A novel dimension reduction algorithm based on weighted kernel principal analysis for gene expression data.
Gene expression data has the characteristics of high dimensionality and a small sample size and contains a large number of redundant genes unrelated to a disease. The direct application of machine learning to classify this type of data will not only incur a great time cost but will also sometimes fa...
Ausführliche Beschreibung
Autor*in: |
Wen Bo Liu [verfasserIn] Sheng Nan Liang [verfasserIn] Xi Wen Qin [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Übergeordnetes Werk: |
In: PLoS ONE - Public Library of Science (PLoS), 2007, 16(2021), 10, p e0258326 |
---|---|
Übergeordnetes Werk: |
volume:16 ; year:2021 ; number:10, p e0258326 |
Links: |
---|
DOI / URN: |
10.1371/journal.pone.0258326 |
---|
Katalog-ID: |
DOAJ061921564 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ061921564 | ||
003 | DE-627 | ||
005 | 20230309014437.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1371/journal.pone.0258326 |2 doi | |
035 | |a (DE-627)DOAJ061921564 | ||
035 | |a (DE-599)DOAJfe5964de855540498082f32ea101742b | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Wen Bo Liu |e verfasserin |4 aut | |
245 | 1 | 2 | |a A novel dimension reduction algorithm based on weighted kernel principal analysis for gene expression data. |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Gene expression data has the characteristics of high dimensionality and a small sample size and contains a large number of redundant genes unrelated to a disease. The direct application of machine learning to classify this type of data will not only incur a great time cost but will also sometimes fail to improved classification performance. To counter this problem, this paper proposes a dimension-reduction algorithm based on weighted kernel principal component analysis (WKPCA), constructs kernel function weights according to kernel matrix eigenvalues, and combines multiple kernel functions to reduce the feature dimensions. To further improve the dimensional reduction efficiency of WKPCA, t-class kernel functions are constructed, and corresponding theoretical proofs are given. Moreover, the cumulative optimal performance rate is constructed to measure the overall performance of WKPCA combined with machine learning algorithms. Naive Bayes, K-nearest neighbour, random forest, iterative random forest and support vector machine approaches are used in classifiers to analyse 6 real gene expression dataset. Compared with the all-variable model, linear principal component dimension reduction and single kernel function dimension reduction, the results show that the classification performance of the 5 machine learning methods mentioned above can be improved effectively by WKPCA dimension reduction. | ||
653 | 0 | |a Medicine | |
653 | 0 | |a R | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Sheng Nan Liang |e verfasserin |4 aut | |
700 | 0 | |a Xi Wen Qin |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t PLoS ONE |d Public Library of Science (PLoS), 2007 |g 16(2021), 10, p e0258326 |w (DE-627)523574592 |w (DE-600)2267670-3 |x 19326203 |7 nnns |
773 | 1 | 8 | |g volume:16 |g year:2021 |g number:10, p e0258326 |
856 | 4 | 0 | |u https://doi.org/10.1371/journal.pone.0258326 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/fe5964de855540498082f32ea101742b |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1371/journal.pone.0258326 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1932-6203 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_34 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_235 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 16 |j 2021 |e 10, p e0258326 |
author_variant |
w b l wbl s n l snl x w q xwq |
---|---|
matchkey_str |
article:19326203:2021----::nvliesordcinloihbsdnegtdenlrniaaay |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1371/journal.pone.0258326 doi (DE-627)DOAJ061921564 (DE-599)DOAJfe5964de855540498082f32ea101742b DE-627 ger DE-627 rakwb eng Wen Bo Liu verfasserin aut A novel dimension reduction algorithm based on weighted kernel principal analysis for gene expression data. 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Gene expression data has the characteristics of high dimensionality and a small sample size and contains a large number of redundant genes unrelated to a disease. The direct application of machine learning to classify this type of data will not only incur a great time cost but will also sometimes fail to improved classification performance. To counter this problem, this paper proposes a dimension-reduction algorithm based on weighted kernel principal component analysis (WKPCA), constructs kernel function weights according to kernel matrix eigenvalues, and combines multiple kernel functions to reduce the feature dimensions. To further improve the dimensional reduction efficiency of WKPCA, t-class kernel functions are constructed, and corresponding theoretical proofs are given. Moreover, the cumulative optimal performance rate is constructed to measure the overall performance of WKPCA combined with machine learning algorithms. Naive Bayes, K-nearest neighbour, random forest, iterative random forest and support vector machine approaches are used in classifiers to analyse 6 real gene expression dataset. Compared with the all-variable model, linear principal component dimension reduction and single kernel function dimension reduction, the results show that the classification performance of the 5 machine learning methods mentioned above can be improved effectively by WKPCA dimension reduction. Medicine R Science Q Sheng Nan Liang verfasserin aut Xi Wen Qin verfasserin aut In PLoS ONE Public Library of Science (PLoS), 2007 16(2021), 10, p e0258326 (DE-627)523574592 (DE-600)2267670-3 19326203 nnns volume:16 year:2021 number:10, p e0258326 https://doi.org/10.1371/journal.pone.0258326 kostenfrei https://doaj.org/article/fe5964de855540498082f32ea101742b kostenfrei https://doi.org/10.1371/journal.pone.0258326 kostenfrei https://doaj.org/toc/1932-6203 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2021 10, p e0258326 |
spelling |
10.1371/journal.pone.0258326 doi (DE-627)DOAJ061921564 (DE-599)DOAJfe5964de855540498082f32ea101742b DE-627 ger DE-627 rakwb eng Wen Bo Liu verfasserin aut A novel dimension reduction algorithm based on weighted kernel principal analysis for gene expression data. 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Gene expression data has the characteristics of high dimensionality and a small sample size and contains a large number of redundant genes unrelated to a disease. The direct application of machine learning to classify this type of data will not only incur a great time cost but will also sometimes fail to improved classification performance. To counter this problem, this paper proposes a dimension-reduction algorithm based on weighted kernel principal component analysis (WKPCA), constructs kernel function weights according to kernel matrix eigenvalues, and combines multiple kernel functions to reduce the feature dimensions. To further improve the dimensional reduction efficiency of WKPCA, t-class kernel functions are constructed, and corresponding theoretical proofs are given. Moreover, the cumulative optimal performance rate is constructed to measure the overall performance of WKPCA combined with machine learning algorithms. Naive Bayes, K-nearest neighbour, random forest, iterative random forest and support vector machine approaches are used in classifiers to analyse 6 real gene expression dataset. Compared with the all-variable model, linear principal component dimension reduction and single kernel function dimension reduction, the results show that the classification performance of the 5 machine learning methods mentioned above can be improved effectively by WKPCA dimension reduction. Medicine R Science Q Sheng Nan Liang verfasserin aut Xi Wen Qin verfasserin aut In PLoS ONE Public Library of Science (PLoS), 2007 16(2021), 10, p e0258326 (DE-627)523574592 (DE-600)2267670-3 19326203 nnns volume:16 year:2021 number:10, p e0258326 https://doi.org/10.1371/journal.pone.0258326 kostenfrei https://doaj.org/article/fe5964de855540498082f32ea101742b kostenfrei https://doi.org/10.1371/journal.pone.0258326 kostenfrei https://doaj.org/toc/1932-6203 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2021 10, p e0258326 |
allfields_unstemmed |
10.1371/journal.pone.0258326 doi (DE-627)DOAJ061921564 (DE-599)DOAJfe5964de855540498082f32ea101742b DE-627 ger DE-627 rakwb eng Wen Bo Liu verfasserin aut A novel dimension reduction algorithm based on weighted kernel principal analysis for gene expression data. 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Gene expression data has the characteristics of high dimensionality and a small sample size and contains a large number of redundant genes unrelated to a disease. The direct application of machine learning to classify this type of data will not only incur a great time cost but will also sometimes fail to improved classification performance. To counter this problem, this paper proposes a dimension-reduction algorithm based on weighted kernel principal component analysis (WKPCA), constructs kernel function weights according to kernel matrix eigenvalues, and combines multiple kernel functions to reduce the feature dimensions. To further improve the dimensional reduction efficiency of WKPCA, t-class kernel functions are constructed, and corresponding theoretical proofs are given. Moreover, the cumulative optimal performance rate is constructed to measure the overall performance of WKPCA combined with machine learning algorithms. Naive Bayes, K-nearest neighbour, random forest, iterative random forest and support vector machine approaches are used in classifiers to analyse 6 real gene expression dataset. Compared with the all-variable model, linear principal component dimension reduction and single kernel function dimension reduction, the results show that the classification performance of the 5 machine learning methods mentioned above can be improved effectively by WKPCA dimension reduction. Medicine R Science Q Sheng Nan Liang verfasserin aut Xi Wen Qin verfasserin aut In PLoS ONE Public Library of Science (PLoS), 2007 16(2021), 10, p e0258326 (DE-627)523574592 (DE-600)2267670-3 19326203 nnns volume:16 year:2021 number:10, p e0258326 https://doi.org/10.1371/journal.pone.0258326 kostenfrei https://doaj.org/article/fe5964de855540498082f32ea101742b kostenfrei https://doi.org/10.1371/journal.pone.0258326 kostenfrei https://doaj.org/toc/1932-6203 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2021 10, p e0258326 |
allfieldsGer |
10.1371/journal.pone.0258326 doi (DE-627)DOAJ061921564 (DE-599)DOAJfe5964de855540498082f32ea101742b DE-627 ger DE-627 rakwb eng Wen Bo Liu verfasserin aut A novel dimension reduction algorithm based on weighted kernel principal analysis for gene expression data. 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Gene expression data has the characteristics of high dimensionality and a small sample size and contains a large number of redundant genes unrelated to a disease. The direct application of machine learning to classify this type of data will not only incur a great time cost but will also sometimes fail to improved classification performance. To counter this problem, this paper proposes a dimension-reduction algorithm based on weighted kernel principal component analysis (WKPCA), constructs kernel function weights according to kernel matrix eigenvalues, and combines multiple kernel functions to reduce the feature dimensions. To further improve the dimensional reduction efficiency of WKPCA, t-class kernel functions are constructed, and corresponding theoretical proofs are given. Moreover, the cumulative optimal performance rate is constructed to measure the overall performance of WKPCA combined with machine learning algorithms. Naive Bayes, K-nearest neighbour, random forest, iterative random forest and support vector machine approaches are used in classifiers to analyse 6 real gene expression dataset. Compared with the all-variable model, linear principal component dimension reduction and single kernel function dimension reduction, the results show that the classification performance of the 5 machine learning methods mentioned above can be improved effectively by WKPCA dimension reduction. Medicine R Science Q Sheng Nan Liang verfasserin aut Xi Wen Qin verfasserin aut In PLoS ONE Public Library of Science (PLoS), 2007 16(2021), 10, p e0258326 (DE-627)523574592 (DE-600)2267670-3 19326203 nnns volume:16 year:2021 number:10, p e0258326 https://doi.org/10.1371/journal.pone.0258326 kostenfrei https://doaj.org/article/fe5964de855540498082f32ea101742b kostenfrei https://doi.org/10.1371/journal.pone.0258326 kostenfrei https://doaj.org/toc/1932-6203 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2021 10, p e0258326 |
allfieldsSound |
10.1371/journal.pone.0258326 doi (DE-627)DOAJ061921564 (DE-599)DOAJfe5964de855540498082f32ea101742b DE-627 ger DE-627 rakwb eng Wen Bo Liu verfasserin aut A novel dimension reduction algorithm based on weighted kernel principal analysis for gene expression data. 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Gene expression data has the characteristics of high dimensionality and a small sample size and contains a large number of redundant genes unrelated to a disease. The direct application of machine learning to classify this type of data will not only incur a great time cost but will also sometimes fail to improved classification performance. To counter this problem, this paper proposes a dimension-reduction algorithm based on weighted kernel principal component analysis (WKPCA), constructs kernel function weights according to kernel matrix eigenvalues, and combines multiple kernel functions to reduce the feature dimensions. To further improve the dimensional reduction efficiency of WKPCA, t-class kernel functions are constructed, and corresponding theoretical proofs are given. Moreover, the cumulative optimal performance rate is constructed to measure the overall performance of WKPCA combined with machine learning algorithms. Naive Bayes, K-nearest neighbour, random forest, iterative random forest and support vector machine approaches are used in classifiers to analyse 6 real gene expression dataset. Compared with the all-variable model, linear principal component dimension reduction and single kernel function dimension reduction, the results show that the classification performance of the 5 machine learning methods mentioned above can be improved effectively by WKPCA dimension reduction. Medicine R Science Q Sheng Nan Liang verfasserin aut Xi Wen Qin verfasserin aut In PLoS ONE Public Library of Science (PLoS), 2007 16(2021), 10, p e0258326 (DE-627)523574592 (DE-600)2267670-3 19326203 nnns volume:16 year:2021 number:10, p e0258326 https://doi.org/10.1371/journal.pone.0258326 kostenfrei https://doaj.org/article/fe5964de855540498082f32ea101742b kostenfrei https://doi.org/10.1371/journal.pone.0258326 kostenfrei https://doaj.org/toc/1932-6203 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2021 10, p e0258326 |
language |
English |
source |
In PLoS ONE 16(2021), 10, p e0258326 volume:16 year:2021 number:10, p e0258326 |
sourceStr |
In PLoS ONE 16(2021), 10, p e0258326 volume:16 year:2021 number:10, p e0258326 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Medicine R Science Q |
isfreeaccess_bool |
true |
container_title |
PLoS ONE |
authorswithroles_txt_mv |
Wen Bo Liu @@aut@@ Sheng Nan Liang @@aut@@ Xi Wen Qin @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
523574592 |
id |
DOAJ061921564 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ061921564</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309014437.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1371/journal.pone.0258326</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ061921564</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJfe5964de855540498082f32ea101742b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Wen Bo Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A novel dimension reduction algorithm based on weighted kernel principal analysis for gene expression data.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Gene expression data has the characteristics of high dimensionality and a small sample size and contains a large number of redundant genes unrelated to a disease. The direct application of machine learning to classify this type of data will not only incur a great time cost but will also sometimes fail to improved classification performance. To counter this problem, this paper proposes a dimension-reduction algorithm based on weighted kernel principal component analysis (WKPCA), constructs kernel function weights according to kernel matrix eigenvalues, and combines multiple kernel functions to reduce the feature dimensions. To further improve the dimensional reduction efficiency of WKPCA, t-class kernel functions are constructed, and corresponding theoretical proofs are given. Moreover, the cumulative optimal performance rate is constructed to measure the overall performance of WKPCA combined with machine learning algorithms. Naive Bayes, K-nearest neighbour, random forest, iterative random forest and support vector machine approaches are used in classifiers to analyse 6 real gene expression dataset. Compared with the all-variable model, linear principal component dimension reduction and single kernel function dimension reduction, the results show that the classification performance of the 5 machine learning methods mentioned above can be improved effectively by WKPCA dimension reduction.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sheng Nan Liang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xi Wen Qin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">PLoS ONE</subfield><subfield code="d">Public Library of Science (PLoS), 2007</subfield><subfield code="g">16(2021), 10, p e0258326</subfield><subfield code="w">(DE-627)523574592</subfield><subfield code="w">(DE-600)2267670-3</subfield><subfield code="x">19326203</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:10, p e0258326</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1371/journal.pone.0258326</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/fe5964de855540498082f32ea101742b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1371/journal.pone.0258326</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1932-6203</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_34</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_235</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2021</subfield><subfield code="e">10, p e0258326</subfield></datafield></record></collection>
|
author |
Wen Bo Liu |
spellingShingle |
Wen Bo Liu misc Medicine misc R misc Science misc Q A novel dimension reduction algorithm based on weighted kernel principal analysis for gene expression data. |
authorStr |
Wen Bo Liu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)523574592 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
19326203 |
topic_title |
A novel dimension reduction algorithm based on weighted kernel principal analysis for gene expression data |
topic |
misc Medicine misc R misc Science misc Q |
topic_unstemmed |
misc Medicine misc R misc Science misc Q |
topic_browse |
misc Medicine misc R misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
PLoS ONE |
hierarchy_parent_id |
523574592 |
hierarchy_top_title |
PLoS ONE |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)523574592 (DE-600)2267670-3 |
title |
A novel dimension reduction algorithm based on weighted kernel principal analysis for gene expression data. |
ctrlnum |
(DE-627)DOAJ061921564 (DE-599)DOAJfe5964de855540498082f32ea101742b |
title_full |
A novel dimension reduction algorithm based on weighted kernel principal analysis for gene expression data |
author_sort |
Wen Bo Liu |
journal |
PLoS ONE |
journalStr |
PLoS ONE |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Wen Bo Liu Sheng Nan Liang Xi Wen Qin |
container_volume |
16 |
format_se |
Elektronische Aufsätze |
author-letter |
Wen Bo Liu |
doi_str_mv |
10.1371/journal.pone.0258326 |
author2-role |
verfasserin |
title_sort |
novel dimension reduction algorithm based on weighted kernel principal analysis for gene expression data |
title_auth |
A novel dimension reduction algorithm based on weighted kernel principal analysis for gene expression data. |
abstract |
Gene expression data has the characteristics of high dimensionality and a small sample size and contains a large number of redundant genes unrelated to a disease. The direct application of machine learning to classify this type of data will not only incur a great time cost but will also sometimes fail to improved classification performance. To counter this problem, this paper proposes a dimension-reduction algorithm based on weighted kernel principal component analysis (WKPCA), constructs kernel function weights according to kernel matrix eigenvalues, and combines multiple kernel functions to reduce the feature dimensions. To further improve the dimensional reduction efficiency of WKPCA, t-class kernel functions are constructed, and corresponding theoretical proofs are given. Moreover, the cumulative optimal performance rate is constructed to measure the overall performance of WKPCA combined with machine learning algorithms. Naive Bayes, K-nearest neighbour, random forest, iterative random forest and support vector machine approaches are used in classifiers to analyse 6 real gene expression dataset. Compared with the all-variable model, linear principal component dimension reduction and single kernel function dimension reduction, the results show that the classification performance of the 5 machine learning methods mentioned above can be improved effectively by WKPCA dimension reduction. |
abstractGer |
Gene expression data has the characteristics of high dimensionality and a small sample size and contains a large number of redundant genes unrelated to a disease. The direct application of machine learning to classify this type of data will not only incur a great time cost but will also sometimes fail to improved classification performance. To counter this problem, this paper proposes a dimension-reduction algorithm based on weighted kernel principal component analysis (WKPCA), constructs kernel function weights according to kernel matrix eigenvalues, and combines multiple kernel functions to reduce the feature dimensions. To further improve the dimensional reduction efficiency of WKPCA, t-class kernel functions are constructed, and corresponding theoretical proofs are given. Moreover, the cumulative optimal performance rate is constructed to measure the overall performance of WKPCA combined with machine learning algorithms. Naive Bayes, K-nearest neighbour, random forest, iterative random forest and support vector machine approaches are used in classifiers to analyse 6 real gene expression dataset. Compared with the all-variable model, linear principal component dimension reduction and single kernel function dimension reduction, the results show that the classification performance of the 5 machine learning methods mentioned above can be improved effectively by WKPCA dimension reduction. |
abstract_unstemmed |
Gene expression data has the characteristics of high dimensionality and a small sample size and contains a large number of redundant genes unrelated to a disease. The direct application of machine learning to classify this type of data will not only incur a great time cost but will also sometimes fail to improved classification performance. To counter this problem, this paper proposes a dimension-reduction algorithm based on weighted kernel principal component analysis (WKPCA), constructs kernel function weights according to kernel matrix eigenvalues, and combines multiple kernel functions to reduce the feature dimensions. To further improve the dimensional reduction efficiency of WKPCA, t-class kernel functions are constructed, and corresponding theoretical proofs are given. Moreover, the cumulative optimal performance rate is constructed to measure the overall performance of WKPCA combined with machine learning algorithms. Naive Bayes, K-nearest neighbour, random forest, iterative random forest and support vector machine approaches are used in classifiers to analyse 6 real gene expression dataset. Compared with the all-variable model, linear principal component dimension reduction and single kernel function dimension reduction, the results show that the classification performance of the 5 machine learning methods mentioned above can be improved effectively by WKPCA dimension reduction. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
10, p e0258326 |
title_short |
A novel dimension reduction algorithm based on weighted kernel principal analysis for gene expression data. |
url |
https://doi.org/10.1371/journal.pone.0258326 https://doaj.org/article/fe5964de855540498082f32ea101742b https://doaj.org/toc/1932-6203 |
remote_bool |
true |
author2 |
Sheng Nan Liang Xi Wen Qin |
author2Str |
Sheng Nan Liang Xi Wen Qin |
ppnlink |
523574592 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1371/journal.pone.0258326 |
up_date |
2024-07-03T23:25:06.182Z |
_version_ |
1803602211564945408 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ061921564</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309014437.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1371/journal.pone.0258326</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ061921564</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJfe5964de855540498082f32ea101742b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Wen Bo Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A novel dimension reduction algorithm based on weighted kernel principal analysis for gene expression data.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Gene expression data has the characteristics of high dimensionality and a small sample size and contains a large number of redundant genes unrelated to a disease. The direct application of machine learning to classify this type of data will not only incur a great time cost but will also sometimes fail to improved classification performance. To counter this problem, this paper proposes a dimension-reduction algorithm based on weighted kernel principal component analysis (WKPCA), constructs kernel function weights according to kernel matrix eigenvalues, and combines multiple kernel functions to reduce the feature dimensions. To further improve the dimensional reduction efficiency of WKPCA, t-class kernel functions are constructed, and corresponding theoretical proofs are given. Moreover, the cumulative optimal performance rate is constructed to measure the overall performance of WKPCA combined with machine learning algorithms. Naive Bayes, K-nearest neighbour, random forest, iterative random forest and support vector machine approaches are used in classifiers to analyse 6 real gene expression dataset. Compared with the all-variable model, linear principal component dimension reduction and single kernel function dimension reduction, the results show that the classification performance of the 5 machine learning methods mentioned above can be improved effectively by WKPCA dimension reduction.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sheng Nan Liang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xi Wen Qin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">PLoS ONE</subfield><subfield code="d">Public Library of Science (PLoS), 2007</subfield><subfield code="g">16(2021), 10, p e0258326</subfield><subfield code="w">(DE-627)523574592</subfield><subfield code="w">(DE-600)2267670-3</subfield><subfield code="x">19326203</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:10, p e0258326</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1371/journal.pone.0258326</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/fe5964de855540498082f32ea101742b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1371/journal.pone.0258326</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1932-6203</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_34</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_235</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2021</subfield><subfield code="e">10, p e0258326</subfield></datafield></record></collection>
|
score |
7.4012613 |