Obstacle Distance Measurement Under Varying Illumination Conditions Based on Monocular Vision Using a Cable Inspection Robot
Obstacle distance measurement is one of the key technologies for autonomous navigation of high-voltage transmission line inspection robots. To address the robustness of obstacle distance measurement under varying illumination conditions, this article develops a research method that fuses image enhan...
Ausführliche Beschreibung
Autor*in: |
Le Huang [verfasserIn] Gongping Wu [verfasserIn] Wenjie Tang [verfasserIn] Yi Wu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 9(2021), Seite 55955-55973 |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2021 ; pages:55955-55973 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2021.3070877 |
---|
Katalog-ID: |
DOAJ062158236 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ062158236 | ||
003 | DE-627 | ||
005 | 20230309015703.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2021.3070877 |2 doi | |
035 | |a (DE-627)DOAJ062158236 | ||
035 | |a (DE-599)DOAJ026d5268865240559f7fed7b015bdec8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Le Huang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Obstacle Distance Measurement Under Varying Illumination Conditions Based on Monocular Vision Using a Cable Inspection Robot |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Obstacle distance measurement is one of the key technologies for autonomous navigation of high-voltage transmission line inspection robots. To address the robustness of obstacle distance measurement under varying illumination conditions, this article develops a research method that fuses image enhancement with robot monocular vision so that the robot can adapt to various levels of illumination running along the transmission line. During the inspection of high-voltage transmission lines in such an overexposed (excessively bright) environment, a specular highlight suppression method is proposed to suppress the specular reflections in an image; when scene illumination is insufficient, a robust low-light image enhancement method based on a tone mapping algorithm with weighted guided filtering is presented. Based on the monocular vision measurement principle, the error generation mechanism is analyzed through experiments, and we introduce the parameter modification mechanism. The two proposed image enhancement methods outperform other state-of-the-art enhancement algorithms in qualitative and quantitative analyses. The experimental results show that the measurement error is less than 3% for static distance measurements and less than 5% for dynamic distance measurements within 6 m. The proposed method can meet the requirements of high-accuracy positioning, real-time performance and strong robustness. This method greatly contributes to the sustainable development of inspection robots in the power industry. | ||
650 | 4 | |a Transmission lines | |
650 | 4 | |a inspection robot | |
650 | 4 | |a highlight suppression | |
650 | 4 | |a image enhancement | |
650 | 4 | |a monocular vision | |
650 | 4 | |a parameter modification | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Gongping Wu |e verfasserin |4 aut | |
700 | 0 | |a Wenjie Tang |e verfasserin |4 aut | |
700 | 0 | |a Yi Wu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 9(2021), Seite 55955-55973 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2021 |g pages:55955-55973 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2021.3070877 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/026d5268865240559f7fed7b015bdec8 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/9395083/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2021 |h 55955-55973 |
author_variant |
l h lh g w gw w t wt y w yw |
---|---|
matchkey_str |
article:21693536:2021----::btceitneesrmnudraynilmntocniinbsdnoouavs |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
TK |
publishDate |
2021 |
allfields |
10.1109/ACCESS.2021.3070877 doi (DE-627)DOAJ062158236 (DE-599)DOAJ026d5268865240559f7fed7b015bdec8 DE-627 ger DE-627 rakwb eng TK1-9971 Le Huang verfasserin aut Obstacle Distance Measurement Under Varying Illumination Conditions Based on Monocular Vision Using a Cable Inspection Robot 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Obstacle distance measurement is one of the key technologies for autonomous navigation of high-voltage transmission line inspection robots. To address the robustness of obstacle distance measurement under varying illumination conditions, this article develops a research method that fuses image enhancement with robot monocular vision so that the robot can adapt to various levels of illumination running along the transmission line. During the inspection of high-voltage transmission lines in such an overexposed (excessively bright) environment, a specular highlight suppression method is proposed to suppress the specular reflections in an image; when scene illumination is insufficient, a robust low-light image enhancement method based on a tone mapping algorithm with weighted guided filtering is presented. Based on the monocular vision measurement principle, the error generation mechanism is analyzed through experiments, and we introduce the parameter modification mechanism. The two proposed image enhancement methods outperform other state-of-the-art enhancement algorithms in qualitative and quantitative analyses. The experimental results show that the measurement error is less than 3% for static distance measurements and less than 5% for dynamic distance measurements within 6 m. The proposed method can meet the requirements of high-accuracy positioning, real-time performance and strong robustness. This method greatly contributes to the sustainable development of inspection robots in the power industry. Transmission lines inspection robot highlight suppression image enhancement monocular vision parameter modification Electrical engineering. Electronics. Nuclear engineering Gongping Wu verfasserin aut Wenjie Tang verfasserin aut Yi Wu verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 55955-55973 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:55955-55973 https://doi.org/10.1109/ACCESS.2021.3070877 kostenfrei https://doaj.org/article/026d5268865240559f7fed7b015bdec8 kostenfrei https://ieeexplore.ieee.org/document/9395083/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 55955-55973 |
spelling |
10.1109/ACCESS.2021.3070877 doi (DE-627)DOAJ062158236 (DE-599)DOAJ026d5268865240559f7fed7b015bdec8 DE-627 ger DE-627 rakwb eng TK1-9971 Le Huang verfasserin aut Obstacle Distance Measurement Under Varying Illumination Conditions Based on Monocular Vision Using a Cable Inspection Robot 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Obstacle distance measurement is one of the key technologies for autonomous navigation of high-voltage transmission line inspection robots. To address the robustness of obstacle distance measurement under varying illumination conditions, this article develops a research method that fuses image enhancement with robot monocular vision so that the robot can adapt to various levels of illumination running along the transmission line. During the inspection of high-voltage transmission lines in such an overexposed (excessively bright) environment, a specular highlight suppression method is proposed to suppress the specular reflections in an image; when scene illumination is insufficient, a robust low-light image enhancement method based on a tone mapping algorithm with weighted guided filtering is presented. Based on the monocular vision measurement principle, the error generation mechanism is analyzed through experiments, and we introduce the parameter modification mechanism. The two proposed image enhancement methods outperform other state-of-the-art enhancement algorithms in qualitative and quantitative analyses. The experimental results show that the measurement error is less than 3% for static distance measurements and less than 5% for dynamic distance measurements within 6 m. The proposed method can meet the requirements of high-accuracy positioning, real-time performance and strong robustness. This method greatly contributes to the sustainable development of inspection robots in the power industry. Transmission lines inspection robot highlight suppression image enhancement monocular vision parameter modification Electrical engineering. Electronics. Nuclear engineering Gongping Wu verfasserin aut Wenjie Tang verfasserin aut Yi Wu verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 55955-55973 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:55955-55973 https://doi.org/10.1109/ACCESS.2021.3070877 kostenfrei https://doaj.org/article/026d5268865240559f7fed7b015bdec8 kostenfrei https://ieeexplore.ieee.org/document/9395083/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 55955-55973 |
allfields_unstemmed |
10.1109/ACCESS.2021.3070877 doi (DE-627)DOAJ062158236 (DE-599)DOAJ026d5268865240559f7fed7b015bdec8 DE-627 ger DE-627 rakwb eng TK1-9971 Le Huang verfasserin aut Obstacle Distance Measurement Under Varying Illumination Conditions Based on Monocular Vision Using a Cable Inspection Robot 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Obstacle distance measurement is one of the key technologies for autonomous navigation of high-voltage transmission line inspection robots. To address the robustness of obstacle distance measurement under varying illumination conditions, this article develops a research method that fuses image enhancement with robot monocular vision so that the robot can adapt to various levels of illumination running along the transmission line. During the inspection of high-voltage transmission lines in such an overexposed (excessively bright) environment, a specular highlight suppression method is proposed to suppress the specular reflections in an image; when scene illumination is insufficient, a robust low-light image enhancement method based on a tone mapping algorithm with weighted guided filtering is presented. Based on the monocular vision measurement principle, the error generation mechanism is analyzed through experiments, and we introduce the parameter modification mechanism. The two proposed image enhancement methods outperform other state-of-the-art enhancement algorithms in qualitative and quantitative analyses. The experimental results show that the measurement error is less than 3% for static distance measurements and less than 5% for dynamic distance measurements within 6 m. The proposed method can meet the requirements of high-accuracy positioning, real-time performance and strong robustness. This method greatly contributes to the sustainable development of inspection robots in the power industry. Transmission lines inspection robot highlight suppression image enhancement monocular vision parameter modification Electrical engineering. Electronics. Nuclear engineering Gongping Wu verfasserin aut Wenjie Tang verfasserin aut Yi Wu verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 55955-55973 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:55955-55973 https://doi.org/10.1109/ACCESS.2021.3070877 kostenfrei https://doaj.org/article/026d5268865240559f7fed7b015bdec8 kostenfrei https://ieeexplore.ieee.org/document/9395083/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 55955-55973 |
allfieldsGer |
10.1109/ACCESS.2021.3070877 doi (DE-627)DOAJ062158236 (DE-599)DOAJ026d5268865240559f7fed7b015bdec8 DE-627 ger DE-627 rakwb eng TK1-9971 Le Huang verfasserin aut Obstacle Distance Measurement Under Varying Illumination Conditions Based on Monocular Vision Using a Cable Inspection Robot 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Obstacle distance measurement is one of the key technologies for autonomous navigation of high-voltage transmission line inspection robots. To address the robustness of obstacle distance measurement under varying illumination conditions, this article develops a research method that fuses image enhancement with robot monocular vision so that the robot can adapt to various levels of illumination running along the transmission line. During the inspection of high-voltage transmission lines in such an overexposed (excessively bright) environment, a specular highlight suppression method is proposed to suppress the specular reflections in an image; when scene illumination is insufficient, a robust low-light image enhancement method based on a tone mapping algorithm with weighted guided filtering is presented. Based on the monocular vision measurement principle, the error generation mechanism is analyzed through experiments, and we introduce the parameter modification mechanism. The two proposed image enhancement methods outperform other state-of-the-art enhancement algorithms in qualitative and quantitative analyses. The experimental results show that the measurement error is less than 3% for static distance measurements and less than 5% for dynamic distance measurements within 6 m. The proposed method can meet the requirements of high-accuracy positioning, real-time performance and strong robustness. This method greatly contributes to the sustainable development of inspection robots in the power industry. Transmission lines inspection robot highlight suppression image enhancement monocular vision parameter modification Electrical engineering. Electronics. Nuclear engineering Gongping Wu verfasserin aut Wenjie Tang verfasserin aut Yi Wu verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 55955-55973 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:55955-55973 https://doi.org/10.1109/ACCESS.2021.3070877 kostenfrei https://doaj.org/article/026d5268865240559f7fed7b015bdec8 kostenfrei https://ieeexplore.ieee.org/document/9395083/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 55955-55973 |
allfieldsSound |
10.1109/ACCESS.2021.3070877 doi (DE-627)DOAJ062158236 (DE-599)DOAJ026d5268865240559f7fed7b015bdec8 DE-627 ger DE-627 rakwb eng TK1-9971 Le Huang verfasserin aut Obstacle Distance Measurement Under Varying Illumination Conditions Based on Monocular Vision Using a Cable Inspection Robot 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Obstacle distance measurement is one of the key technologies for autonomous navigation of high-voltage transmission line inspection robots. To address the robustness of obstacle distance measurement under varying illumination conditions, this article develops a research method that fuses image enhancement with robot monocular vision so that the robot can adapt to various levels of illumination running along the transmission line. During the inspection of high-voltage transmission lines in such an overexposed (excessively bright) environment, a specular highlight suppression method is proposed to suppress the specular reflections in an image; when scene illumination is insufficient, a robust low-light image enhancement method based on a tone mapping algorithm with weighted guided filtering is presented. Based on the monocular vision measurement principle, the error generation mechanism is analyzed through experiments, and we introduce the parameter modification mechanism. The two proposed image enhancement methods outperform other state-of-the-art enhancement algorithms in qualitative and quantitative analyses. The experimental results show that the measurement error is less than 3% for static distance measurements and less than 5% for dynamic distance measurements within 6 m. The proposed method can meet the requirements of high-accuracy positioning, real-time performance and strong robustness. This method greatly contributes to the sustainable development of inspection robots in the power industry. Transmission lines inspection robot highlight suppression image enhancement monocular vision parameter modification Electrical engineering. Electronics. Nuclear engineering Gongping Wu verfasserin aut Wenjie Tang verfasserin aut Yi Wu verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 55955-55973 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:55955-55973 https://doi.org/10.1109/ACCESS.2021.3070877 kostenfrei https://doaj.org/article/026d5268865240559f7fed7b015bdec8 kostenfrei https://ieeexplore.ieee.org/document/9395083/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 55955-55973 |
language |
English |
source |
In IEEE Access 9(2021), Seite 55955-55973 volume:9 year:2021 pages:55955-55973 |
sourceStr |
In IEEE Access 9(2021), Seite 55955-55973 volume:9 year:2021 pages:55955-55973 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Transmission lines inspection robot highlight suppression image enhancement monocular vision parameter modification Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Le Huang @@aut@@ Gongping Wu @@aut@@ Wenjie Tang @@aut@@ Yi Wu @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ062158236 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ062158236</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309015703.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2021.3070877</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ062158236</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ026d5268865240559f7fed7b015bdec8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Le Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Obstacle Distance Measurement Under Varying Illumination Conditions Based on Monocular Vision Using a Cable Inspection Robot</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Obstacle distance measurement is one of the key technologies for autonomous navigation of high-voltage transmission line inspection robots. To address the robustness of obstacle distance measurement under varying illumination conditions, this article develops a research method that fuses image enhancement with robot monocular vision so that the robot can adapt to various levels of illumination running along the transmission line. During the inspection of high-voltage transmission lines in such an overexposed (excessively bright) environment, a specular highlight suppression method is proposed to suppress the specular reflections in an image; when scene illumination is insufficient, a robust low-light image enhancement method based on a tone mapping algorithm with weighted guided filtering is presented. Based on the monocular vision measurement principle, the error generation mechanism is analyzed through experiments, and we introduce the parameter modification mechanism. The two proposed image enhancement methods outperform other state-of-the-art enhancement algorithms in qualitative and quantitative analyses. The experimental results show that the measurement error is less than 3% for static distance measurements and less than 5% for dynamic distance measurements within 6 m. The proposed method can meet the requirements of high-accuracy positioning, real-time performance and strong robustness. This method greatly contributes to the sustainable development of inspection robots in the power industry.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transmission lines</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">inspection robot</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">highlight suppression</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">image enhancement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">monocular vision</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">parameter modification</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gongping Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wenjie Tang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yi Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">9(2021), Seite 55955-55973</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:55955-55973</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2021.3070877</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/026d5268865240559f7fed7b015bdec8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9395083/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2021</subfield><subfield code="h">55955-55973</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Le Huang |
spellingShingle |
Le Huang misc TK1-9971 misc Transmission lines misc inspection robot misc highlight suppression misc image enhancement misc monocular vision misc parameter modification misc Electrical engineering. Electronics. Nuclear engineering Obstacle Distance Measurement Under Varying Illumination Conditions Based on Monocular Vision Using a Cable Inspection Robot |
authorStr |
Le Huang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 Obstacle Distance Measurement Under Varying Illumination Conditions Based on Monocular Vision Using a Cable Inspection Robot Transmission lines inspection robot highlight suppression image enhancement monocular vision parameter modification |
topic |
misc TK1-9971 misc Transmission lines misc inspection robot misc highlight suppression misc image enhancement misc monocular vision misc parameter modification misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Transmission lines misc inspection robot misc highlight suppression misc image enhancement misc monocular vision misc parameter modification misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Transmission lines misc inspection robot misc highlight suppression misc image enhancement misc monocular vision misc parameter modification misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
Obstacle Distance Measurement Under Varying Illumination Conditions Based on Monocular Vision Using a Cable Inspection Robot |
ctrlnum |
(DE-627)DOAJ062158236 (DE-599)DOAJ026d5268865240559f7fed7b015bdec8 |
title_full |
Obstacle Distance Measurement Under Varying Illumination Conditions Based on Monocular Vision Using a Cable Inspection Robot |
author_sort |
Le Huang |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
55955 |
author_browse |
Le Huang Gongping Wu Wenjie Tang Yi Wu |
container_volume |
9 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Le Huang |
doi_str_mv |
10.1109/ACCESS.2021.3070877 |
author2-role |
verfasserin |
title_sort |
obstacle distance measurement under varying illumination conditions based on monocular vision using a cable inspection robot |
callnumber |
TK1-9971 |
title_auth |
Obstacle Distance Measurement Under Varying Illumination Conditions Based on Monocular Vision Using a Cable Inspection Robot |
abstract |
Obstacle distance measurement is one of the key technologies for autonomous navigation of high-voltage transmission line inspection robots. To address the robustness of obstacle distance measurement under varying illumination conditions, this article develops a research method that fuses image enhancement with robot monocular vision so that the robot can adapt to various levels of illumination running along the transmission line. During the inspection of high-voltage transmission lines in such an overexposed (excessively bright) environment, a specular highlight suppression method is proposed to suppress the specular reflections in an image; when scene illumination is insufficient, a robust low-light image enhancement method based on a tone mapping algorithm with weighted guided filtering is presented. Based on the monocular vision measurement principle, the error generation mechanism is analyzed through experiments, and we introduce the parameter modification mechanism. The two proposed image enhancement methods outperform other state-of-the-art enhancement algorithms in qualitative and quantitative analyses. The experimental results show that the measurement error is less than 3% for static distance measurements and less than 5% for dynamic distance measurements within 6 m. The proposed method can meet the requirements of high-accuracy positioning, real-time performance and strong robustness. This method greatly contributes to the sustainable development of inspection robots in the power industry. |
abstractGer |
Obstacle distance measurement is one of the key technologies for autonomous navigation of high-voltage transmission line inspection robots. To address the robustness of obstacle distance measurement under varying illumination conditions, this article develops a research method that fuses image enhancement with robot monocular vision so that the robot can adapt to various levels of illumination running along the transmission line. During the inspection of high-voltage transmission lines in such an overexposed (excessively bright) environment, a specular highlight suppression method is proposed to suppress the specular reflections in an image; when scene illumination is insufficient, a robust low-light image enhancement method based on a tone mapping algorithm with weighted guided filtering is presented. Based on the monocular vision measurement principle, the error generation mechanism is analyzed through experiments, and we introduce the parameter modification mechanism. The two proposed image enhancement methods outperform other state-of-the-art enhancement algorithms in qualitative and quantitative analyses. The experimental results show that the measurement error is less than 3% for static distance measurements and less than 5% for dynamic distance measurements within 6 m. The proposed method can meet the requirements of high-accuracy positioning, real-time performance and strong robustness. This method greatly contributes to the sustainable development of inspection robots in the power industry. |
abstract_unstemmed |
Obstacle distance measurement is one of the key technologies for autonomous navigation of high-voltage transmission line inspection robots. To address the robustness of obstacle distance measurement under varying illumination conditions, this article develops a research method that fuses image enhancement with robot monocular vision so that the robot can adapt to various levels of illumination running along the transmission line. During the inspection of high-voltage transmission lines in such an overexposed (excessively bright) environment, a specular highlight suppression method is proposed to suppress the specular reflections in an image; when scene illumination is insufficient, a robust low-light image enhancement method based on a tone mapping algorithm with weighted guided filtering is presented. Based on the monocular vision measurement principle, the error generation mechanism is analyzed through experiments, and we introduce the parameter modification mechanism. The two proposed image enhancement methods outperform other state-of-the-art enhancement algorithms in qualitative and quantitative analyses. The experimental results show that the measurement error is less than 3% for static distance measurements and less than 5% for dynamic distance measurements within 6 m. The proposed method can meet the requirements of high-accuracy positioning, real-time performance and strong robustness. This method greatly contributes to the sustainable development of inspection robots in the power industry. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Obstacle Distance Measurement Under Varying Illumination Conditions Based on Monocular Vision Using a Cable Inspection Robot |
url |
https://doi.org/10.1109/ACCESS.2021.3070877 https://doaj.org/article/026d5268865240559f7fed7b015bdec8 https://ieeexplore.ieee.org/document/9395083/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Gongping Wu Wenjie Tang Yi Wu |
author2Str |
Gongping Wu Wenjie Tang Yi Wu |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2021.3070877 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-04T00:30:48.667Z |
_version_ |
1803606345572679680 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ062158236</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309015703.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2021.3070877</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ062158236</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ026d5268865240559f7fed7b015bdec8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Le Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Obstacle Distance Measurement Under Varying Illumination Conditions Based on Monocular Vision Using a Cable Inspection Robot</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Obstacle distance measurement is one of the key technologies for autonomous navigation of high-voltage transmission line inspection robots. To address the robustness of obstacle distance measurement under varying illumination conditions, this article develops a research method that fuses image enhancement with robot monocular vision so that the robot can adapt to various levels of illumination running along the transmission line. During the inspection of high-voltage transmission lines in such an overexposed (excessively bright) environment, a specular highlight suppression method is proposed to suppress the specular reflections in an image; when scene illumination is insufficient, a robust low-light image enhancement method based on a tone mapping algorithm with weighted guided filtering is presented. Based on the monocular vision measurement principle, the error generation mechanism is analyzed through experiments, and we introduce the parameter modification mechanism. The two proposed image enhancement methods outperform other state-of-the-art enhancement algorithms in qualitative and quantitative analyses. The experimental results show that the measurement error is less than 3% for static distance measurements and less than 5% for dynamic distance measurements within 6 m. The proposed method can meet the requirements of high-accuracy positioning, real-time performance and strong robustness. This method greatly contributes to the sustainable development of inspection robots in the power industry.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transmission lines</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">inspection robot</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">highlight suppression</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">image enhancement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">monocular vision</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">parameter modification</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gongping Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wenjie Tang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yi Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">9(2021), Seite 55955-55973</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:55955-55973</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2021.3070877</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/026d5268865240559f7fed7b015bdec8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9395083/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2021</subfield><subfield code="h">55955-55973</subfield></datafield></record></collection>
|
score |
7.401038 |