Genome-wide analysis of ATP-binding cassette transporter provides insight to genes related to bioactive metabolite transportation in Salvia miltiorrhiza
Abstract Background ATP-binding cassette (ABC) transporters have been found to play important roles in metabolic transport in plant cells, influencing subcellular compartmentalisation and tissue distribution of these metabolic compounds. Salvia miltiorrhiza Bunge, known as Danshen in traditional Chi...
Ausführliche Beschreibung
Autor*in: |
Li Yan [verfasserIn] Jianhong Zhang [verfasserIn] Hongyu Chen [verfasserIn] Hongmei Luo [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: BMC Genomics - BMC, 2003, 22(2021), 1, Seite 20 |
---|---|
Übergeordnetes Werk: |
volume:22 ; year:2021 ; number:1 ; pages:20 |
Links: |
---|
DOI / URN: |
10.1186/s12864-021-07623-0 |
---|
Katalog-ID: |
DOAJ061948020 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ061948020 | ||
003 | DE-627 | ||
005 | 20230309014603.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12864-021-07623-0 |2 doi | |
035 | |a (DE-627)DOAJ061948020 | ||
035 | |a (DE-599)DOAJ28b69bb361b6455ba84f5c225be3135d | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP248.13-248.65 | |
050 | 0 | |a QH426-470 | |
100 | 0 | |a Li Yan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Genome-wide analysis of ATP-binding cassette transporter provides insight to genes related to bioactive metabolite transportation in Salvia miltiorrhiza |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Background ATP-binding cassette (ABC) transporters have been found to play important roles in metabolic transport in plant cells, influencing subcellular compartmentalisation and tissue distribution of these metabolic compounds. Salvia miltiorrhiza Bunge, known as Danshen in traditional Chinese medicine, is a highly valued medicinal plant used to treat cardiovascular and cerebrovascular diseases. The dry roots and rhizomes of S. miltiorrhiza contain biologically active secondary metabolites of tanshinone and salvianolic acid. Given an assembled and annotated genome and a set of transcriptome data of S. miltiorrhiza, we analysed and identified the candidate genes that likely involved in the bioactive metabolite transportation of this medicinal plant, starting with the members of the ABC transporter family. Results A total of 114 genes encoding ABC transporters were identified in the genome of S. miltiorrhiza. All of these ABC genes were divided into eight subfamilies: 3ABCA, 31ABCB, 14ABCC, 2ABCD, 1ABCE, 7ABCF, 46ABCG, and 10 ABCI. Gene expression analysis revealed tissue-specific expression profiles of these ABC transporters. In particular, we found 18 highly expressed transporters in the roots of S. miltiorrhiza, which might be involved in transporting the bioactive compounds of this medicinal plant. We further investigated the co-expression profiling of these 18 genes with key enzyme genes involved in tanshinone and salvianolic acid biosynthetic pathways using quantitative reverse transcription polymerase chain reaction (RT-qPCR). From this RT-qPCR validation, we found that three ABC genes (SmABCG46, SmABCG40, and SmABCG4) and another gene (SmABCC1) co-expressed with the key biosynthetic enzymes of these two compounds, respectively, and thus might be involved in tanshinone and salvianolic acid transport in root cells. In addition, we predicted the biological functions of S. miltiorrhiza ABC transporters using phylogenetic relationships and analysis of the transcriptome to find biological functions. Conclusions Here, we present the first systematic analysis of ABC transporters in S. miltiorrhiza and predict candidate transporters involved in bioactive compound transportation in this important medicinal plant. Using genome-wide identification, transcriptome profile analysis, and phylogenetic relationships, this research provides a new perspective on the critical functions of ABC transporters in S. miltiorrhiza. | ||
650 | 4 | |a Salvia miltiorrhiza | |
650 | 4 | |a Transporters | |
650 | 4 | |a ATP-binding cassette (ABC) transporters | |
650 | 4 | |a Gene family analysis | |
650 | 4 | |a Tanshinone and salvianolic acid transport | |
653 | 0 | |a Biotechnology | |
653 | 0 | |a Genetics | |
700 | 0 | |a Jianhong Zhang |e verfasserin |4 aut | |
700 | 0 | |a Hongyu Chen |e verfasserin |4 aut | |
700 | 0 | |a Hongmei Luo |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t BMC Genomics |d BMC, 2003 |g 22(2021), 1, Seite 20 |w (DE-627)326644954 |w (DE-600)2041499-7 |x 14712164 |7 nnns |
773 | 1 | 8 | |g volume:22 |g year:2021 |g number:1 |g pages:20 |
856 | 4 | 0 | |u https://doi.org/10.1186/s12864-021-07623-0 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/28b69bb361b6455ba84f5c225be3135d |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1186/s12864-021-07623-0 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1471-2164 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 22 |j 2021 |e 1 |h 20 |
author_variant |
l y ly j z jz h c hc h l hl |
---|---|
matchkey_str |
article:14712164:2021----::eoeienlssftbnigasternprepoieisgtoeerltdoiatvmtblt |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
TP |
publishDate |
2021 |
allfields |
10.1186/s12864-021-07623-0 doi (DE-627)DOAJ061948020 (DE-599)DOAJ28b69bb361b6455ba84f5c225be3135d DE-627 ger DE-627 rakwb eng TP248.13-248.65 QH426-470 Li Yan verfasserin aut Genome-wide analysis of ATP-binding cassette transporter provides insight to genes related to bioactive metabolite transportation in Salvia miltiorrhiza 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background ATP-binding cassette (ABC) transporters have been found to play important roles in metabolic transport in plant cells, influencing subcellular compartmentalisation and tissue distribution of these metabolic compounds. Salvia miltiorrhiza Bunge, known as Danshen in traditional Chinese medicine, is a highly valued medicinal plant used to treat cardiovascular and cerebrovascular diseases. The dry roots and rhizomes of S. miltiorrhiza contain biologically active secondary metabolites of tanshinone and salvianolic acid. Given an assembled and annotated genome and a set of transcriptome data of S. miltiorrhiza, we analysed and identified the candidate genes that likely involved in the bioactive metabolite transportation of this medicinal plant, starting with the members of the ABC transporter family. Results A total of 114 genes encoding ABC transporters were identified in the genome of S. miltiorrhiza. All of these ABC genes were divided into eight subfamilies: 3ABCA, 31ABCB, 14ABCC, 2ABCD, 1ABCE, 7ABCF, 46ABCG, and 10 ABCI. Gene expression analysis revealed tissue-specific expression profiles of these ABC transporters. In particular, we found 18 highly expressed transporters in the roots of S. miltiorrhiza, which might be involved in transporting the bioactive compounds of this medicinal plant. We further investigated the co-expression profiling of these 18 genes with key enzyme genes involved in tanshinone and salvianolic acid biosynthetic pathways using quantitative reverse transcription polymerase chain reaction (RT-qPCR). From this RT-qPCR validation, we found that three ABC genes (SmABCG46, SmABCG40, and SmABCG4) and another gene (SmABCC1) co-expressed with the key biosynthetic enzymes of these two compounds, respectively, and thus might be involved in tanshinone and salvianolic acid transport in root cells. In addition, we predicted the biological functions of S. miltiorrhiza ABC transporters using phylogenetic relationships and analysis of the transcriptome to find biological functions. Conclusions Here, we present the first systematic analysis of ABC transporters in S. miltiorrhiza and predict candidate transporters involved in bioactive compound transportation in this important medicinal plant. Using genome-wide identification, transcriptome profile analysis, and phylogenetic relationships, this research provides a new perspective on the critical functions of ABC transporters in S. miltiorrhiza. Salvia miltiorrhiza Transporters ATP-binding cassette (ABC) transporters Gene family analysis Tanshinone and salvianolic acid transport Biotechnology Genetics Jianhong Zhang verfasserin aut Hongyu Chen verfasserin aut Hongmei Luo verfasserin aut In BMC Genomics BMC, 2003 22(2021), 1, Seite 20 (DE-627)326644954 (DE-600)2041499-7 14712164 nnns volume:22 year:2021 number:1 pages:20 https://doi.org/10.1186/s12864-021-07623-0 kostenfrei https://doaj.org/article/28b69bb361b6455ba84f5c225be3135d kostenfrei https://doi.org/10.1186/s12864-021-07623-0 kostenfrei https://doaj.org/toc/1471-2164 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2021 1 20 |
spelling |
10.1186/s12864-021-07623-0 doi (DE-627)DOAJ061948020 (DE-599)DOAJ28b69bb361b6455ba84f5c225be3135d DE-627 ger DE-627 rakwb eng TP248.13-248.65 QH426-470 Li Yan verfasserin aut Genome-wide analysis of ATP-binding cassette transporter provides insight to genes related to bioactive metabolite transportation in Salvia miltiorrhiza 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background ATP-binding cassette (ABC) transporters have been found to play important roles in metabolic transport in plant cells, influencing subcellular compartmentalisation and tissue distribution of these metabolic compounds. Salvia miltiorrhiza Bunge, known as Danshen in traditional Chinese medicine, is a highly valued medicinal plant used to treat cardiovascular and cerebrovascular diseases. The dry roots and rhizomes of S. miltiorrhiza contain biologically active secondary metabolites of tanshinone and salvianolic acid. Given an assembled and annotated genome and a set of transcriptome data of S. miltiorrhiza, we analysed and identified the candidate genes that likely involved in the bioactive metabolite transportation of this medicinal plant, starting with the members of the ABC transporter family. Results A total of 114 genes encoding ABC transporters were identified in the genome of S. miltiorrhiza. All of these ABC genes were divided into eight subfamilies: 3ABCA, 31ABCB, 14ABCC, 2ABCD, 1ABCE, 7ABCF, 46ABCG, and 10 ABCI. Gene expression analysis revealed tissue-specific expression profiles of these ABC transporters. In particular, we found 18 highly expressed transporters in the roots of S. miltiorrhiza, which might be involved in transporting the bioactive compounds of this medicinal plant. We further investigated the co-expression profiling of these 18 genes with key enzyme genes involved in tanshinone and salvianolic acid biosynthetic pathways using quantitative reverse transcription polymerase chain reaction (RT-qPCR). From this RT-qPCR validation, we found that three ABC genes (SmABCG46, SmABCG40, and SmABCG4) and another gene (SmABCC1) co-expressed with the key biosynthetic enzymes of these two compounds, respectively, and thus might be involved in tanshinone and salvianolic acid transport in root cells. In addition, we predicted the biological functions of S. miltiorrhiza ABC transporters using phylogenetic relationships and analysis of the transcriptome to find biological functions. Conclusions Here, we present the first systematic analysis of ABC transporters in S. miltiorrhiza and predict candidate transporters involved in bioactive compound transportation in this important medicinal plant. Using genome-wide identification, transcriptome profile analysis, and phylogenetic relationships, this research provides a new perspective on the critical functions of ABC transporters in S. miltiorrhiza. Salvia miltiorrhiza Transporters ATP-binding cassette (ABC) transporters Gene family analysis Tanshinone and salvianolic acid transport Biotechnology Genetics Jianhong Zhang verfasserin aut Hongyu Chen verfasserin aut Hongmei Luo verfasserin aut In BMC Genomics BMC, 2003 22(2021), 1, Seite 20 (DE-627)326644954 (DE-600)2041499-7 14712164 nnns volume:22 year:2021 number:1 pages:20 https://doi.org/10.1186/s12864-021-07623-0 kostenfrei https://doaj.org/article/28b69bb361b6455ba84f5c225be3135d kostenfrei https://doi.org/10.1186/s12864-021-07623-0 kostenfrei https://doaj.org/toc/1471-2164 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2021 1 20 |
allfields_unstemmed |
10.1186/s12864-021-07623-0 doi (DE-627)DOAJ061948020 (DE-599)DOAJ28b69bb361b6455ba84f5c225be3135d DE-627 ger DE-627 rakwb eng TP248.13-248.65 QH426-470 Li Yan verfasserin aut Genome-wide analysis of ATP-binding cassette transporter provides insight to genes related to bioactive metabolite transportation in Salvia miltiorrhiza 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background ATP-binding cassette (ABC) transporters have been found to play important roles in metabolic transport in plant cells, influencing subcellular compartmentalisation and tissue distribution of these metabolic compounds. Salvia miltiorrhiza Bunge, known as Danshen in traditional Chinese medicine, is a highly valued medicinal plant used to treat cardiovascular and cerebrovascular diseases. The dry roots and rhizomes of S. miltiorrhiza contain biologically active secondary metabolites of tanshinone and salvianolic acid. Given an assembled and annotated genome and a set of transcriptome data of S. miltiorrhiza, we analysed and identified the candidate genes that likely involved in the bioactive metabolite transportation of this medicinal plant, starting with the members of the ABC transporter family. Results A total of 114 genes encoding ABC transporters were identified in the genome of S. miltiorrhiza. All of these ABC genes were divided into eight subfamilies: 3ABCA, 31ABCB, 14ABCC, 2ABCD, 1ABCE, 7ABCF, 46ABCG, and 10 ABCI. Gene expression analysis revealed tissue-specific expression profiles of these ABC transporters. In particular, we found 18 highly expressed transporters in the roots of S. miltiorrhiza, which might be involved in transporting the bioactive compounds of this medicinal plant. We further investigated the co-expression profiling of these 18 genes with key enzyme genes involved in tanshinone and salvianolic acid biosynthetic pathways using quantitative reverse transcription polymerase chain reaction (RT-qPCR). From this RT-qPCR validation, we found that three ABC genes (SmABCG46, SmABCG40, and SmABCG4) and another gene (SmABCC1) co-expressed with the key biosynthetic enzymes of these two compounds, respectively, and thus might be involved in tanshinone and salvianolic acid transport in root cells. In addition, we predicted the biological functions of S. miltiorrhiza ABC transporters using phylogenetic relationships and analysis of the transcriptome to find biological functions. Conclusions Here, we present the first systematic analysis of ABC transporters in S. miltiorrhiza and predict candidate transporters involved in bioactive compound transportation in this important medicinal plant. Using genome-wide identification, transcriptome profile analysis, and phylogenetic relationships, this research provides a new perspective on the critical functions of ABC transporters in S. miltiorrhiza. Salvia miltiorrhiza Transporters ATP-binding cassette (ABC) transporters Gene family analysis Tanshinone and salvianolic acid transport Biotechnology Genetics Jianhong Zhang verfasserin aut Hongyu Chen verfasserin aut Hongmei Luo verfasserin aut In BMC Genomics BMC, 2003 22(2021), 1, Seite 20 (DE-627)326644954 (DE-600)2041499-7 14712164 nnns volume:22 year:2021 number:1 pages:20 https://doi.org/10.1186/s12864-021-07623-0 kostenfrei https://doaj.org/article/28b69bb361b6455ba84f5c225be3135d kostenfrei https://doi.org/10.1186/s12864-021-07623-0 kostenfrei https://doaj.org/toc/1471-2164 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2021 1 20 |
allfieldsGer |
10.1186/s12864-021-07623-0 doi (DE-627)DOAJ061948020 (DE-599)DOAJ28b69bb361b6455ba84f5c225be3135d DE-627 ger DE-627 rakwb eng TP248.13-248.65 QH426-470 Li Yan verfasserin aut Genome-wide analysis of ATP-binding cassette transporter provides insight to genes related to bioactive metabolite transportation in Salvia miltiorrhiza 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background ATP-binding cassette (ABC) transporters have been found to play important roles in metabolic transport in plant cells, influencing subcellular compartmentalisation and tissue distribution of these metabolic compounds. Salvia miltiorrhiza Bunge, known as Danshen in traditional Chinese medicine, is a highly valued medicinal plant used to treat cardiovascular and cerebrovascular diseases. The dry roots and rhizomes of S. miltiorrhiza contain biologically active secondary metabolites of tanshinone and salvianolic acid. Given an assembled and annotated genome and a set of transcriptome data of S. miltiorrhiza, we analysed and identified the candidate genes that likely involved in the bioactive metabolite transportation of this medicinal plant, starting with the members of the ABC transporter family. Results A total of 114 genes encoding ABC transporters were identified in the genome of S. miltiorrhiza. All of these ABC genes were divided into eight subfamilies: 3ABCA, 31ABCB, 14ABCC, 2ABCD, 1ABCE, 7ABCF, 46ABCG, and 10 ABCI. Gene expression analysis revealed tissue-specific expression profiles of these ABC transporters. In particular, we found 18 highly expressed transporters in the roots of S. miltiorrhiza, which might be involved in transporting the bioactive compounds of this medicinal plant. We further investigated the co-expression profiling of these 18 genes with key enzyme genes involved in tanshinone and salvianolic acid biosynthetic pathways using quantitative reverse transcription polymerase chain reaction (RT-qPCR). From this RT-qPCR validation, we found that three ABC genes (SmABCG46, SmABCG40, and SmABCG4) and another gene (SmABCC1) co-expressed with the key biosynthetic enzymes of these two compounds, respectively, and thus might be involved in tanshinone and salvianolic acid transport in root cells. In addition, we predicted the biological functions of S. miltiorrhiza ABC transporters using phylogenetic relationships and analysis of the transcriptome to find biological functions. Conclusions Here, we present the first systematic analysis of ABC transporters in S. miltiorrhiza and predict candidate transporters involved in bioactive compound transportation in this important medicinal plant. Using genome-wide identification, transcriptome profile analysis, and phylogenetic relationships, this research provides a new perspective on the critical functions of ABC transporters in S. miltiorrhiza. Salvia miltiorrhiza Transporters ATP-binding cassette (ABC) transporters Gene family analysis Tanshinone and salvianolic acid transport Biotechnology Genetics Jianhong Zhang verfasserin aut Hongyu Chen verfasserin aut Hongmei Luo verfasserin aut In BMC Genomics BMC, 2003 22(2021), 1, Seite 20 (DE-627)326644954 (DE-600)2041499-7 14712164 nnns volume:22 year:2021 number:1 pages:20 https://doi.org/10.1186/s12864-021-07623-0 kostenfrei https://doaj.org/article/28b69bb361b6455ba84f5c225be3135d kostenfrei https://doi.org/10.1186/s12864-021-07623-0 kostenfrei https://doaj.org/toc/1471-2164 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2021 1 20 |
allfieldsSound |
10.1186/s12864-021-07623-0 doi (DE-627)DOAJ061948020 (DE-599)DOAJ28b69bb361b6455ba84f5c225be3135d DE-627 ger DE-627 rakwb eng TP248.13-248.65 QH426-470 Li Yan verfasserin aut Genome-wide analysis of ATP-binding cassette transporter provides insight to genes related to bioactive metabolite transportation in Salvia miltiorrhiza 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background ATP-binding cassette (ABC) transporters have been found to play important roles in metabolic transport in plant cells, influencing subcellular compartmentalisation and tissue distribution of these metabolic compounds. Salvia miltiorrhiza Bunge, known as Danshen in traditional Chinese medicine, is a highly valued medicinal plant used to treat cardiovascular and cerebrovascular diseases. The dry roots and rhizomes of S. miltiorrhiza contain biologically active secondary metabolites of tanshinone and salvianolic acid. Given an assembled and annotated genome and a set of transcriptome data of S. miltiorrhiza, we analysed and identified the candidate genes that likely involved in the bioactive metabolite transportation of this medicinal plant, starting with the members of the ABC transporter family. Results A total of 114 genes encoding ABC transporters were identified in the genome of S. miltiorrhiza. All of these ABC genes were divided into eight subfamilies: 3ABCA, 31ABCB, 14ABCC, 2ABCD, 1ABCE, 7ABCF, 46ABCG, and 10 ABCI. Gene expression analysis revealed tissue-specific expression profiles of these ABC transporters. In particular, we found 18 highly expressed transporters in the roots of S. miltiorrhiza, which might be involved in transporting the bioactive compounds of this medicinal plant. We further investigated the co-expression profiling of these 18 genes with key enzyme genes involved in tanshinone and salvianolic acid biosynthetic pathways using quantitative reverse transcription polymerase chain reaction (RT-qPCR). From this RT-qPCR validation, we found that three ABC genes (SmABCG46, SmABCG40, and SmABCG4) and another gene (SmABCC1) co-expressed with the key biosynthetic enzymes of these two compounds, respectively, and thus might be involved in tanshinone and salvianolic acid transport in root cells. In addition, we predicted the biological functions of S. miltiorrhiza ABC transporters using phylogenetic relationships and analysis of the transcriptome to find biological functions. Conclusions Here, we present the first systematic analysis of ABC transporters in S. miltiorrhiza and predict candidate transporters involved in bioactive compound transportation in this important medicinal plant. Using genome-wide identification, transcriptome profile analysis, and phylogenetic relationships, this research provides a new perspective on the critical functions of ABC transporters in S. miltiorrhiza. Salvia miltiorrhiza Transporters ATP-binding cassette (ABC) transporters Gene family analysis Tanshinone and salvianolic acid transport Biotechnology Genetics Jianhong Zhang verfasserin aut Hongyu Chen verfasserin aut Hongmei Luo verfasserin aut In BMC Genomics BMC, 2003 22(2021), 1, Seite 20 (DE-627)326644954 (DE-600)2041499-7 14712164 nnns volume:22 year:2021 number:1 pages:20 https://doi.org/10.1186/s12864-021-07623-0 kostenfrei https://doaj.org/article/28b69bb361b6455ba84f5c225be3135d kostenfrei https://doi.org/10.1186/s12864-021-07623-0 kostenfrei https://doaj.org/toc/1471-2164 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2021 1 20 |
language |
English |
source |
In BMC Genomics 22(2021), 1, Seite 20 volume:22 year:2021 number:1 pages:20 |
sourceStr |
In BMC Genomics 22(2021), 1, Seite 20 volume:22 year:2021 number:1 pages:20 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Salvia miltiorrhiza Transporters ATP-binding cassette (ABC) transporters Gene family analysis Tanshinone and salvianolic acid transport Biotechnology Genetics |
isfreeaccess_bool |
true |
container_title |
BMC Genomics |
authorswithroles_txt_mv |
Li Yan @@aut@@ Jianhong Zhang @@aut@@ Hongyu Chen @@aut@@ Hongmei Luo @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
326644954 |
id |
DOAJ061948020 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ061948020</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309014603.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12864-021-07623-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ061948020</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ28b69bb361b6455ba84f5c225be3135d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP248.13-248.65</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH426-470</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Li Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Genome-wide analysis of ATP-binding cassette transporter provides insight to genes related to bioactive metabolite transportation in Salvia miltiorrhiza</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Background ATP-binding cassette (ABC) transporters have been found to play important roles in metabolic transport in plant cells, influencing subcellular compartmentalisation and tissue distribution of these metabolic compounds. Salvia miltiorrhiza Bunge, known as Danshen in traditional Chinese medicine, is a highly valued medicinal plant used to treat cardiovascular and cerebrovascular diseases. The dry roots and rhizomes of S. miltiorrhiza contain biologically active secondary metabolites of tanshinone and salvianolic acid. Given an assembled and annotated genome and a set of transcriptome data of S. miltiorrhiza, we analysed and identified the candidate genes that likely involved in the bioactive metabolite transportation of this medicinal plant, starting with the members of the ABC transporter family. Results A total of 114 genes encoding ABC transporters were identified in the genome of S. miltiorrhiza. All of these ABC genes were divided into eight subfamilies: 3ABCA, 31ABCB, 14ABCC, 2ABCD, 1ABCE, 7ABCF, 46ABCG, and 10 ABCI. Gene expression analysis revealed tissue-specific expression profiles of these ABC transporters. In particular, we found 18 highly expressed transporters in the roots of S. miltiorrhiza, which might be involved in transporting the bioactive compounds of this medicinal plant. We further investigated the co-expression profiling of these 18 genes with key enzyme genes involved in tanshinone and salvianolic acid biosynthetic pathways using quantitative reverse transcription polymerase chain reaction (RT-qPCR). From this RT-qPCR validation, we found that three ABC genes (SmABCG46, SmABCG40, and SmABCG4) and another gene (SmABCC1) co-expressed with the key biosynthetic enzymes of these two compounds, respectively, and thus might be involved in tanshinone and salvianolic acid transport in root cells. In addition, we predicted the biological functions of S. miltiorrhiza ABC transporters using phylogenetic relationships and analysis of the transcriptome to find biological functions. Conclusions Here, we present the first systematic analysis of ABC transporters in S. miltiorrhiza and predict candidate transporters involved in bioactive compound transportation in this important medicinal plant. Using genome-wide identification, transcriptome profile analysis, and phylogenetic relationships, this research provides a new perspective on the critical functions of ABC transporters in S. miltiorrhiza.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Salvia miltiorrhiza</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transporters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ATP-binding cassette (ABC) transporters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gene family analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tanshinone and salvianolic acid transport</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biotechnology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Genetics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianhong Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hongyu Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hongmei Luo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">BMC Genomics</subfield><subfield code="d">BMC, 2003</subfield><subfield code="g">22(2021), 1, Seite 20</subfield><subfield code="w">(DE-627)326644954</subfield><subfield code="w">(DE-600)2041499-7</subfield><subfield code="x">14712164</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:20</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s12864-021-07623-0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/28b69bb361b6455ba84f5c225be3135d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s12864-021-07623-0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1471-2164</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="h">20</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Li Yan |
spellingShingle |
Li Yan misc TP248.13-248.65 misc QH426-470 misc Salvia miltiorrhiza misc Transporters misc ATP-binding cassette (ABC) transporters misc Gene family analysis misc Tanshinone and salvianolic acid transport misc Biotechnology misc Genetics Genome-wide analysis of ATP-binding cassette transporter provides insight to genes related to bioactive metabolite transportation in Salvia miltiorrhiza |
authorStr |
Li Yan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)326644954 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP248 |
illustrated |
Not Illustrated |
issn |
14712164 |
topic_title |
TP248.13-248.65 QH426-470 Genome-wide analysis of ATP-binding cassette transporter provides insight to genes related to bioactive metabolite transportation in Salvia miltiorrhiza Salvia miltiorrhiza Transporters ATP-binding cassette (ABC) transporters Gene family analysis Tanshinone and salvianolic acid transport |
topic |
misc TP248.13-248.65 misc QH426-470 misc Salvia miltiorrhiza misc Transporters misc ATP-binding cassette (ABC) transporters misc Gene family analysis misc Tanshinone and salvianolic acid transport misc Biotechnology misc Genetics |
topic_unstemmed |
misc TP248.13-248.65 misc QH426-470 misc Salvia miltiorrhiza misc Transporters misc ATP-binding cassette (ABC) transporters misc Gene family analysis misc Tanshinone and salvianolic acid transport misc Biotechnology misc Genetics |
topic_browse |
misc TP248.13-248.65 misc QH426-470 misc Salvia miltiorrhiza misc Transporters misc ATP-binding cassette (ABC) transporters misc Gene family analysis misc Tanshinone and salvianolic acid transport misc Biotechnology misc Genetics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC Genomics |
hierarchy_parent_id |
326644954 |
hierarchy_top_title |
BMC Genomics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)326644954 (DE-600)2041499-7 |
title |
Genome-wide analysis of ATP-binding cassette transporter provides insight to genes related to bioactive metabolite transportation in Salvia miltiorrhiza |
ctrlnum |
(DE-627)DOAJ061948020 (DE-599)DOAJ28b69bb361b6455ba84f5c225be3135d |
title_full |
Genome-wide analysis of ATP-binding cassette transporter provides insight to genes related to bioactive metabolite transportation in Salvia miltiorrhiza |
author_sort |
Li Yan |
journal |
BMC Genomics |
journalStr |
BMC Genomics |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
20 |
author_browse |
Li Yan Jianhong Zhang Hongyu Chen Hongmei Luo |
container_volume |
22 |
class |
TP248.13-248.65 QH426-470 |
format_se |
Elektronische Aufsätze |
author-letter |
Li Yan |
doi_str_mv |
10.1186/s12864-021-07623-0 |
author2-role |
verfasserin |
title_sort |
genome-wide analysis of atp-binding cassette transporter provides insight to genes related to bioactive metabolite transportation in salvia miltiorrhiza |
callnumber |
TP248.13-248.65 |
title_auth |
Genome-wide analysis of ATP-binding cassette transporter provides insight to genes related to bioactive metabolite transportation in Salvia miltiorrhiza |
abstract |
Abstract Background ATP-binding cassette (ABC) transporters have been found to play important roles in metabolic transport in plant cells, influencing subcellular compartmentalisation and tissue distribution of these metabolic compounds. Salvia miltiorrhiza Bunge, known as Danshen in traditional Chinese medicine, is a highly valued medicinal plant used to treat cardiovascular and cerebrovascular diseases. The dry roots and rhizomes of S. miltiorrhiza contain biologically active secondary metabolites of tanshinone and salvianolic acid. Given an assembled and annotated genome and a set of transcriptome data of S. miltiorrhiza, we analysed and identified the candidate genes that likely involved in the bioactive metabolite transportation of this medicinal plant, starting with the members of the ABC transporter family. Results A total of 114 genes encoding ABC transporters were identified in the genome of S. miltiorrhiza. All of these ABC genes were divided into eight subfamilies: 3ABCA, 31ABCB, 14ABCC, 2ABCD, 1ABCE, 7ABCF, 46ABCG, and 10 ABCI. Gene expression analysis revealed tissue-specific expression profiles of these ABC transporters. In particular, we found 18 highly expressed transporters in the roots of S. miltiorrhiza, which might be involved in transporting the bioactive compounds of this medicinal plant. We further investigated the co-expression profiling of these 18 genes with key enzyme genes involved in tanshinone and salvianolic acid biosynthetic pathways using quantitative reverse transcription polymerase chain reaction (RT-qPCR). From this RT-qPCR validation, we found that three ABC genes (SmABCG46, SmABCG40, and SmABCG4) and another gene (SmABCC1) co-expressed with the key biosynthetic enzymes of these two compounds, respectively, and thus might be involved in tanshinone and salvianolic acid transport in root cells. In addition, we predicted the biological functions of S. miltiorrhiza ABC transporters using phylogenetic relationships and analysis of the transcriptome to find biological functions. Conclusions Here, we present the first systematic analysis of ABC transporters in S. miltiorrhiza and predict candidate transporters involved in bioactive compound transportation in this important medicinal plant. Using genome-wide identification, transcriptome profile analysis, and phylogenetic relationships, this research provides a new perspective on the critical functions of ABC transporters in S. miltiorrhiza. |
abstractGer |
Abstract Background ATP-binding cassette (ABC) transporters have been found to play important roles in metabolic transport in plant cells, influencing subcellular compartmentalisation and tissue distribution of these metabolic compounds. Salvia miltiorrhiza Bunge, known as Danshen in traditional Chinese medicine, is a highly valued medicinal plant used to treat cardiovascular and cerebrovascular diseases. The dry roots and rhizomes of S. miltiorrhiza contain biologically active secondary metabolites of tanshinone and salvianolic acid. Given an assembled and annotated genome and a set of transcriptome data of S. miltiorrhiza, we analysed and identified the candidate genes that likely involved in the bioactive metabolite transportation of this medicinal plant, starting with the members of the ABC transporter family. Results A total of 114 genes encoding ABC transporters were identified in the genome of S. miltiorrhiza. All of these ABC genes were divided into eight subfamilies: 3ABCA, 31ABCB, 14ABCC, 2ABCD, 1ABCE, 7ABCF, 46ABCG, and 10 ABCI. Gene expression analysis revealed tissue-specific expression profiles of these ABC transporters. In particular, we found 18 highly expressed transporters in the roots of S. miltiorrhiza, which might be involved in transporting the bioactive compounds of this medicinal plant. We further investigated the co-expression profiling of these 18 genes with key enzyme genes involved in tanshinone and salvianolic acid biosynthetic pathways using quantitative reverse transcription polymerase chain reaction (RT-qPCR). From this RT-qPCR validation, we found that three ABC genes (SmABCG46, SmABCG40, and SmABCG4) and another gene (SmABCC1) co-expressed with the key biosynthetic enzymes of these two compounds, respectively, and thus might be involved in tanshinone and salvianolic acid transport in root cells. In addition, we predicted the biological functions of S. miltiorrhiza ABC transporters using phylogenetic relationships and analysis of the transcriptome to find biological functions. Conclusions Here, we present the first systematic analysis of ABC transporters in S. miltiorrhiza and predict candidate transporters involved in bioactive compound transportation in this important medicinal plant. Using genome-wide identification, transcriptome profile analysis, and phylogenetic relationships, this research provides a new perspective on the critical functions of ABC transporters in S. miltiorrhiza. |
abstract_unstemmed |
Abstract Background ATP-binding cassette (ABC) transporters have been found to play important roles in metabolic transport in plant cells, influencing subcellular compartmentalisation and tissue distribution of these metabolic compounds. Salvia miltiorrhiza Bunge, known as Danshen in traditional Chinese medicine, is a highly valued medicinal plant used to treat cardiovascular and cerebrovascular diseases. The dry roots and rhizomes of S. miltiorrhiza contain biologically active secondary metabolites of tanshinone and salvianolic acid. Given an assembled and annotated genome and a set of transcriptome data of S. miltiorrhiza, we analysed and identified the candidate genes that likely involved in the bioactive metabolite transportation of this medicinal plant, starting with the members of the ABC transporter family. Results A total of 114 genes encoding ABC transporters were identified in the genome of S. miltiorrhiza. All of these ABC genes were divided into eight subfamilies: 3ABCA, 31ABCB, 14ABCC, 2ABCD, 1ABCE, 7ABCF, 46ABCG, and 10 ABCI. Gene expression analysis revealed tissue-specific expression profiles of these ABC transporters. In particular, we found 18 highly expressed transporters in the roots of S. miltiorrhiza, which might be involved in transporting the bioactive compounds of this medicinal plant. We further investigated the co-expression profiling of these 18 genes with key enzyme genes involved in tanshinone and salvianolic acid biosynthetic pathways using quantitative reverse transcription polymerase chain reaction (RT-qPCR). From this RT-qPCR validation, we found that three ABC genes (SmABCG46, SmABCG40, and SmABCG4) and another gene (SmABCC1) co-expressed with the key biosynthetic enzymes of these two compounds, respectively, and thus might be involved in tanshinone and salvianolic acid transport in root cells. In addition, we predicted the biological functions of S. miltiorrhiza ABC transporters using phylogenetic relationships and analysis of the transcriptome to find biological functions. Conclusions Here, we present the first systematic analysis of ABC transporters in S. miltiorrhiza and predict candidate transporters involved in bioactive compound transportation in this important medicinal plant. Using genome-wide identification, transcriptome profile analysis, and phylogenetic relationships, this research provides a new perspective on the critical functions of ABC transporters in S. miltiorrhiza. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Genome-wide analysis of ATP-binding cassette transporter provides insight to genes related to bioactive metabolite transportation in Salvia miltiorrhiza |
url |
https://doi.org/10.1186/s12864-021-07623-0 https://doaj.org/article/28b69bb361b6455ba84f5c225be3135d https://doaj.org/toc/1471-2164 |
remote_bool |
true |
author2 |
Jianhong Zhang Hongyu Chen Hongmei Luo |
author2Str |
Jianhong Zhang Hongyu Chen Hongmei Luo |
ppnlink |
326644954 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12864-021-07623-0 |
callnumber-a |
TP248.13-248.65 |
up_date |
2024-07-03T23:33:16.806Z |
_version_ |
1803602726022545408 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ061948020</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309014603.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12864-021-07623-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ061948020</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ28b69bb361b6455ba84f5c225be3135d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP248.13-248.65</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH426-470</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Li Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Genome-wide analysis of ATP-binding cassette transporter provides insight to genes related to bioactive metabolite transportation in Salvia miltiorrhiza</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Background ATP-binding cassette (ABC) transporters have been found to play important roles in metabolic transport in plant cells, influencing subcellular compartmentalisation and tissue distribution of these metabolic compounds. Salvia miltiorrhiza Bunge, known as Danshen in traditional Chinese medicine, is a highly valued medicinal plant used to treat cardiovascular and cerebrovascular diseases. The dry roots and rhizomes of S. miltiorrhiza contain biologically active secondary metabolites of tanshinone and salvianolic acid. Given an assembled and annotated genome and a set of transcriptome data of S. miltiorrhiza, we analysed and identified the candidate genes that likely involved in the bioactive metabolite transportation of this medicinal plant, starting with the members of the ABC transporter family. Results A total of 114 genes encoding ABC transporters were identified in the genome of S. miltiorrhiza. All of these ABC genes were divided into eight subfamilies: 3ABCA, 31ABCB, 14ABCC, 2ABCD, 1ABCE, 7ABCF, 46ABCG, and 10 ABCI. Gene expression analysis revealed tissue-specific expression profiles of these ABC transporters. In particular, we found 18 highly expressed transporters in the roots of S. miltiorrhiza, which might be involved in transporting the bioactive compounds of this medicinal plant. We further investigated the co-expression profiling of these 18 genes with key enzyme genes involved in tanshinone and salvianolic acid biosynthetic pathways using quantitative reverse transcription polymerase chain reaction (RT-qPCR). From this RT-qPCR validation, we found that three ABC genes (SmABCG46, SmABCG40, and SmABCG4) and another gene (SmABCC1) co-expressed with the key biosynthetic enzymes of these two compounds, respectively, and thus might be involved in tanshinone and salvianolic acid transport in root cells. In addition, we predicted the biological functions of S. miltiorrhiza ABC transporters using phylogenetic relationships and analysis of the transcriptome to find biological functions. Conclusions Here, we present the first systematic analysis of ABC transporters in S. miltiorrhiza and predict candidate transporters involved in bioactive compound transportation in this important medicinal plant. Using genome-wide identification, transcriptome profile analysis, and phylogenetic relationships, this research provides a new perspective on the critical functions of ABC transporters in S. miltiorrhiza.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Salvia miltiorrhiza</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transporters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ATP-binding cassette (ABC) transporters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gene family analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tanshinone and salvianolic acid transport</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biotechnology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Genetics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianhong Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hongyu Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hongmei Luo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">BMC Genomics</subfield><subfield code="d">BMC, 2003</subfield><subfield code="g">22(2021), 1, Seite 20</subfield><subfield code="w">(DE-627)326644954</subfield><subfield code="w">(DE-600)2041499-7</subfield><subfield code="x">14712164</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:20</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s12864-021-07623-0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/28b69bb361b6455ba84f5c225be3135d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s12864-021-07623-0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1471-2164</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="h">20</subfield></datafield></record></collection>
|
score |
7.401539 |