The Effect of Processing Parameters and Solid Concentration on the Microstructure and Pore Architecture of Gelatin-Chitosan Scaffolds Produced by Freeze-Drying
One of the main components for being successful in tissue engineering is developing a scaffold with an appropriate architecture for allow migration, cell proliferation, and differentiation. A gelatin-chitosan scaffold by vacuum freeze-drying has been developed for tissue engineering applications. Th...
Ausführliche Beschreibung
Autor*in: |
Daniel Enrique López Angulo [verfasserIn] Paulo José do Amaral Sobral [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Materials Research - Associação Brasileira de Metalurgia e Materiais (ABM); Associação Brasileira de Cerâmica (ABC); Associação Brasileira de Polímeros (ABPol), 2004, 19(2016), 4, Seite 839-845 |
---|---|
Übergeordnetes Werk: |
volume:19 ; year:2016 ; number:4 ; pages:839-845 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.1590/1980-5373-MR-2015-0793 |
---|
Katalog-ID: |
DOAJ06137119X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ06137119X | ||
003 | DE-627 | ||
005 | 20230503103845.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1590/1980-5373-MR-2015-0793 |2 doi | |
035 | |a (DE-627)DOAJ06137119X | ||
035 | |a (DE-599)DOAJb75b7b8c0549470bb28011f8f388eeee | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA401-492 | |
100 | 0 | |a Daniel Enrique López Angulo |e verfasserin |4 aut | |
245 | 1 | 4 | |a The Effect of Processing Parameters and Solid Concentration on the Microstructure and Pore Architecture of Gelatin-Chitosan Scaffolds Produced by Freeze-Drying |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a One of the main components for being successful in tissue engineering is developing a scaffold with an appropriate architecture for allow migration, cell proliferation, and differentiation. A gelatin-chitosan scaffold by vacuum freeze-drying has been developed for tissue engineering applications. The effects of solid concentration and freezing processing on the scaffold morphology and porous size were investigated. As the chitosan content was increased the viscoelastic properties of pigskin gelatin was modified, the maximum G' values were lower than the values for pure gelatin solution, and the thermal transition points also occurred at lower temperatures, as well as a decrease of pore size tendency was observed and the scaffold visibly increased porosity, the structure scaffold was observed with an interconnected and more homogeneous pore matrix. The pore sizes become smaller and pore walls thinner, while interconnectivity increases along with declining pre-freezing temperature. The chitosan-gelatin scaffold will be a promising candidate in tissue engineering. | ||
650 | 4 | |a tissue engineering | |
650 | 4 | |a cell proliferation | |
650 | 4 | |a interconnected pore matrix | |
653 | 0 | |a Materials of engineering and construction. Mechanics of materials | |
700 | 0 | |a Paulo José do Amaral Sobral |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Materials Research |d Associação Brasileira de Metalurgia e Materiais (ABM); Associação Brasileira de Cerâmica (ABC); Associação Brasileira de Polímeros (ABPol), 2004 |g 19(2016), 4, Seite 839-845 |w (DE-627)331755718 |w (DE-600)2053187-4 |x 15161439 |7 nnns |
773 | 1 | 8 | |g volume:19 |g year:2016 |g number:4 |g pages:839-845 |
856 | 4 | 0 | |u https://doi.org/10.1590/1980-5373-MR-2015-0793 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/b75b7b8c0549470bb28011f8f388eeee |z kostenfrei |
856 | 4 | 0 | |u http://www.scielo.br/pdf/mr/v19n4/1516-1439-mr-1980-5373-MR-2015-0793.pdf |z kostenfrei |
856 | 4 | 0 | |u http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392016000400839&tlng=en |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1516-1439 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 19 |j 2016 |e 4 |h 839-845 |
author_variant |
d e l a dela p j d a s pjdas |
---|---|
matchkey_str |
article:15161439:2016----::hefcopoesnprmtradoicnetainnhmcotutradoerhtcuefeaici |
hierarchy_sort_str |
2016 |
callnumber-subject-code |
TA |
publishDate |
2016 |
allfields |
10.1590/1980-5373-MR-2015-0793 doi (DE-627)DOAJ06137119X (DE-599)DOAJb75b7b8c0549470bb28011f8f388eeee DE-627 ger DE-627 rakwb eng TA401-492 Daniel Enrique López Angulo verfasserin aut The Effect of Processing Parameters and Solid Concentration on the Microstructure and Pore Architecture of Gelatin-Chitosan Scaffolds Produced by Freeze-Drying 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier One of the main components for being successful in tissue engineering is developing a scaffold with an appropriate architecture for allow migration, cell proliferation, and differentiation. A gelatin-chitosan scaffold by vacuum freeze-drying has been developed for tissue engineering applications. The effects of solid concentration and freezing processing on the scaffold morphology and porous size were investigated. As the chitosan content was increased the viscoelastic properties of pigskin gelatin was modified, the maximum G' values were lower than the values for pure gelatin solution, and the thermal transition points also occurred at lower temperatures, as well as a decrease of pore size tendency was observed and the scaffold visibly increased porosity, the structure scaffold was observed with an interconnected and more homogeneous pore matrix. The pore sizes become smaller and pore walls thinner, while interconnectivity increases along with declining pre-freezing temperature. The chitosan-gelatin scaffold will be a promising candidate in tissue engineering. tissue engineering cell proliferation interconnected pore matrix Materials of engineering and construction. Mechanics of materials Paulo José do Amaral Sobral verfasserin aut In Materials Research Associação Brasileira de Metalurgia e Materiais (ABM); Associação Brasileira de Cerâmica (ABC); Associação Brasileira de Polímeros (ABPol), 2004 19(2016), 4, Seite 839-845 (DE-627)331755718 (DE-600)2053187-4 15161439 nnns volume:19 year:2016 number:4 pages:839-845 https://doi.org/10.1590/1980-5373-MR-2015-0793 kostenfrei https://doaj.org/article/b75b7b8c0549470bb28011f8f388eeee kostenfrei http://www.scielo.br/pdf/mr/v19n4/1516-1439-mr-1980-5373-MR-2015-0793.pdf kostenfrei http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392016000400839&tlng=en kostenfrei https://doaj.org/toc/1516-1439 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2016 4 839-845 |
spelling |
10.1590/1980-5373-MR-2015-0793 doi (DE-627)DOAJ06137119X (DE-599)DOAJb75b7b8c0549470bb28011f8f388eeee DE-627 ger DE-627 rakwb eng TA401-492 Daniel Enrique López Angulo verfasserin aut The Effect of Processing Parameters and Solid Concentration on the Microstructure and Pore Architecture of Gelatin-Chitosan Scaffolds Produced by Freeze-Drying 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier One of the main components for being successful in tissue engineering is developing a scaffold with an appropriate architecture for allow migration, cell proliferation, and differentiation. A gelatin-chitosan scaffold by vacuum freeze-drying has been developed for tissue engineering applications. The effects of solid concentration and freezing processing on the scaffold morphology and porous size were investigated. As the chitosan content was increased the viscoelastic properties of pigskin gelatin was modified, the maximum G' values were lower than the values for pure gelatin solution, and the thermal transition points also occurred at lower temperatures, as well as a decrease of pore size tendency was observed and the scaffold visibly increased porosity, the structure scaffold was observed with an interconnected and more homogeneous pore matrix. The pore sizes become smaller and pore walls thinner, while interconnectivity increases along with declining pre-freezing temperature. The chitosan-gelatin scaffold will be a promising candidate in tissue engineering. tissue engineering cell proliferation interconnected pore matrix Materials of engineering and construction. Mechanics of materials Paulo José do Amaral Sobral verfasserin aut In Materials Research Associação Brasileira de Metalurgia e Materiais (ABM); Associação Brasileira de Cerâmica (ABC); Associação Brasileira de Polímeros (ABPol), 2004 19(2016), 4, Seite 839-845 (DE-627)331755718 (DE-600)2053187-4 15161439 nnns volume:19 year:2016 number:4 pages:839-845 https://doi.org/10.1590/1980-5373-MR-2015-0793 kostenfrei https://doaj.org/article/b75b7b8c0549470bb28011f8f388eeee kostenfrei http://www.scielo.br/pdf/mr/v19n4/1516-1439-mr-1980-5373-MR-2015-0793.pdf kostenfrei http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392016000400839&tlng=en kostenfrei https://doaj.org/toc/1516-1439 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2016 4 839-845 |
allfields_unstemmed |
10.1590/1980-5373-MR-2015-0793 doi (DE-627)DOAJ06137119X (DE-599)DOAJb75b7b8c0549470bb28011f8f388eeee DE-627 ger DE-627 rakwb eng TA401-492 Daniel Enrique López Angulo verfasserin aut The Effect of Processing Parameters and Solid Concentration on the Microstructure and Pore Architecture of Gelatin-Chitosan Scaffolds Produced by Freeze-Drying 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier One of the main components for being successful in tissue engineering is developing a scaffold with an appropriate architecture for allow migration, cell proliferation, and differentiation. A gelatin-chitosan scaffold by vacuum freeze-drying has been developed for tissue engineering applications. The effects of solid concentration and freezing processing on the scaffold morphology and porous size were investigated. As the chitosan content was increased the viscoelastic properties of pigskin gelatin was modified, the maximum G' values were lower than the values for pure gelatin solution, and the thermal transition points also occurred at lower temperatures, as well as a decrease of pore size tendency was observed and the scaffold visibly increased porosity, the structure scaffold was observed with an interconnected and more homogeneous pore matrix. The pore sizes become smaller and pore walls thinner, while interconnectivity increases along with declining pre-freezing temperature. The chitosan-gelatin scaffold will be a promising candidate in tissue engineering. tissue engineering cell proliferation interconnected pore matrix Materials of engineering and construction. Mechanics of materials Paulo José do Amaral Sobral verfasserin aut In Materials Research Associação Brasileira de Metalurgia e Materiais (ABM); Associação Brasileira de Cerâmica (ABC); Associação Brasileira de Polímeros (ABPol), 2004 19(2016), 4, Seite 839-845 (DE-627)331755718 (DE-600)2053187-4 15161439 nnns volume:19 year:2016 number:4 pages:839-845 https://doi.org/10.1590/1980-5373-MR-2015-0793 kostenfrei https://doaj.org/article/b75b7b8c0549470bb28011f8f388eeee kostenfrei http://www.scielo.br/pdf/mr/v19n4/1516-1439-mr-1980-5373-MR-2015-0793.pdf kostenfrei http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392016000400839&tlng=en kostenfrei https://doaj.org/toc/1516-1439 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2016 4 839-845 |
allfieldsGer |
10.1590/1980-5373-MR-2015-0793 doi (DE-627)DOAJ06137119X (DE-599)DOAJb75b7b8c0549470bb28011f8f388eeee DE-627 ger DE-627 rakwb eng TA401-492 Daniel Enrique López Angulo verfasserin aut The Effect of Processing Parameters and Solid Concentration on the Microstructure and Pore Architecture of Gelatin-Chitosan Scaffolds Produced by Freeze-Drying 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier One of the main components for being successful in tissue engineering is developing a scaffold with an appropriate architecture for allow migration, cell proliferation, and differentiation. A gelatin-chitosan scaffold by vacuum freeze-drying has been developed for tissue engineering applications. The effects of solid concentration and freezing processing on the scaffold morphology and porous size were investigated. As the chitosan content was increased the viscoelastic properties of pigskin gelatin was modified, the maximum G' values were lower than the values for pure gelatin solution, and the thermal transition points also occurred at lower temperatures, as well as a decrease of pore size tendency was observed and the scaffold visibly increased porosity, the structure scaffold was observed with an interconnected and more homogeneous pore matrix. The pore sizes become smaller and pore walls thinner, while interconnectivity increases along with declining pre-freezing temperature. The chitosan-gelatin scaffold will be a promising candidate in tissue engineering. tissue engineering cell proliferation interconnected pore matrix Materials of engineering and construction. Mechanics of materials Paulo José do Amaral Sobral verfasserin aut In Materials Research Associação Brasileira de Metalurgia e Materiais (ABM); Associação Brasileira de Cerâmica (ABC); Associação Brasileira de Polímeros (ABPol), 2004 19(2016), 4, Seite 839-845 (DE-627)331755718 (DE-600)2053187-4 15161439 nnns volume:19 year:2016 number:4 pages:839-845 https://doi.org/10.1590/1980-5373-MR-2015-0793 kostenfrei https://doaj.org/article/b75b7b8c0549470bb28011f8f388eeee kostenfrei http://www.scielo.br/pdf/mr/v19n4/1516-1439-mr-1980-5373-MR-2015-0793.pdf kostenfrei http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392016000400839&tlng=en kostenfrei https://doaj.org/toc/1516-1439 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2016 4 839-845 |
allfieldsSound |
10.1590/1980-5373-MR-2015-0793 doi (DE-627)DOAJ06137119X (DE-599)DOAJb75b7b8c0549470bb28011f8f388eeee DE-627 ger DE-627 rakwb eng TA401-492 Daniel Enrique López Angulo verfasserin aut The Effect of Processing Parameters and Solid Concentration on the Microstructure and Pore Architecture of Gelatin-Chitosan Scaffolds Produced by Freeze-Drying 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier One of the main components for being successful in tissue engineering is developing a scaffold with an appropriate architecture for allow migration, cell proliferation, and differentiation. A gelatin-chitosan scaffold by vacuum freeze-drying has been developed for tissue engineering applications. The effects of solid concentration and freezing processing on the scaffold morphology and porous size were investigated. As the chitosan content was increased the viscoelastic properties of pigskin gelatin was modified, the maximum G' values were lower than the values for pure gelatin solution, and the thermal transition points also occurred at lower temperatures, as well as a decrease of pore size tendency was observed and the scaffold visibly increased porosity, the structure scaffold was observed with an interconnected and more homogeneous pore matrix. The pore sizes become smaller and pore walls thinner, while interconnectivity increases along with declining pre-freezing temperature. The chitosan-gelatin scaffold will be a promising candidate in tissue engineering. tissue engineering cell proliferation interconnected pore matrix Materials of engineering and construction. Mechanics of materials Paulo José do Amaral Sobral verfasserin aut In Materials Research Associação Brasileira de Metalurgia e Materiais (ABM); Associação Brasileira de Cerâmica (ABC); Associação Brasileira de Polímeros (ABPol), 2004 19(2016), 4, Seite 839-845 (DE-627)331755718 (DE-600)2053187-4 15161439 nnns volume:19 year:2016 number:4 pages:839-845 https://doi.org/10.1590/1980-5373-MR-2015-0793 kostenfrei https://doaj.org/article/b75b7b8c0549470bb28011f8f388eeee kostenfrei http://www.scielo.br/pdf/mr/v19n4/1516-1439-mr-1980-5373-MR-2015-0793.pdf kostenfrei http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392016000400839&tlng=en kostenfrei https://doaj.org/toc/1516-1439 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2016 4 839-845 |
language |
English |
source |
In Materials Research 19(2016), 4, Seite 839-845 volume:19 year:2016 number:4 pages:839-845 |
sourceStr |
In Materials Research 19(2016), 4, Seite 839-845 volume:19 year:2016 number:4 pages:839-845 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
tissue engineering cell proliferation interconnected pore matrix Materials of engineering and construction. Mechanics of materials |
isfreeaccess_bool |
true |
container_title |
Materials Research |
authorswithroles_txt_mv |
Daniel Enrique López Angulo @@aut@@ Paulo José do Amaral Sobral @@aut@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
331755718 |
id |
DOAJ06137119X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ06137119X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503103845.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1590/1980-5373-MR-2015-0793</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ06137119X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb75b7b8c0549470bb28011f8f388eeee</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA401-492</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Daniel Enrique López Angulo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Effect of Processing Parameters and Solid Concentration on the Microstructure and Pore Architecture of Gelatin-Chitosan Scaffolds Produced by Freeze-Drying</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">One of the main components for being successful in tissue engineering is developing a scaffold with an appropriate architecture for allow migration, cell proliferation, and differentiation. A gelatin-chitosan scaffold by vacuum freeze-drying has been developed for tissue engineering applications. The effects of solid concentration and freezing processing on the scaffold morphology and porous size were investigated. As the chitosan content was increased the viscoelastic properties of pigskin gelatin was modified, the maximum G' values were lower than the values for pure gelatin solution, and the thermal transition points also occurred at lower temperatures, as well as a decrease of pore size tendency was observed and the scaffold visibly increased porosity, the structure scaffold was observed with an interconnected and more homogeneous pore matrix. The pore sizes become smaller and pore walls thinner, while interconnectivity increases along with declining pre-freezing temperature. The chitosan-gelatin scaffold will be a promising candidate in tissue engineering.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tissue engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cell proliferation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">interconnected pore matrix</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Materials of engineering and construction. Mechanics of materials</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Paulo José do Amaral Sobral</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Materials Research</subfield><subfield code="d">Associação Brasileira de Metalurgia e Materiais (ABM); Associação Brasileira de Cerâmica (ABC); Associação Brasileira de Polímeros (ABPol), 2004</subfield><subfield code="g">19(2016), 4, Seite 839-845</subfield><subfield code="w">(DE-627)331755718</subfield><subfield code="w">(DE-600)2053187-4</subfield><subfield code="x">15161439</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:19</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:839-845</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1590/1980-5373-MR-2015-0793</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b75b7b8c0549470bb28011f8f388eeee</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.scielo.br/pdf/mr/v19n4/1516-1439-mr-1980-5373-MR-2015-0793.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392016000400839&tlng=en</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1516-1439</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">19</subfield><subfield code="j">2016</subfield><subfield code="e">4</subfield><subfield code="h">839-845</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Daniel Enrique López Angulo |
spellingShingle |
Daniel Enrique López Angulo misc TA401-492 misc tissue engineering misc cell proliferation misc interconnected pore matrix misc Materials of engineering and construction. Mechanics of materials The Effect of Processing Parameters and Solid Concentration on the Microstructure and Pore Architecture of Gelatin-Chitosan Scaffolds Produced by Freeze-Drying |
authorStr |
Daniel Enrique López Angulo |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)331755718 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA401-492 |
illustrated |
Not Illustrated |
issn |
15161439 |
topic_title |
TA401-492 The Effect of Processing Parameters and Solid Concentration on the Microstructure and Pore Architecture of Gelatin-Chitosan Scaffolds Produced by Freeze-Drying tissue engineering cell proliferation interconnected pore matrix |
topic |
misc TA401-492 misc tissue engineering misc cell proliferation misc interconnected pore matrix misc Materials of engineering and construction. Mechanics of materials |
topic_unstemmed |
misc TA401-492 misc tissue engineering misc cell proliferation misc interconnected pore matrix misc Materials of engineering and construction. Mechanics of materials |
topic_browse |
misc TA401-492 misc tissue engineering misc cell proliferation misc interconnected pore matrix misc Materials of engineering and construction. Mechanics of materials |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Materials Research |
hierarchy_parent_id |
331755718 |
hierarchy_top_title |
Materials Research |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)331755718 (DE-600)2053187-4 |
title |
The Effect of Processing Parameters and Solid Concentration on the Microstructure and Pore Architecture of Gelatin-Chitosan Scaffolds Produced by Freeze-Drying |
ctrlnum |
(DE-627)DOAJ06137119X (DE-599)DOAJb75b7b8c0549470bb28011f8f388eeee |
title_full |
The Effect of Processing Parameters and Solid Concentration on the Microstructure and Pore Architecture of Gelatin-Chitosan Scaffolds Produced by Freeze-Drying |
author_sort |
Daniel Enrique López Angulo |
journal |
Materials Research |
journalStr |
Materials Research |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
839 |
author_browse |
Daniel Enrique López Angulo Paulo José do Amaral Sobral |
container_volume |
19 |
class |
TA401-492 |
format_se |
Elektronische Aufsätze |
author-letter |
Daniel Enrique López Angulo |
doi_str_mv |
10.1590/1980-5373-MR-2015-0793 |
author2-role |
verfasserin |
title_sort |
effect of processing parameters and solid concentration on the microstructure and pore architecture of gelatin-chitosan scaffolds produced by freeze-drying |
callnumber |
TA401-492 |
title_auth |
The Effect of Processing Parameters and Solid Concentration on the Microstructure and Pore Architecture of Gelatin-Chitosan Scaffolds Produced by Freeze-Drying |
abstract |
One of the main components for being successful in tissue engineering is developing a scaffold with an appropriate architecture for allow migration, cell proliferation, and differentiation. A gelatin-chitosan scaffold by vacuum freeze-drying has been developed for tissue engineering applications. The effects of solid concentration and freezing processing on the scaffold morphology and porous size were investigated. As the chitosan content was increased the viscoelastic properties of pigskin gelatin was modified, the maximum G' values were lower than the values for pure gelatin solution, and the thermal transition points also occurred at lower temperatures, as well as a decrease of pore size tendency was observed and the scaffold visibly increased porosity, the structure scaffold was observed with an interconnected and more homogeneous pore matrix. The pore sizes become smaller and pore walls thinner, while interconnectivity increases along with declining pre-freezing temperature. The chitosan-gelatin scaffold will be a promising candidate in tissue engineering. |
abstractGer |
One of the main components for being successful in tissue engineering is developing a scaffold with an appropriate architecture for allow migration, cell proliferation, and differentiation. A gelatin-chitosan scaffold by vacuum freeze-drying has been developed for tissue engineering applications. The effects of solid concentration and freezing processing on the scaffold morphology and porous size were investigated. As the chitosan content was increased the viscoelastic properties of pigskin gelatin was modified, the maximum G' values were lower than the values for pure gelatin solution, and the thermal transition points also occurred at lower temperatures, as well as a decrease of pore size tendency was observed and the scaffold visibly increased porosity, the structure scaffold was observed with an interconnected and more homogeneous pore matrix. The pore sizes become smaller and pore walls thinner, while interconnectivity increases along with declining pre-freezing temperature. The chitosan-gelatin scaffold will be a promising candidate in tissue engineering. |
abstract_unstemmed |
One of the main components for being successful in tissue engineering is developing a scaffold with an appropriate architecture for allow migration, cell proliferation, and differentiation. A gelatin-chitosan scaffold by vacuum freeze-drying has been developed for tissue engineering applications. The effects of solid concentration and freezing processing on the scaffold morphology and porous size were investigated. As the chitosan content was increased the viscoelastic properties of pigskin gelatin was modified, the maximum G' values were lower than the values for pure gelatin solution, and the thermal transition points also occurred at lower temperatures, as well as a decrease of pore size tendency was observed and the scaffold visibly increased porosity, the structure scaffold was observed with an interconnected and more homogeneous pore matrix. The pore sizes become smaller and pore walls thinner, while interconnectivity increases along with declining pre-freezing temperature. The chitosan-gelatin scaffold will be a promising candidate in tissue engineering. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
4 |
title_short |
The Effect of Processing Parameters and Solid Concentration on the Microstructure and Pore Architecture of Gelatin-Chitosan Scaffolds Produced by Freeze-Drying |
url |
https://doi.org/10.1590/1980-5373-MR-2015-0793 https://doaj.org/article/b75b7b8c0549470bb28011f8f388eeee http://www.scielo.br/pdf/mr/v19n4/1516-1439-mr-1980-5373-MR-2015-0793.pdf http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392016000400839&tlng=en https://doaj.org/toc/1516-1439 |
remote_bool |
true |
author2 |
Paulo José do Amaral Sobral |
author2Str |
Paulo José do Amaral Sobral |
ppnlink |
331755718 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1590/1980-5373-MR-2015-0793 |
callnumber-a |
TA401-492 |
up_date |
2024-07-03T20:21:28.639Z |
_version_ |
1803590658835873792 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ06137119X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503103845.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1590/1980-5373-MR-2015-0793</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ06137119X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb75b7b8c0549470bb28011f8f388eeee</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA401-492</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Daniel Enrique López Angulo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Effect of Processing Parameters and Solid Concentration on the Microstructure and Pore Architecture of Gelatin-Chitosan Scaffolds Produced by Freeze-Drying</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">One of the main components for being successful in tissue engineering is developing a scaffold with an appropriate architecture for allow migration, cell proliferation, and differentiation. A gelatin-chitosan scaffold by vacuum freeze-drying has been developed for tissue engineering applications. The effects of solid concentration and freezing processing on the scaffold morphology and porous size were investigated. As the chitosan content was increased the viscoelastic properties of pigskin gelatin was modified, the maximum G' values were lower than the values for pure gelatin solution, and the thermal transition points also occurred at lower temperatures, as well as a decrease of pore size tendency was observed and the scaffold visibly increased porosity, the structure scaffold was observed with an interconnected and more homogeneous pore matrix. The pore sizes become smaller and pore walls thinner, while interconnectivity increases along with declining pre-freezing temperature. The chitosan-gelatin scaffold will be a promising candidate in tissue engineering.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tissue engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cell proliferation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">interconnected pore matrix</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Materials of engineering and construction. Mechanics of materials</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Paulo José do Amaral Sobral</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Materials Research</subfield><subfield code="d">Associação Brasileira de Metalurgia e Materiais (ABM); Associação Brasileira de Cerâmica (ABC); Associação Brasileira de Polímeros (ABPol), 2004</subfield><subfield code="g">19(2016), 4, Seite 839-845</subfield><subfield code="w">(DE-627)331755718</subfield><subfield code="w">(DE-600)2053187-4</subfield><subfield code="x">15161439</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:19</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:839-845</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1590/1980-5373-MR-2015-0793</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b75b7b8c0549470bb28011f8f388eeee</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.scielo.br/pdf/mr/v19n4/1516-1439-mr-1980-5373-MR-2015-0793.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392016000400839&tlng=en</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1516-1439</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">19</subfield><subfield code="j">2016</subfield><subfield code="e">4</subfield><subfield code="h">839-845</subfield></datafield></record></collection>
|
score |
7.4031916 |