that SAFA possessed the most comprehensive coverage of ES and SDGs, followed by RISE and KSNL. In comparison to models, SA tools were observed to have a higher degree of potential for covering ES and SDGs, which was attributed to larger and broader indicators sets. However, this study also suggested that, overall, current tools and models do not sufficiently articulate the concept of ecosystem services. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
16, p 6617 |
title_short |
Linking Ecosystem Services and the SDGs to Farm-Level Assessment Tools and Models |
url |
https://doi.org/10.3390/su12166617 https://doaj.org/article/a5f9b119da48465ca80bddef08271a2a https://www.mdpi.com/2071-1050/12/16/6617 https://doaj.org/toc/2071-1050 |
remote_bool |
true |
author2 |
Carsten Paul Katharina Helming |
author2Str |
Carsten Paul Katharina Helming |
ppnlink |
610604120 |
callnumber-subject |
TD - Environmental Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/su12166617 |
callnumber-a |
TD194-195 |
up_date |
2024-07-03T19:31:34.638Z |
_version_ |
1803587519396184064 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ061222860</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412220452.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/su12166617</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ061222860</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa5f9b119da48465ca80bddef08271a2a</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD194-195</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ807-830</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Joseph MacPherson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Linking Ecosystem Services and the SDGs to Farm-Level Assessment Tools and Models</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A number of tools and models have been developed to assess farm-level sustainability. However, it is unclear how well they potentially incorporate ecosystem services (ES), or how they may contribute to attaining the United Nations Sustainable Development Goals (SDGs). Understanding how farm-level assessment tools and models converge on these new paradigms of sustainability is important for drawing comparison on sustainability performances of farming systems, conducting meta-analyses and upscaling local responses to global driving forces. In this study, a coverage analysis was performed for several farm-level sustainability assessment (SA) tools (SAFA, RISE, KSNL, DLG) and models (MODAM, MONICA, APSIM), in regard to their potential for incorporating ES and contribution to attaining the SDGs. Lists of agricultural-relevant CICES classes and SDG targets were compiled and matched against the indicators of the tools and models. The results showed that SAFA possessed the most comprehensive coverage of ES and SDGs, followed by RISE and KSNL. In comparison to models, SA tools were observed to have a higher degree of potential for covering ES and SDGs, which was attributed to larger and broader indicators sets. However, this study also suggested that, overall, current tools and models do not sufficiently articulate the concept of ecosystem services.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">agriculture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ecosystem services</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SDGs CICES</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tools</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">models</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental effects of industries and plants</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Renewable energy sources</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Carsten Paul</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Katharina Helming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sustainability</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">12(2020), 16, p 6617</subfield><subfield code="w">(DE-627)610604120</subfield><subfield code="w">(DE-600)2518383-7</subfield><subfield code="x">20711050</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:16, p 6617</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/su12166617</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a5f9b119da48465ca80bddef08271a2a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2071-1050/12/16/6617</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2071-1050</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2020</subfield><subfield code="e">16, p 6617</subfield></datafield></record></collection>
|
score |
7.400996 |