Land Cover Change Detection With VHR Satellite Imagery Based on Multi-Scale SLIC-CNN and SCAE Features
Change detection with very high resolution (VHR) satellite images is of great application values when evaluating and monitoring land use changes. However, intrinsic complexity of satellite images will introduce more difficulties to change detection tasks. In this study, a new change detection method...
Ausführliche Beschreibung
Autor*in: |
Ran Jing [verfasserIn] Zhaoning Gong [verfasserIn] Hongliang Guan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
multi-scale simple linear iterative clustering-convolutional neural network (SLIC-CNN) |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 8(2020), Seite 228070-228087 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2020 ; pages:228070-228087 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2020.3045740 |
---|
Katalog-ID: |
DOAJ062196014 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ062196014 | ||
003 | DE-627 | ||
005 | 20230503062629.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2020.3045740 |2 doi | |
035 | |a (DE-627)DOAJ062196014 | ||
035 | |a (DE-599)DOAJe080e81047af44f38a1d114cbb900b51 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Ran Jing |e verfasserin |4 aut | |
245 | 1 | 0 | |a Land Cover Change Detection With VHR Satellite Imagery Based on Multi-Scale SLIC-CNN and SCAE Features |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Change detection with very high resolution (VHR) satellite images is of great application values when evaluating and monitoring land use changes. However, intrinsic complexity of satellite images will introduce more difficulties to change detection tasks. In this study, a new change detection method is proposed by combining multi-scale simple linear iterative clustering-convolutional neural network (SLIC-CNN) with stacked convolutional auto-encoder (SCAE) features to improve change detection capabilities with VHR satellite images. First, the multi-scale SLIC-based image segmentation is performed on multi-temporal images to generate segment objects while keeping their edge information as much as possible. Second, the convolutional layers in a CNN architecture are used to generate change map, then, an SCAE feature-based classification procedure is performed to generate “from-to” change information. Finally, a Bayesian information criterion is used to optimize the results of change detection. In this study, the experiments carried out reveal that the multi-scale SLIC image segmentation algorithm affects the integrity of change regions; CNN features have an effect on the consistency of change regions; and SCAE features influence the performance of support vector machine (SVM) classifiers. And, features extracted from the architectures enhance the ability of information extraction from ground objects. Comparison results also show the superiority to other change detection methods. | ||
650 | 4 | |a Change detection | |
650 | 4 | |a image segmentation | |
650 | 4 | |a multi-scale simple linear iterative clustering-convolutional neural network (SLIC-CNN) | |
650 | 4 | |a stacked convolutional auto-encoder (SCAE) | |
650 | 4 | |a VHR satellite imagery | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Zhaoning Gong |e verfasserin |4 aut | |
700 | 0 | |a Hongliang Guan |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 8(2020), Seite 228070-228087 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2020 |g pages:228070-228087 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2020.3045740 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/e080e81047af44f38a1d114cbb900b51 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/9298743/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2020 |h 228070-228087 |
author_variant |
r j rj z g zg h g hg |
---|---|
matchkey_str |
article:21693536:2020----::adoecagdtcinihhstliemgrbsdnutsa |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
TK |
publishDate |
2020 |
allfields |
10.1109/ACCESS.2020.3045740 doi (DE-627)DOAJ062196014 (DE-599)DOAJe080e81047af44f38a1d114cbb900b51 DE-627 ger DE-627 rakwb eng TK1-9971 Ran Jing verfasserin aut Land Cover Change Detection With VHR Satellite Imagery Based on Multi-Scale SLIC-CNN and SCAE Features 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Change detection with very high resolution (VHR) satellite images is of great application values when evaluating and monitoring land use changes. However, intrinsic complexity of satellite images will introduce more difficulties to change detection tasks. In this study, a new change detection method is proposed by combining multi-scale simple linear iterative clustering-convolutional neural network (SLIC-CNN) with stacked convolutional auto-encoder (SCAE) features to improve change detection capabilities with VHR satellite images. First, the multi-scale SLIC-based image segmentation is performed on multi-temporal images to generate segment objects while keeping their edge information as much as possible. Second, the convolutional layers in a CNN architecture are used to generate change map, then, an SCAE feature-based classification procedure is performed to generate “from-to” change information. Finally, a Bayesian information criterion is used to optimize the results of change detection. In this study, the experiments carried out reveal that the multi-scale SLIC image segmentation algorithm affects the integrity of change regions; CNN features have an effect on the consistency of change regions; and SCAE features influence the performance of support vector machine (SVM) classifiers. And, features extracted from the architectures enhance the ability of information extraction from ground objects. Comparison results also show the superiority to other change detection methods. Change detection image segmentation multi-scale simple linear iterative clustering-convolutional neural network (SLIC-CNN) stacked convolutional auto-encoder (SCAE) VHR satellite imagery Electrical engineering. Electronics. Nuclear engineering Zhaoning Gong verfasserin aut Hongliang Guan verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 228070-228087 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:228070-228087 https://doi.org/10.1109/ACCESS.2020.3045740 kostenfrei https://doaj.org/article/e080e81047af44f38a1d114cbb900b51 kostenfrei https://ieeexplore.ieee.org/document/9298743/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 228070-228087 |
spelling |
10.1109/ACCESS.2020.3045740 doi (DE-627)DOAJ062196014 (DE-599)DOAJe080e81047af44f38a1d114cbb900b51 DE-627 ger DE-627 rakwb eng TK1-9971 Ran Jing verfasserin aut Land Cover Change Detection With VHR Satellite Imagery Based on Multi-Scale SLIC-CNN and SCAE Features 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Change detection with very high resolution (VHR) satellite images is of great application values when evaluating and monitoring land use changes. However, intrinsic complexity of satellite images will introduce more difficulties to change detection tasks. In this study, a new change detection method is proposed by combining multi-scale simple linear iterative clustering-convolutional neural network (SLIC-CNN) with stacked convolutional auto-encoder (SCAE) features to improve change detection capabilities with VHR satellite images. First, the multi-scale SLIC-based image segmentation is performed on multi-temporal images to generate segment objects while keeping their edge information as much as possible. Second, the convolutional layers in a CNN architecture are used to generate change map, then, an SCAE feature-based classification procedure is performed to generate “from-to” change information. Finally, a Bayesian information criterion is used to optimize the results of change detection. In this study, the experiments carried out reveal that the multi-scale SLIC image segmentation algorithm affects the integrity of change regions; CNN features have an effect on the consistency of change regions; and SCAE features influence the performance of support vector machine (SVM) classifiers. And, features extracted from the architectures enhance the ability of information extraction from ground objects. Comparison results also show the superiority to other change detection methods. Change detection image segmentation multi-scale simple linear iterative clustering-convolutional neural network (SLIC-CNN) stacked convolutional auto-encoder (SCAE) VHR satellite imagery Electrical engineering. Electronics. Nuclear engineering Zhaoning Gong verfasserin aut Hongliang Guan verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 228070-228087 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:228070-228087 https://doi.org/10.1109/ACCESS.2020.3045740 kostenfrei https://doaj.org/article/e080e81047af44f38a1d114cbb900b51 kostenfrei https://ieeexplore.ieee.org/document/9298743/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 228070-228087 |
allfields_unstemmed |
10.1109/ACCESS.2020.3045740 doi (DE-627)DOAJ062196014 (DE-599)DOAJe080e81047af44f38a1d114cbb900b51 DE-627 ger DE-627 rakwb eng TK1-9971 Ran Jing verfasserin aut Land Cover Change Detection With VHR Satellite Imagery Based on Multi-Scale SLIC-CNN and SCAE Features 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Change detection with very high resolution (VHR) satellite images is of great application values when evaluating and monitoring land use changes. However, intrinsic complexity of satellite images will introduce more difficulties to change detection tasks. In this study, a new change detection method is proposed by combining multi-scale simple linear iterative clustering-convolutional neural network (SLIC-CNN) with stacked convolutional auto-encoder (SCAE) features to improve change detection capabilities with VHR satellite images. First, the multi-scale SLIC-based image segmentation is performed on multi-temporal images to generate segment objects while keeping their edge information as much as possible. Second, the convolutional layers in a CNN architecture are used to generate change map, then, an SCAE feature-based classification procedure is performed to generate “from-to” change information. Finally, a Bayesian information criterion is used to optimize the results of change detection. In this study, the experiments carried out reveal that the multi-scale SLIC image segmentation algorithm affects the integrity of change regions; CNN features have an effect on the consistency of change regions; and SCAE features influence the performance of support vector machine (SVM) classifiers. And, features extracted from the architectures enhance the ability of information extraction from ground objects. Comparison results also show the superiority to other change detection methods. Change detection image segmentation multi-scale simple linear iterative clustering-convolutional neural network (SLIC-CNN) stacked convolutional auto-encoder (SCAE) VHR satellite imagery Electrical engineering. Electronics. Nuclear engineering Zhaoning Gong verfasserin aut Hongliang Guan verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 228070-228087 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:228070-228087 https://doi.org/10.1109/ACCESS.2020.3045740 kostenfrei https://doaj.org/article/e080e81047af44f38a1d114cbb900b51 kostenfrei https://ieeexplore.ieee.org/document/9298743/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 228070-228087 |
allfieldsGer |
10.1109/ACCESS.2020.3045740 doi (DE-627)DOAJ062196014 (DE-599)DOAJe080e81047af44f38a1d114cbb900b51 DE-627 ger DE-627 rakwb eng TK1-9971 Ran Jing verfasserin aut Land Cover Change Detection With VHR Satellite Imagery Based on Multi-Scale SLIC-CNN and SCAE Features 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Change detection with very high resolution (VHR) satellite images is of great application values when evaluating and monitoring land use changes. However, intrinsic complexity of satellite images will introduce more difficulties to change detection tasks. In this study, a new change detection method is proposed by combining multi-scale simple linear iterative clustering-convolutional neural network (SLIC-CNN) with stacked convolutional auto-encoder (SCAE) features to improve change detection capabilities with VHR satellite images. First, the multi-scale SLIC-based image segmentation is performed on multi-temporal images to generate segment objects while keeping their edge information as much as possible. Second, the convolutional layers in a CNN architecture are used to generate change map, then, an SCAE feature-based classification procedure is performed to generate “from-to” change information. Finally, a Bayesian information criterion is used to optimize the results of change detection. In this study, the experiments carried out reveal that the multi-scale SLIC image segmentation algorithm affects the integrity of change regions; CNN features have an effect on the consistency of change regions; and SCAE features influence the performance of support vector machine (SVM) classifiers. And, features extracted from the architectures enhance the ability of information extraction from ground objects. Comparison results also show the superiority to other change detection methods. Change detection image segmentation multi-scale simple linear iterative clustering-convolutional neural network (SLIC-CNN) stacked convolutional auto-encoder (SCAE) VHR satellite imagery Electrical engineering. Electronics. Nuclear engineering Zhaoning Gong verfasserin aut Hongliang Guan verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 228070-228087 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:228070-228087 https://doi.org/10.1109/ACCESS.2020.3045740 kostenfrei https://doaj.org/article/e080e81047af44f38a1d114cbb900b51 kostenfrei https://ieeexplore.ieee.org/document/9298743/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 228070-228087 |
allfieldsSound |
10.1109/ACCESS.2020.3045740 doi (DE-627)DOAJ062196014 (DE-599)DOAJe080e81047af44f38a1d114cbb900b51 DE-627 ger DE-627 rakwb eng TK1-9971 Ran Jing verfasserin aut Land Cover Change Detection With VHR Satellite Imagery Based on Multi-Scale SLIC-CNN and SCAE Features 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Change detection with very high resolution (VHR) satellite images is of great application values when evaluating and monitoring land use changes. However, intrinsic complexity of satellite images will introduce more difficulties to change detection tasks. In this study, a new change detection method is proposed by combining multi-scale simple linear iterative clustering-convolutional neural network (SLIC-CNN) with stacked convolutional auto-encoder (SCAE) features to improve change detection capabilities with VHR satellite images. First, the multi-scale SLIC-based image segmentation is performed on multi-temporal images to generate segment objects while keeping their edge information as much as possible. Second, the convolutional layers in a CNN architecture are used to generate change map, then, an SCAE feature-based classification procedure is performed to generate “from-to” change information. Finally, a Bayesian information criterion is used to optimize the results of change detection. In this study, the experiments carried out reveal that the multi-scale SLIC image segmentation algorithm affects the integrity of change regions; CNN features have an effect on the consistency of change regions; and SCAE features influence the performance of support vector machine (SVM) classifiers. And, features extracted from the architectures enhance the ability of information extraction from ground objects. Comparison results also show the superiority to other change detection methods. Change detection image segmentation multi-scale simple linear iterative clustering-convolutional neural network (SLIC-CNN) stacked convolutional auto-encoder (SCAE) VHR satellite imagery Electrical engineering. Electronics. Nuclear engineering Zhaoning Gong verfasserin aut Hongliang Guan verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 228070-228087 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:228070-228087 https://doi.org/10.1109/ACCESS.2020.3045740 kostenfrei https://doaj.org/article/e080e81047af44f38a1d114cbb900b51 kostenfrei https://ieeexplore.ieee.org/document/9298743/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 228070-228087 |
language |
English |
source |
In IEEE Access 8(2020), Seite 228070-228087 volume:8 year:2020 pages:228070-228087 |
sourceStr |
In IEEE Access 8(2020), Seite 228070-228087 volume:8 year:2020 pages:228070-228087 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Change detection image segmentation multi-scale simple linear iterative clustering-convolutional neural network (SLIC-CNN) stacked convolutional auto-encoder (SCAE) VHR satellite imagery Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Ran Jing @@aut@@ Zhaoning Gong @@aut@@ Hongliang Guan @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ062196014 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ062196014</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503062629.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2020.3045740</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ062196014</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe080e81047af44f38a1d114cbb900b51</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ran Jing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Land Cover Change Detection With VHR Satellite Imagery Based on Multi-Scale SLIC-CNN and SCAE Features</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Change detection with very high resolution (VHR) satellite images is of great application values when evaluating and monitoring land use changes. However, intrinsic complexity of satellite images will introduce more difficulties to change detection tasks. In this study, a new change detection method is proposed by combining multi-scale simple linear iterative clustering-convolutional neural network (SLIC-CNN) with stacked convolutional auto-encoder (SCAE) features to improve change detection capabilities with VHR satellite images. First, the multi-scale SLIC-based image segmentation is performed on multi-temporal images to generate segment objects while keeping their edge information as much as possible. Second, the convolutional layers in a CNN architecture are used to generate change map, then, an SCAE feature-based classification procedure is performed to generate “from-to” change information. Finally, a Bayesian information criterion is used to optimize the results of change detection. In this study, the experiments carried out reveal that the multi-scale SLIC image segmentation algorithm affects the integrity of change regions; CNN features have an effect on the consistency of change regions; and SCAE features influence the performance of support vector machine (SVM) classifiers. And, features extracted from the architectures enhance the ability of information extraction from ground objects. Comparison results also show the superiority to other change detection methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Change detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">image segmentation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multi-scale simple linear iterative clustering-convolutional neural network (SLIC-CNN)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stacked convolutional auto-encoder (SCAE)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">VHR satellite imagery</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhaoning Gong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hongliang Guan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">8(2020), Seite 228070-228087</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:228070-228087</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2020.3045740</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e080e81047af44f38a1d114cbb900b51</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9298743/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="h">228070-228087</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Ran Jing |
spellingShingle |
Ran Jing misc TK1-9971 misc Change detection misc image segmentation misc multi-scale simple linear iterative clustering-convolutional neural network (SLIC-CNN) misc stacked convolutional auto-encoder (SCAE) misc VHR satellite imagery misc Electrical engineering. Electronics. Nuclear engineering Land Cover Change Detection With VHR Satellite Imagery Based on Multi-Scale SLIC-CNN and SCAE Features |
authorStr |
Ran Jing |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 Land Cover Change Detection With VHR Satellite Imagery Based on Multi-Scale SLIC-CNN and SCAE Features Change detection image segmentation multi-scale simple linear iterative clustering-convolutional neural network (SLIC-CNN) stacked convolutional auto-encoder (SCAE) VHR satellite imagery |
topic |
misc TK1-9971 misc Change detection misc image segmentation misc multi-scale simple linear iterative clustering-convolutional neural network (SLIC-CNN) misc stacked convolutional auto-encoder (SCAE) misc VHR satellite imagery misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Change detection misc image segmentation misc multi-scale simple linear iterative clustering-convolutional neural network (SLIC-CNN) misc stacked convolutional auto-encoder (SCAE) misc VHR satellite imagery misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Change detection misc image segmentation misc multi-scale simple linear iterative clustering-convolutional neural network (SLIC-CNN) misc stacked convolutional auto-encoder (SCAE) misc VHR satellite imagery misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
Land Cover Change Detection With VHR Satellite Imagery Based on Multi-Scale SLIC-CNN and SCAE Features |
ctrlnum |
(DE-627)DOAJ062196014 (DE-599)DOAJe080e81047af44f38a1d114cbb900b51 |
title_full |
Land Cover Change Detection With VHR Satellite Imagery Based on Multi-Scale SLIC-CNN and SCAE Features |
author_sort |
Ran Jing |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
228070 |
author_browse |
Ran Jing Zhaoning Gong Hongliang Guan |
container_volume |
8 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Ran Jing |
doi_str_mv |
10.1109/ACCESS.2020.3045740 |
author2-role |
verfasserin |
title_sort |
land cover change detection with vhr satellite imagery based on multi-scale slic-cnn and scae features |
callnumber |
TK1-9971 |
title_auth |
Land Cover Change Detection With VHR Satellite Imagery Based on Multi-Scale SLIC-CNN and SCAE Features |
abstract |
Change detection with very high resolution (VHR) satellite images is of great application values when evaluating and monitoring land use changes. However, intrinsic complexity of satellite images will introduce more difficulties to change detection tasks. In this study, a new change detection method is proposed by combining multi-scale simple linear iterative clustering-convolutional neural network (SLIC-CNN) with stacked convolutional auto-encoder (SCAE) features to improve change detection capabilities with VHR satellite images. First, the multi-scale SLIC-based image segmentation is performed on multi-temporal images to generate segment objects while keeping their edge information as much as possible. Second, the convolutional layers in a CNN architecture are used to generate change map, then, an SCAE feature-based classification procedure is performed to generate “from-to” change information. Finally, a Bayesian information criterion is used to optimize the results of change detection. In this study, the experiments carried out reveal that the multi-scale SLIC image segmentation algorithm affects the integrity of change regions; CNN features have an effect on the consistency of change regions; and SCAE features influence the performance of support vector machine (SVM) classifiers. And, features extracted from the architectures enhance the ability of information extraction from ground objects. Comparison results also show the superiority to other change detection methods. |
abstractGer |
Change detection with very high resolution (VHR) satellite images is of great application values when evaluating and monitoring land use changes. However, intrinsic complexity of satellite images will introduce more difficulties to change detection tasks. In this study, a new change detection method is proposed by combining multi-scale simple linear iterative clustering-convolutional neural network (SLIC-CNN) with stacked convolutional auto-encoder (SCAE) features to improve change detection capabilities with VHR satellite images. First, the multi-scale SLIC-based image segmentation is performed on multi-temporal images to generate segment objects while keeping their edge information as much as possible. Second, the convolutional layers in a CNN architecture are used to generate change map, then, an SCAE feature-based classification procedure is performed to generate “from-to” change information. Finally, a Bayesian information criterion is used to optimize the results of change detection. In this study, the experiments carried out reveal that the multi-scale SLIC image segmentation algorithm affects the integrity of change regions; CNN features have an effect on the consistency of change regions; and SCAE features influence the performance of support vector machine (SVM) classifiers. And, features extracted from the architectures enhance the ability of information extraction from ground objects. Comparison results also show the superiority to other change detection methods. |
abstract_unstemmed |
Change detection with very high resolution (VHR) satellite images is of great application values when evaluating and monitoring land use changes. However, intrinsic complexity of satellite images will introduce more difficulties to change detection tasks. In this study, a new change detection method is proposed by combining multi-scale simple linear iterative clustering-convolutional neural network (SLIC-CNN) with stacked convolutional auto-encoder (SCAE) features to improve change detection capabilities with VHR satellite images. First, the multi-scale SLIC-based image segmentation is performed on multi-temporal images to generate segment objects while keeping their edge information as much as possible. Second, the convolutional layers in a CNN architecture are used to generate change map, then, an SCAE feature-based classification procedure is performed to generate “from-to” change information. Finally, a Bayesian information criterion is used to optimize the results of change detection. In this study, the experiments carried out reveal that the multi-scale SLIC image segmentation algorithm affects the integrity of change regions; CNN features have an effect on the consistency of change regions; and SCAE features influence the performance of support vector machine (SVM) classifiers. And, features extracted from the architectures enhance the ability of information extraction from ground objects. Comparison results also show the superiority to other change detection methods. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Land Cover Change Detection With VHR Satellite Imagery Based on Multi-Scale SLIC-CNN and SCAE Features |
url |
https://doi.org/10.1109/ACCESS.2020.3045740 https://doaj.org/article/e080e81047af44f38a1d114cbb900b51 https://ieeexplore.ieee.org/document/9298743/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Zhaoning Gong Hongliang Guan |
author2Str |
Zhaoning Gong Hongliang Guan |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2020.3045740 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-04T00:40:36.515Z |
_version_ |
1803606961964449792 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ062196014</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503062629.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2020.3045740</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ062196014</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe080e81047af44f38a1d114cbb900b51</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ran Jing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Land Cover Change Detection With VHR Satellite Imagery Based on Multi-Scale SLIC-CNN and SCAE Features</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Change detection with very high resolution (VHR) satellite images is of great application values when evaluating and monitoring land use changes. However, intrinsic complexity of satellite images will introduce more difficulties to change detection tasks. In this study, a new change detection method is proposed by combining multi-scale simple linear iterative clustering-convolutional neural network (SLIC-CNN) with stacked convolutional auto-encoder (SCAE) features to improve change detection capabilities with VHR satellite images. First, the multi-scale SLIC-based image segmentation is performed on multi-temporal images to generate segment objects while keeping their edge information as much as possible. Second, the convolutional layers in a CNN architecture are used to generate change map, then, an SCAE feature-based classification procedure is performed to generate “from-to” change information. Finally, a Bayesian information criterion is used to optimize the results of change detection. In this study, the experiments carried out reveal that the multi-scale SLIC image segmentation algorithm affects the integrity of change regions; CNN features have an effect on the consistency of change regions; and SCAE features influence the performance of support vector machine (SVM) classifiers. And, features extracted from the architectures enhance the ability of information extraction from ground objects. Comparison results also show the superiority to other change detection methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Change detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">image segmentation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multi-scale simple linear iterative clustering-convolutional neural network (SLIC-CNN)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stacked convolutional auto-encoder (SCAE)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">VHR satellite imagery</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhaoning Gong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hongliang Guan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">8(2020), Seite 228070-228087</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:228070-228087</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2020.3045740</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e080e81047af44f38a1d114cbb900b51</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9298743/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="h">228070-228087</subfield></datafield></record></collection>
|
score |
7.402774 |