Design approach for subsea data center based on thermodynamic theory under the premise of building energy conservation
Traditional data centres often require additional energy to drive air conditioning fans etc. to dissipate heat due to the serious power generation problems of servers, which in effect raises the economic costs. Seawater, with its high specific heat capacity and fluidity, offers a viable research dir...
Ausführliche Beschreibung
Autor*in: |
Liu Fang [verfasserIn] Ya Zhao [verfasserIn] Yuan Ligang [verfasserIn] Zeng Yang [verfasserIn] Zhai Caiyan [verfasserIn] Tong Zhuozhuang [verfasserIn] Huang Juan [verfasserIn] Li Hao [verfasserIn] Liu Jiayi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Thermal Science - VINCA Institute of Nuclear Sciences, 2006, 25(2021), 6 Part A, Seite 4209-4216 |
---|---|
Übergeordnetes Werk: |
volume:25 ; year:2021 ; number:6 Part A ; pages:4209-4216 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.2298/TSCI2106209L |
---|
Katalog-ID: |
DOAJ062067206 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ062067206 | ||
003 | DE-627 | ||
005 | 20230309015216.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.2298/TSCI2106209L |2 doi | |
035 | |a (DE-627)DOAJ062067206 | ||
035 | |a (DE-599)DOAJ967791f977224337b102933a29cdb31c | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TJ1-1570 | |
100 | 0 | |a Liu Fang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Design approach for subsea data center based on thermodynamic theory under the premise of building energy conservation |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Traditional data centres often require additional energy to drive air conditioning fans etc. to dissipate heat due to the serious power generation problems of servers, which in effect raises the economic costs. Seawater, with its high specific heat capacity and fluidity, offers a viable research direction for reducing economic costs, and this paper is based on this problem. The study shows that it is feasible to use containers as the main structure of the data centre. The number of servers n 860 that can be tolerated by the cooling capacity of the container without considering the limit of geometrical constraints is obtained by calculation. Secondly, in order to enhance the heat dissipation capacity of the data centre, the 6 cm straight ribbed crown fin heat dissipation enclosure is proposed to have the best heat dissipation capacity when comparing various heat dissipation enclosure configurations. A comprehensive assessment model of material properties was established, and the weights of each straight index were determined by analytic hierarchy process, and then the metals were ranked according to the specific scores of each index. The results show that nickel alloys and aluminium alloys are the most suitable. | ||
650 | 4 | |a energy efficiency in buildings | |
650 | 4 | |a thermodynamics | |
650 | 4 | |a thermal design | |
650 | 4 | |a analytic hierarchy process assessment model | |
653 | 0 | |a Mechanical engineering and machinery | |
700 | 0 | |a Ya Zhao |e verfasserin |4 aut | |
700 | 0 | |a Yuan Ligang |e verfasserin |4 aut | |
700 | 0 | |a Zeng Yang |e verfasserin |4 aut | |
700 | 0 | |a Zhai Caiyan |e verfasserin |4 aut | |
700 | 0 | |a Tong Zhuozhuang |e verfasserin |4 aut | |
700 | 0 | |a Huang Juan |e verfasserin |4 aut | |
700 | 0 | |a Li Hao |e verfasserin |4 aut | |
700 | 0 | |a Liu Jiayi |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Thermal Science |d VINCA Institute of Nuclear Sciences, 2006 |g 25(2021), 6 Part A, Seite 4209-4216 |w (DE-627)514240016 |w (DE-600)2241319-4 |x 23347163 |7 nnns |
773 | 1 | 8 | |g volume:25 |g year:2021 |g number:6 Part A |g pages:4209-4216 |
856 | 4 | 0 | |u https://doi.org/10.2298/TSCI2106209L |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/967791f977224337b102933a29cdb31c |z kostenfrei |
856 | 4 | 0 | |u http://www.doiserbia.nb.rs/img/doi/0354-9836/2021/0354-98362106209L.pdf |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/0354-9836 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2334-7163 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 25 |j 2021 |e 6 Part A |h 4209-4216 |
author_variant |
l f lf y z yz y l yl z y zy z c zc t z tz h j hj l h lh l j lj |
---|---|
matchkey_str |
article:23347163:2021----::einprahosbedtcnebsdnhroyaiterudrhpeie |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
TJ |
publishDate |
2021 |
allfields |
10.2298/TSCI2106209L doi (DE-627)DOAJ062067206 (DE-599)DOAJ967791f977224337b102933a29cdb31c DE-627 ger DE-627 rakwb eng TJ1-1570 Liu Fang verfasserin aut Design approach for subsea data center based on thermodynamic theory under the premise of building energy conservation 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Traditional data centres often require additional energy to drive air conditioning fans etc. to dissipate heat due to the serious power generation problems of servers, which in effect raises the economic costs. Seawater, with its high specific heat capacity and fluidity, offers a viable research direction for reducing economic costs, and this paper is based on this problem. The study shows that it is feasible to use containers as the main structure of the data centre. The number of servers n 860 that can be tolerated by the cooling capacity of the container without considering the limit of geometrical constraints is obtained by calculation. Secondly, in order to enhance the heat dissipation capacity of the data centre, the 6 cm straight ribbed crown fin heat dissipation enclosure is proposed to have the best heat dissipation capacity when comparing various heat dissipation enclosure configurations. A comprehensive assessment model of material properties was established, and the weights of each straight index were determined by analytic hierarchy process, and then the metals were ranked according to the specific scores of each index. The results show that nickel alloys and aluminium alloys are the most suitable. energy efficiency in buildings thermodynamics thermal design analytic hierarchy process assessment model Mechanical engineering and machinery Ya Zhao verfasserin aut Yuan Ligang verfasserin aut Zeng Yang verfasserin aut Zhai Caiyan verfasserin aut Tong Zhuozhuang verfasserin aut Huang Juan verfasserin aut Li Hao verfasserin aut Liu Jiayi verfasserin aut In Thermal Science VINCA Institute of Nuclear Sciences, 2006 25(2021), 6 Part A, Seite 4209-4216 (DE-627)514240016 (DE-600)2241319-4 23347163 nnns volume:25 year:2021 number:6 Part A pages:4209-4216 https://doi.org/10.2298/TSCI2106209L kostenfrei https://doaj.org/article/967791f977224337b102933a29cdb31c kostenfrei http://www.doiserbia.nb.rs/img/doi/0354-9836/2021/0354-98362106209L.pdf kostenfrei https://doaj.org/toc/0354-9836 Journal toc kostenfrei https://doaj.org/toc/2334-7163 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 25 2021 6 Part A 4209-4216 |
spelling |
10.2298/TSCI2106209L doi (DE-627)DOAJ062067206 (DE-599)DOAJ967791f977224337b102933a29cdb31c DE-627 ger DE-627 rakwb eng TJ1-1570 Liu Fang verfasserin aut Design approach for subsea data center based on thermodynamic theory under the premise of building energy conservation 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Traditional data centres often require additional energy to drive air conditioning fans etc. to dissipate heat due to the serious power generation problems of servers, which in effect raises the economic costs. Seawater, with its high specific heat capacity and fluidity, offers a viable research direction for reducing economic costs, and this paper is based on this problem. The study shows that it is feasible to use containers as the main structure of the data centre. The number of servers n 860 that can be tolerated by the cooling capacity of the container without considering the limit of geometrical constraints is obtained by calculation. Secondly, in order to enhance the heat dissipation capacity of the data centre, the 6 cm straight ribbed crown fin heat dissipation enclosure is proposed to have the best heat dissipation capacity when comparing various heat dissipation enclosure configurations. A comprehensive assessment model of material properties was established, and the weights of each straight index were determined by analytic hierarchy process, and then the metals were ranked according to the specific scores of each index. The results show that nickel alloys and aluminium alloys are the most suitable. energy efficiency in buildings thermodynamics thermal design analytic hierarchy process assessment model Mechanical engineering and machinery Ya Zhao verfasserin aut Yuan Ligang verfasserin aut Zeng Yang verfasserin aut Zhai Caiyan verfasserin aut Tong Zhuozhuang verfasserin aut Huang Juan verfasserin aut Li Hao verfasserin aut Liu Jiayi verfasserin aut In Thermal Science VINCA Institute of Nuclear Sciences, 2006 25(2021), 6 Part A, Seite 4209-4216 (DE-627)514240016 (DE-600)2241319-4 23347163 nnns volume:25 year:2021 number:6 Part A pages:4209-4216 https://doi.org/10.2298/TSCI2106209L kostenfrei https://doaj.org/article/967791f977224337b102933a29cdb31c kostenfrei http://www.doiserbia.nb.rs/img/doi/0354-9836/2021/0354-98362106209L.pdf kostenfrei https://doaj.org/toc/0354-9836 Journal toc kostenfrei https://doaj.org/toc/2334-7163 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 25 2021 6 Part A 4209-4216 |
allfields_unstemmed |
10.2298/TSCI2106209L doi (DE-627)DOAJ062067206 (DE-599)DOAJ967791f977224337b102933a29cdb31c DE-627 ger DE-627 rakwb eng TJ1-1570 Liu Fang verfasserin aut Design approach for subsea data center based on thermodynamic theory under the premise of building energy conservation 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Traditional data centres often require additional energy to drive air conditioning fans etc. to dissipate heat due to the serious power generation problems of servers, which in effect raises the economic costs. Seawater, with its high specific heat capacity and fluidity, offers a viable research direction for reducing economic costs, and this paper is based on this problem. The study shows that it is feasible to use containers as the main structure of the data centre. The number of servers n 860 that can be tolerated by the cooling capacity of the container without considering the limit of geometrical constraints is obtained by calculation. Secondly, in order to enhance the heat dissipation capacity of the data centre, the 6 cm straight ribbed crown fin heat dissipation enclosure is proposed to have the best heat dissipation capacity when comparing various heat dissipation enclosure configurations. A comprehensive assessment model of material properties was established, and the weights of each straight index were determined by analytic hierarchy process, and then the metals were ranked according to the specific scores of each index. The results show that nickel alloys and aluminium alloys are the most suitable. energy efficiency in buildings thermodynamics thermal design analytic hierarchy process assessment model Mechanical engineering and machinery Ya Zhao verfasserin aut Yuan Ligang verfasserin aut Zeng Yang verfasserin aut Zhai Caiyan verfasserin aut Tong Zhuozhuang verfasserin aut Huang Juan verfasserin aut Li Hao verfasserin aut Liu Jiayi verfasserin aut In Thermal Science VINCA Institute of Nuclear Sciences, 2006 25(2021), 6 Part A, Seite 4209-4216 (DE-627)514240016 (DE-600)2241319-4 23347163 nnns volume:25 year:2021 number:6 Part A pages:4209-4216 https://doi.org/10.2298/TSCI2106209L kostenfrei https://doaj.org/article/967791f977224337b102933a29cdb31c kostenfrei http://www.doiserbia.nb.rs/img/doi/0354-9836/2021/0354-98362106209L.pdf kostenfrei https://doaj.org/toc/0354-9836 Journal toc kostenfrei https://doaj.org/toc/2334-7163 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 25 2021 6 Part A 4209-4216 |
allfieldsGer |
10.2298/TSCI2106209L doi (DE-627)DOAJ062067206 (DE-599)DOAJ967791f977224337b102933a29cdb31c DE-627 ger DE-627 rakwb eng TJ1-1570 Liu Fang verfasserin aut Design approach for subsea data center based on thermodynamic theory under the premise of building energy conservation 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Traditional data centres often require additional energy to drive air conditioning fans etc. to dissipate heat due to the serious power generation problems of servers, which in effect raises the economic costs. Seawater, with its high specific heat capacity and fluidity, offers a viable research direction for reducing economic costs, and this paper is based on this problem. The study shows that it is feasible to use containers as the main structure of the data centre. The number of servers n 860 that can be tolerated by the cooling capacity of the container without considering the limit of geometrical constraints is obtained by calculation. Secondly, in order to enhance the heat dissipation capacity of the data centre, the 6 cm straight ribbed crown fin heat dissipation enclosure is proposed to have the best heat dissipation capacity when comparing various heat dissipation enclosure configurations. A comprehensive assessment model of material properties was established, and the weights of each straight index were determined by analytic hierarchy process, and then the metals were ranked according to the specific scores of each index. The results show that nickel alloys and aluminium alloys are the most suitable. energy efficiency in buildings thermodynamics thermal design analytic hierarchy process assessment model Mechanical engineering and machinery Ya Zhao verfasserin aut Yuan Ligang verfasserin aut Zeng Yang verfasserin aut Zhai Caiyan verfasserin aut Tong Zhuozhuang verfasserin aut Huang Juan verfasserin aut Li Hao verfasserin aut Liu Jiayi verfasserin aut In Thermal Science VINCA Institute of Nuclear Sciences, 2006 25(2021), 6 Part A, Seite 4209-4216 (DE-627)514240016 (DE-600)2241319-4 23347163 nnns volume:25 year:2021 number:6 Part A pages:4209-4216 https://doi.org/10.2298/TSCI2106209L kostenfrei https://doaj.org/article/967791f977224337b102933a29cdb31c kostenfrei http://www.doiserbia.nb.rs/img/doi/0354-9836/2021/0354-98362106209L.pdf kostenfrei https://doaj.org/toc/0354-9836 Journal toc kostenfrei https://doaj.org/toc/2334-7163 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 25 2021 6 Part A 4209-4216 |
allfieldsSound |
10.2298/TSCI2106209L doi (DE-627)DOAJ062067206 (DE-599)DOAJ967791f977224337b102933a29cdb31c DE-627 ger DE-627 rakwb eng TJ1-1570 Liu Fang verfasserin aut Design approach for subsea data center based on thermodynamic theory under the premise of building energy conservation 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Traditional data centres often require additional energy to drive air conditioning fans etc. to dissipate heat due to the serious power generation problems of servers, which in effect raises the economic costs. Seawater, with its high specific heat capacity and fluidity, offers a viable research direction for reducing economic costs, and this paper is based on this problem. The study shows that it is feasible to use containers as the main structure of the data centre. The number of servers n 860 that can be tolerated by the cooling capacity of the container without considering the limit of geometrical constraints is obtained by calculation. Secondly, in order to enhance the heat dissipation capacity of the data centre, the 6 cm straight ribbed crown fin heat dissipation enclosure is proposed to have the best heat dissipation capacity when comparing various heat dissipation enclosure configurations. A comprehensive assessment model of material properties was established, and the weights of each straight index were determined by analytic hierarchy process, and then the metals were ranked according to the specific scores of each index. The results show that nickel alloys and aluminium alloys are the most suitable. energy efficiency in buildings thermodynamics thermal design analytic hierarchy process assessment model Mechanical engineering and machinery Ya Zhao verfasserin aut Yuan Ligang verfasserin aut Zeng Yang verfasserin aut Zhai Caiyan verfasserin aut Tong Zhuozhuang verfasserin aut Huang Juan verfasserin aut Li Hao verfasserin aut Liu Jiayi verfasserin aut In Thermal Science VINCA Institute of Nuclear Sciences, 2006 25(2021), 6 Part A, Seite 4209-4216 (DE-627)514240016 (DE-600)2241319-4 23347163 nnns volume:25 year:2021 number:6 Part A pages:4209-4216 https://doi.org/10.2298/TSCI2106209L kostenfrei https://doaj.org/article/967791f977224337b102933a29cdb31c kostenfrei http://www.doiserbia.nb.rs/img/doi/0354-9836/2021/0354-98362106209L.pdf kostenfrei https://doaj.org/toc/0354-9836 Journal toc kostenfrei https://doaj.org/toc/2334-7163 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 25 2021 6 Part A 4209-4216 |
language |
English |
source |
In Thermal Science 25(2021), 6 Part A, Seite 4209-4216 volume:25 year:2021 number:6 Part A pages:4209-4216 |
sourceStr |
In Thermal Science 25(2021), 6 Part A, Seite 4209-4216 volume:25 year:2021 number:6 Part A pages:4209-4216 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
energy efficiency in buildings thermodynamics thermal design analytic hierarchy process assessment model Mechanical engineering and machinery |
isfreeaccess_bool |
true |
container_title |
Thermal Science |
authorswithroles_txt_mv |
Liu Fang @@aut@@ Ya Zhao @@aut@@ Yuan Ligang @@aut@@ Zeng Yang @@aut@@ Zhai Caiyan @@aut@@ Tong Zhuozhuang @@aut@@ Huang Juan @@aut@@ Li Hao @@aut@@ Liu Jiayi @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
514240016 |
id |
DOAJ062067206 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ062067206</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309015216.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2298/TSCI2106209L</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ062067206</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ967791f977224337b102933a29cdb31c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ1-1570</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Liu Fang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Design approach for subsea data center based on thermodynamic theory under the premise of building energy conservation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Traditional data centres often require additional energy to drive air conditioning fans etc. to dissipate heat due to the serious power generation problems of servers, which in effect raises the economic costs. Seawater, with its high specific heat capacity and fluidity, offers a viable research direction for reducing economic costs, and this paper is based on this problem. The study shows that it is feasible to use containers as the main structure of the data centre. The number of servers n 860 that can be tolerated by the cooling capacity of the container without considering the limit of geometrical constraints is obtained by calculation. Secondly, in order to enhance the heat dissipation capacity of the data centre, the 6 cm straight ribbed crown fin heat dissipation enclosure is proposed to have the best heat dissipation capacity when comparing various heat dissipation enclosure configurations. A comprehensive assessment model of material properties was established, and the weights of each straight index were determined by analytic hierarchy process, and then the metals were ranked according to the specific scores of each index. The results show that nickel alloys and aluminium alloys are the most suitable.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">energy efficiency in buildings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">thermodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">thermal design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">analytic hierarchy process assessment model</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mechanical engineering and machinery</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ya Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuan Ligang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zeng Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhai Caiyan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tong Zhuozhuang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huang Juan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Li Hao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Liu Jiayi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Thermal Science</subfield><subfield code="d">VINCA Institute of Nuclear Sciences, 2006</subfield><subfield code="g">25(2021), 6 Part A, Seite 4209-4216</subfield><subfield code="w">(DE-627)514240016</subfield><subfield code="w">(DE-600)2241319-4</subfield><subfield code="x">23347163</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:6 Part A</subfield><subfield code="g">pages:4209-4216</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.2298/TSCI2106209L</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/967791f977224337b102933a29cdb31c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.doiserbia.nb.rs/img/doi/0354-9836/2021/0354-98362106209L.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0354-9836</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2334-7163</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2021</subfield><subfield code="e">6 Part A</subfield><subfield code="h">4209-4216</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Liu Fang |
spellingShingle |
Liu Fang misc TJ1-1570 misc energy efficiency in buildings misc thermodynamics misc thermal design misc analytic hierarchy process assessment model misc Mechanical engineering and machinery Design approach for subsea data center based on thermodynamic theory under the premise of building energy conservation |
authorStr |
Liu Fang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)514240016 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TJ1-1570 |
illustrated |
Not Illustrated |
issn |
23347163 |
topic_title |
TJ1-1570 Design approach for subsea data center based on thermodynamic theory under the premise of building energy conservation energy efficiency in buildings thermodynamics thermal design analytic hierarchy process assessment model |
topic |
misc TJ1-1570 misc energy efficiency in buildings misc thermodynamics misc thermal design misc analytic hierarchy process assessment model misc Mechanical engineering and machinery |
topic_unstemmed |
misc TJ1-1570 misc energy efficiency in buildings misc thermodynamics misc thermal design misc analytic hierarchy process assessment model misc Mechanical engineering and machinery |
topic_browse |
misc TJ1-1570 misc energy efficiency in buildings misc thermodynamics misc thermal design misc analytic hierarchy process assessment model misc Mechanical engineering and machinery |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Thermal Science |
hierarchy_parent_id |
514240016 |
hierarchy_top_title |
Thermal Science |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)514240016 (DE-600)2241319-4 |
title |
Design approach for subsea data center based on thermodynamic theory under the premise of building energy conservation |
ctrlnum |
(DE-627)DOAJ062067206 (DE-599)DOAJ967791f977224337b102933a29cdb31c |
title_full |
Design approach for subsea data center based on thermodynamic theory under the premise of building energy conservation |
author_sort |
Liu Fang |
journal |
Thermal Science |
journalStr |
Thermal Science |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
4209 |
author_browse |
Liu Fang Ya Zhao Yuan Ligang Zeng Yang Zhai Caiyan Tong Zhuozhuang Huang Juan Li Hao Liu Jiayi |
container_volume |
25 |
class |
TJ1-1570 |
format_se |
Elektronische Aufsätze |
author-letter |
Liu Fang |
doi_str_mv |
10.2298/TSCI2106209L |
author2-role |
verfasserin |
title_sort |
design approach for subsea data center based on thermodynamic theory under the premise of building energy conservation |
callnumber |
TJ1-1570 |
title_auth |
Design approach for subsea data center based on thermodynamic theory under the premise of building energy conservation |
abstract |
Traditional data centres often require additional energy to drive air conditioning fans etc. to dissipate heat due to the serious power generation problems of servers, which in effect raises the economic costs. Seawater, with its high specific heat capacity and fluidity, offers a viable research direction for reducing economic costs, and this paper is based on this problem. The study shows that it is feasible to use containers as the main structure of the data centre. The number of servers n 860 that can be tolerated by the cooling capacity of the container without considering the limit of geometrical constraints is obtained by calculation. Secondly, in order to enhance the heat dissipation capacity of the data centre, the 6 cm straight ribbed crown fin heat dissipation enclosure is proposed to have the best heat dissipation capacity when comparing various heat dissipation enclosure configurations. A comprehensive assessment model of material properties was established, and the weights of each straight index were determined by analytic hierarchy process, and then the metals were ranked according to the specific scores of each index. The results show that nickel alloys and aluminium alloys are the most suitable. |
abstractGer |
Traditional data centres often require additional energy to drive air conditioning fans etc. to dissipate heat due to the serious power generation problems of servers, which in effect raises the economic costs. Seawater, with its high specific heat capacity and fluidity, offers a viable research direction for reducing economic costs, and this paper is based on this problem. The study shows that it is feasible to use containers as the main structure of the data centre. The number of servers n 860 that can be tolerated by the cooling capacity of the container without considering the limit of geometrical constraints is obtained by calculation. Secondly, in order to enhance the heat dissipation capacity of the data centre, the 6 cm straight ribbed crown fin heat dissipation enclosure is proposed to have the best heat dissipation capacity when comparing various heat dissipation enclosure configurations. A comprehensive assessment model of material properties was established, and the weights of each straight index were determined by analytic hierarchy process, and then the metals were ranked according to the specific scores of each index. The results show that nickel alloys and aluminium alloys are the most suitable. |
abstract_unstemmed |
Traditional data centres often require additional energy to drive air conditioning fans etc. to dissipate heat due to the serious power generation problems of servers, which in effect raises the economic costs. Seawater, with its high specific heat capacity and fluidity, offers a viable research direction for reducing economic costs, and this paper is based on this problem. The study shows that it is feasible to use containers as the main structure of the data centre. The number of servers n 860 that can be tolerated by the cooling capacity of the container without considering the limit of geometrical constraints is obtained by calculation. Secondly, in order to enhance the heat dissipation capacity of the data centre, the 6 cm straight ribbed crown fin heat dissipation enclosure is proposed to have the best heat dissipation capacity when comparing various heat dissipation enclosure configurations. A comprehensive assessment model of material properties was established, and the weights of each straight index were determined by analytic hierarchy process, and then the metals were ranked according to the specific scores of each index. The results show that nickel alloys and aluminium alloys are the most suitable. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
6 Part A |
title_short |
Design approach for subsea data center based on thermodynamic theory under the premise of building energy conservation |
url |
https://doi.org/10.2298/TSCI2106209L https://doaj.org/article/967791f977224337b102933a29cdb31c http://www.doiserbia.nb.rs/img/doi/0354-9836/2021/0354-98362106209L.pdf https://doaj.org/toc/0354-9836 https://doaj.org/toc/2334-7163 |
remote_bool |
true |
author2 |
Ya Zhao Yuan Ligang Zeng Yang Zhai Caiyan Tong Zhuozhuang Huang Juan Li Hao Liu Jiayi |
author2Str |
Ya Zhao Yuan Ligang Zeng Yang Zhai Caiyan Tong Zhuozhuang Huang Juan Li Hao Liu Jiayi |
ppnlink |
514240016 |
callnumber-subject |
TJ - Mechanical Engineering and Machinery |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.2298/TSCI2106209L |
callnumber-a |
TJ1-1570 |
up_date |
2024-07-04T00:06:46.314Z |
_version_ |
1803604833148600320 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ062067206</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309015216.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2298/TSCI2106209L</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ062067206</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ967791f977224337b102933a29cdb31c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ1-1570</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Liu Fang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Design approach for subsea data center based on thermodynamic theory under the premise of building energy conservation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Traditional data centres often require additional energy to drive air conditioning fans etc. to dissipate heat due to the serious power generation problems of servers, which in effect raises the economic costs. Seawater, with its high specific heat capacity and fluidity, offers a viable research direction for reducing economic costs, and this paper is based on this problem. The study shows that it is feasible to use containers as the main structure of the data centre. The number of servers n 860 that can be tolerated by the cooling capacity of the container without considering the limit of geometrical constraints is obtained by calculation. Secondly, in order to enhance the heat dissipation capacity of the data centre, the 6 cm straight ribbed crown fin heat dissipation enclosure is proposed to have the best heat dissipation capacity when comparing various heat dissipation enclosure configurations. A comprehensive assessment model of material properties was established, and the weights of each straight index were determined by analytic hierarchy process, and then the metals were ranked according to the specific scores of each index. The results show that nickel alloys and aluminium alloys are the most suitable.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">energy efficiency in buildings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">thermodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">thermal design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">analytic hierarchy process assessment model</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mechanical engineering and machinery</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ya Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuan Ligang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zeng Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhai Caiyan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tong Zhuozhuang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huang Juan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Li Hao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Liu Jiayi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Thermal Science</subfield><subfield code="d">VINCA Institute of Nuclear Sciences, 2006</subfield><subfield code="g">25(2021), 6 Part A, Seite 4209-4216</subfield><subfield code="w">(DE-627)514240016</subfield><subfield code="w">(DE-600)2241319-4</subfield><subfield code="x">23347163</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:6 Part A</subfield><subfield code="g">pages:4209-4216</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.2298/TSCI2106209L</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/967791f977224337b102933a29cdb31c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.doiserbia.nb.rs/img/doi/0354-9836/2021/0354-98362106209L.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0354-9836</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2334-7163</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2021</subfield><subfield code="e">6 Part A</subfield><subfield code="h">4209-4216</subfield></datafield></record></collection>
|
score |
7.400936 |