Numerical Simulation of Bottom-Blowing Stirring in Different Smelting Stages of Electric Arc Furnace Steelmaking
Electric arc furnace (EAF) steel bottom-blowing can effectively improve the temperature and composition uniformity of the molten pool during smelting process. To explore the effect of molten-steel characteristics on bottom-blowing at various stages of smelting, we divided the smelting process of the...
Ausführliche Beschreibung
Autor*in: |
Hang Hu [verfasserIn] Lingzhi Yang [verfasserIn] Yufeng Guo [verfasserIn] Feng Chen [verfasserIn] Shuai Wang [verfasserIn] Fuqiang Zheng [verfasserIn] Bo Li [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Metals - MDPI AG, 2012, 11(2021), 5, p 799 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2021 ; number:5, p 799 |
Links: |
---|
DOI / URN: |
10.3390/met11050799 |
---|
Katalog-ID: |
DOAJ062297295 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ062297295 | ||
003 | DE-627 | ||
005 | 20240412181305.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/met11050799 |2 doi | |
035 | |a (DE-627)DOAJ062297295 | ||
035 | |a (DE-599)DOAJ8f4297f5def9457d966007bbd56163f1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TN1-997 | |
100 | 0 | |a Hang Hu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Numerical Simulation of Bottom-Blowing Stirring in Different Smelting Stages of Electric Arc Furnace Steelmaking |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Electric arc furnace (EAF) steel bottom-blowing can effectively improve the temperature and composition uniformity of the molten pool during smelting process. To explore the effect of molten-steel characteristics on bottom-blowing at various stages of smelting, we divided the smelting process of the EAF into four stages: the melting stage, the early decarburization stage, the intermediate smelting stage, and the ending smelting stage. The numerical simulation software ANSYS Fluent 18.2 was used to simulate the velocity field of molten steel under the condition of bottom-blowing stirring in different stages in EAF steelmaking process. The properties of bottom-blowing and the kinetic conditions of the steel-slag at this interface were investigated. Our results showed that at a bottom-blowing gas flow rate of 100 L/min, the average flow rates of the four stages were v1 = 0.0081 m/s, v2 = 0.0069 m/s, v3 = 0.0063 m/s, and v4 = 0.0053 m/s. The physical model verification confirmed the results, that is, the viscosity of molten steel decreased as the smelting progressed, and the flow velocity of the molten steel caused by the agitation of bottom-blowing also decreased, the effect of bottom-blowing decreased. Based on these results, a theoretical basis was provided for the development of the bottom-blowing process. | ||
650 | 4 | |a electric arc furnace steelmaking | |
650 | 4 | |a bottom-stirring | |
650 | 4 | |a different smelting time | |
650 | 4 | |a molten steel flow | |
650 | 4 | |a numerical simulation | |
653 | 0 | |a Mining engineering. Metallurgy | |
700 | 0 | |a Lingzhi Yang |e verfasserin |4 aut | |
700 | 0 | |a Yufeng Guo |e verfasserin |4 aut | |
700 | 0 | |a Feng Chen |e verfasserin |4 aut | |
700 | 0 | |a Shuai Wang |e verfasserin |4 aut | |
700 | 0 | |a Fuqiang Zheng |e verfasserin |4 aut | |
700 | 0 | |a Bo Li |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Metals |d MDPI AG, 2012 |g 11(2021), 5, p 799 |w (DE-627)718627172 |w (DE-600)2662252-X |x 20754701 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2021 |g number:5, p 799 |
856 | 4 | 0 | |u https://doi.org/10.3390/met11050799 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/8f4297f5def9457d966007bbd56163f1 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2075-4701/11/5/799 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2075-4701 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2021 |e 5, p 799 |
author_variant |
h h hh l y ly y g yg f c fc s w sw f z fz b l bl |
---|---|
matchkey_str |
article:20754701:2021----::ueiasmltoobtoboigtrignifrnsetnsaeoee |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
TN |
publishDate |
2021 |
allfields |
10.3390/met11050799 doi (DE-627)DOAJ062297295 (DE-599)DOAJ8f4297f5def9457d966007bbd56163f1 DE-627 ger DE-627 rakwb eng TN1-997 Hang Hu verfasserin aut Numerical Simulation of Bottom-Blowing Stirring in Different Smelting Stages of Electric Arc Furnace Steelmaking 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Electric arc furnace (EAF) steel bottom-blowing can effectively improve the temperature and composition uniformity of the molten pool during smelting process. To explore the effect of molten-steel characteristics on bottom-blowing at various stages of smelting, we divided the smelting process of the EAF into four stages: the melting stage, the early decarburization stage, the intermediate smelting stage, and the ending smelting stage. The numerical simulation software ANSYS Fluent 18.2 was used to simulate the velocity field of molten steel under the condition of bottom-blowing stirring in different stages in EAF steelmaking process. The properties of bottom-blowing and the kinetic conditions of the steel-slag at this interface were investigated. Our results showed that at a bottom-blowing gas flow rate of 100 L/min, the average flow rates of the four stages were v1 = 0.0081 m/s, v2 = 0.0069 m/s, v3 = 0.0063 m/s, and v4 = 0.0053 m/s. The physical model verification confirmed the results, that is, the viscosity of molten steel decreased as the smelting progressed, and the flow velocity of the molten steel caused by the agitation of bottom-blowing also decreased, the effect of bottom-blowing decreased. Based on these results, a theoretical basis was provided for the development of the bottom-blowing process. electric arc furnace steelmaking bottom-stirring different smelting time molten steel flow numerical simulation Mining engineering. Metallurgy Lingzhi Yang verfasserin aut Yufeng Guo verfasserin aut Feng Chen verfasserin aut Shuai Wang verfasserin aut Fuqiang Zheng verfasserin aut Bo Li verfasserin aut In Metals MDPI AG, 2012 11(2021), 5, p 799 (DE-627)718627172 (DE-600)2662252-X 20754701 nnns volume:11 year:2021 number:5, p 799 https://doi.org/10.3390/met11050799 kostenfrei https://doaj.org/article/8f4297f5def9457d966007bbd56163f1 kostenfrei https://www.mdpi.com/2075-4701/11/5/799 kostenfrei https://doaj.org/toc/2075-4701 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 5, p 799 |
spelling |
10.3390/met11050799 doi (DE-627)DOAJ062297295 (DE-599)DOAJ8f4297f5def9457d966007bbd56163f1 DE-627 ger DE-627 rakwb eng TN1-997 Hang Hu verfasserin aut Numerical Simulation of Bottom-Blowing Stirring in Different Smelting Stages of Electric Arc Furnace Steelmaking 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Electric arc furnace (EAF) steel bottom-blowing can effectively improve the temperature and composition uniformity of the molten pool during smelting process. To explore the effect of molten-steel characteristics on bottom-blowing at various stages of smelting, we divided the smelting process of the EAF into four stages: the melting stage, the early decarburization stage, the intermediate smelting stage, and the ending smelting stage. The numerical simulation software ANSYS Fluent 18.2 was used to simulate the velocity field of molten steel under the condition of bottom-blowing stirring in different stages in EAF steelmaking process. The properties of bottom-blowing and the kinetic conditions of the steel-slag at this interface were investigated. Our results showed that at a bottom-blowing gas flow rate of 100 L/min, the average flow rates of the four stages were v1 = 0.0081 m/s, v2 = 0.0069 m/s, v3 = 0.0063 m/s, and v4 = 0.0053 m/s. The physical model verification confirmed the results, that is, the viscosity of molten steel decreased as the smelting progressed, and the flow velocity of the molten steel caused by the agitation of bottom-blowing also decreased, the effect of bottom-blowing decreased. Based on these results, a theoretical basis was provided for the development of the bottom-blowing process. electric arc furnace steelmaking bottom-stirring different smelting time molten steel flow numerical simulation Mining engineering. Metallurgy Lingzhi Yang verfasserin aut Yufeng Guo verfasserin aut Feng Chen verfasserin aut Shuai Wang verfasserin aut Fuqiang Zheng verfasserin aut Bo Li verfasserin aut In Metals MDPI AG, 2012 11(2021), 5, p 799 (DE-627)718627172 (DE-600)2662252-X 20754701 nnns volume:11 year:2021 number:5, p 799 https://doi.org/10.3390/met11050799 kostenfrei https://doaj.org/article/8f4297f5def9457d966007bbd56163f1 kostenfrei https://www.mdpi.com/2075-4701/11/5/799 kostenfrei https://doaj.org/toc/2075-4701 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 5, p 799 |
allfields_unstemmed |
10.3390/met11050799 doi (DE-627)DOAJ062297295 (DE-599)DOAJ8f4297f5def9457d966007bbd56163f1 DE-627 ger DE-627 rakwb eng TN1-997 Hang Hu verfasserin aut Numerical Simulation of Bottom-Blowing Stirring in Different Smelting Stages of Electric Arc Furnace Steelmaking 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Electric arc furnace (EAF) steel bottom-blowing can effectively improve the temperature and composition uniformity of the molten pool during smelting process. To explore the effect of molten-steel characteristics on bottom-blowing at various stages of smelting, we divided the smelting process of the EAF into four stages: the melting stage, the early decarburization stage, the intermediate smelting stage, and the ending smelting stage. The numerical simulation software ANSYS Fluent 18.2 was used to simulate the velocity field of molten steel under the condition of bottom-blowing stirring in different stages in EAF steelmaking process. The properties of bottom-blowing and the kinetic conditions of the steel-slag at this interface were investigated. Our results showed that at a bottom-blowing gas flow rate of 100 L/min, the average flow rates of the four stages were v1 = 0.0081 m/s, v2 = 0.0069 m/s, v3 = 0.0063 m/s, and v4 = 0.0053 m/s. The physical model verification confirmed the results, that is, the viscosity of molten steel decreased as the smelting progressed, and the flow velocity of the molten steel caused by the agitation of bottom-blowing also decreased, the effect of bottom-blowing decreased. Based on these results, a theoretical basis was provided for the development of the bottom-blowing process. electric arc furnace steelmaking bottom-stirring different smelting time molten steel flow numerical simulation Mining engineering. Metallurgy Lingzhi Yang verfasserin aut Yufeng Guo verfasserin aut Feng Chen verfasserin aut Shuai Wang verfasserin aut Fuqiang Zheng verfasserin aut Bo Li verfasserin aut In Metals MDPI AG, 2012 11(2021), 5, p 799 (DE-627)718627172 (DE-600)2662252-X 20754701 nnns volume:11 year:2021 number:5, p 799 https://doi.org/10.3390/met11050799 kostenfrei https://doaj.org/article/8f4297f5def9457d966007bbd56163f1 kostenfrei https://www.mdpi.com/2075-4701/11/5/799 kostenfrei https://doaj.org/toc/2075-4701 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 5, p 799 |
allfieldsGer |
10.3390/met11050799 doi (DE-627)DOAJ062297295 (DE-599)DOAJ8f4297f5def9457d966007bbd56163f1 DE-627 ger DE-627 rakwb eng TN1-997 Hang Hu verfasserin aut Numerical Simulation of Bottom-Blowing Stirring in Different Smelting Stages of Electric Arc Furnace Steelmaking 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Electric arc furnace (EAF) steel bottom-blowing can effectively improve the temperature and composition uniformity of the molten pool during smelting process. To explore the effect of molten-steel characteristics on bottom-blowing at various stages of smelting, we divided the smelting process of the EAF into four stages: the melting stage, the early decarburization stage, the intermediate smelting stage, and the ending smelting stage. The numerical simulation software ANSYS Fluent 18.2 was used to simulate the velocity field of molten steel under the condition of bottom-blowing stirring in different stages in EAF steelmaking process. The properties of bottom-blowing and the kinetic conditions of the steel-slag at this interface were investigated. Our results showed that at a bottom-blowing gas flow rate of 100 L/min, the average flow rates of the four stages were v1 = 0.0081 m/s, v2 = 0.0069 m/s, v3 = 0.0063 m/s, and v4 = 0.0053 m/s. The physical model verification confirmed the results, that is, the viscosity of molten steel decreased as the smelting progressed, and the flow velocity of the molten steel caused by the agitation of bottom-blowing also decreased, the effect of bottom-blowing decreased. Based on these results, a theoretical basis was provided for the development of the bottom-blowing process. electric arc furnace steelmaking bottom-stirring different smelting time molten steel flow numerical simulation Mining engineering. Metallurgy Lingzhi Yang verfasserin aut Yufeng Guo verfasserin aut Feng Chen verfasserin aut Shuai Wang verfasserin aut Fuqiang Zheng verfasserin aut Bo Li verfasserin aut In Metals MDPI AG, 2012 11(2021), 5, p 799 (DE-627)718627172 (DE-600)2662252-X 20754701 nnns volume:11 year:2021 number:5, p 799 https://doi.org/10.3390/met11050799 kostenfrei https://doaj.org/article/8f4297f5def9457d966007bbd56163f1 kostenfrei https://www.mdpi.com/2075-4701/11/5/799 kostenfrei https://doaj.org/toc/2075-4701 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 5, p 799 |
allfieldsSound |
10.3390/met11050799 doi (DE-627)DOAJ062297295 (DE-599)DOAJ8f4297f5def9457d966007bbd56163f1 DE-627 ger DE-627 rakwb eng TN1-997 Hang Hu verfasserin aut Numerical Simulation of Bottom-Blowing Stirring in Different Smelting Stages of Electric Arc Furnace Steelmaking 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Electric arc furnace (EAF) steel bottom-blowing can effectively improve the temperature and composition uniformity of the molten pool during smelting process. To explore the effect of molten-steel characteristics on bottom-blowing at various stages of smelting, we divided the smelting process of the EAF into four stages: the melting stage, the early decarburization stage, the intermediate smelting stage, and the ending smelting stage. The numerical simulation software ANSYS Fluent 18.2 was used to simulate the velocity field of molten steel under the condition of bottom-blowing stirring in different stages in EAF steelmaking process. The properties of bottom-blowing and the kinetic conditions of the steel-slag at this interface were investigated. Our results showed that at a bottom-blowing gas flow rate of 100 L/min, the average flow rates of the four stages were v1 = 0.0081 m/s, v2 = 0.0069 m/s, v3 = 0.0063 m/s, and v4 = 0.0053 m/s. The physical model verification confirmed the results, that is, the viscosity of molten steel decreased as the smelting progressed, and the flow velocity of the molten steel caused by the agitation of bottom-blowing also decreased, the effect of bottom-blowing decreased. Based on these results, a theoretical basis was provided for the development of the bottom-blowing process. electric arc furnace steelmaking bottom-stirring different smelting time molten steel flow numerical simulation Mining engineering. Metallurgy Lingzhi Yang verfasserin aut Yufeng Guo verfasserin aut Feng Chen verfasserin aut Shuai Wang verfasserin aut Fuqiang Zheng verfasserin aut Bo Li verfasserin aut In Metals MDPI AG, 2012 11(2021), 5, p 799 (DE-627)718627172 (DE-600)2662252-X 20754701 nnns volume:11 year:2021 number:5, p 799 https://doi.org/10.3390/met11050799 kostenfrei https://doaj.org/article/8f4297f5def9457d966007bbd56163f1 kostenfrei https://www.mdpi.com/2075-4701/11/5/799 kostenfrei https://doaj.org/toc/2075-4701 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 5, p 799 |
language |
English |
source |
In Metals 11(2021), 5, p 799 volume:11 year:2021 number:5, p 799 |
sourceStr |
In Metals 11(2021), 5, p 799 volume:11 year:2021 number:5, p 799 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
electric arc furnace steelmaking bottom-stirring different smelting time molten steel flow numerical simulation Mining engineering. Metallurgy |
isfreeaccess_bool |
true |
container_title |
Metals |
authorswithroles_txt_mv |
Hang Hu @@aut@@ Lingzhi Yang @@aut@@ Yufeng Guo @@aut@@ Feng Chen @@aut@@ Shuai Wang @@aut@@ Fuqiang Zheng @@aut@@ Bo Li @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
718627172 |
id |
DOAJ062297295 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ062297295</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412181305.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/met11050799</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ062297295</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8f4297f5def9457d966007bbd56163f1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TN1-997</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hang Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical Simulation of Bottom-Blowing Stirring in Different Smelting Stages of Electric Arc Furnace Steelmaking</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Electric arc furnace (EAF) steel bottom-blowing can effectively improve the temperature and composition uniformity of the molten pool during smelting process. To explore the effect of molten-steel characteristics on bottom-blowing at various stages of smelting, we divided the smelting process of the EAF into four stages: the melting stage, the early decarburization stage, the intermediate smelting stage, and the ending smelting stage. The numerical simulation software ANSYS Fluent 18.2 was used to simulate the velocity field of molten steel under the condition of bottom-blowing stirring in different stages in EAF steelmaking process. The properties of bottom-blowing and the kinetic conditions of the steel-slag at this interface were investigated. Our results showed that at a bottom-blowing gas flow rate of 100 L/min, the average flow rates of the four stages were v1 = 0.0081 m/s, v2 = 0.0069 m/s, v3 = 0.0063 m/s, and v4 = 0.0053 m/s. The physical model verification confirmed the results, that is, the viscosity of molten steel decreased as the smelting progressed, and the flow velocity of the molten steel caused by the agitation of bottom-blowing also decreased, the effect of bottom-blowing decreased. Based on these results, a theoretical basis was provided for the development of the bottom-blowing process.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electric arc furnace steelmaking</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bottom-stirring</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">different smelting time</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">molten steel flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">numerical simulation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mining engineering. Metallurgy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lingzhi Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yufeng Guo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Feng Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shuai Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fuqiang Zheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bo Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Metals</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">11(2021), 5, p 799</subfield><subfield code="w">(DE-627)718627172</subfield><subfield code="w">(DE-600)2662252-X</subfield><subfield code="x">20754701</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:5, p 799</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/met11050799</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8f4297f5def9457d966007bbd56163f1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-4701/11/5/799</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-4701</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2021</subfield><subfield code="e">5, p 799</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Hang Hu |
spellingShingle |
Hang Hu misc TN1-997 misc electric arc furnace steelmaking misc bottom-stirring misc different smelting time misc molten steel flow misc numerical simulation misc Mining engineering. Metallurgy Numerical Simulation of Bottom-Blowing Stirring in Different Smelting Stages of Electric Arc Furnace Steelmaking |
authorStr |
Hang Hu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718627172 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TN1-997 |
illustrated |
Not Illustrated |
issn |
20754701 |
topic_title |
TN1-997 Numerical Simulation of Bottom-Blowing Stirring in Different Smelting Stages of Electric Arc Furnace Steelmaking electric arc furnace steelmaking bottom-stirring different smelting time molten steel flow numerical simulation |
topic |
misc TN1-997 misc electric arc furnace steelmaking misc bottom-stirring misc different smelting time misc molten steel flow misc numerical simulation misc Mining engineering. Metallurgy |
topic_unstemmed |
misc TN1-997 misc electric arc furnace steelmaking misc bottom-stirring misc different smelting time misc molten steel flow misc numerical simulation misc Mining engineering. Metallurgy |
topic_browse |
misc TN1-997 misc electric arc furnace steelmaking misc bottom-stirring misc different smelting time misc molten steel flow misc numerical simulation misc Mining engineering. Metallurgy |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Metals |
hierarchy_parent_id |
718627172 |
hierarchy_top_title |
Metals |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718627172 (DE-600)2662252-X |
title |
Numerical Simulation of Bottom-Blowing Stirring in Different Smelting Stages of Electric Arc Furnace Steelmaking |
ctrlnum |
(DE-627)DOAJ062297295 (DE-599)DOAJ8f4297f5def9457d966007bbd56163f1 |
title_full |
Numerical Simulation of Bottom-Blowing Stirring in Different Smelting Stages of Electric Arc Furnace Steelmaking |
author_sort |
Hang Hu |
journal |
Metals |
journalStr |
Metals |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Hang Hu Lingzhi Yang Yufeng Guo Feng Chen Shuai Wang Fuqiang Zheng Bo Li |
container_volume |
11 |
class |
TN1-997 |
format_se |
Elektronische Aufsätze |
author-letter |
Hang Hu |
doi_str_mv |
10.3390/met11050799 |
author2-role |
verfasserin |
title_sort |
numerical simulation of bottom-blowing stirring in different smelting stages of electric arc furnace steelmaking |
callnumber |
TN1-997 |
title_auth |
Numerical Simulation of Bottom-Blowing Stirring in Different Smelting Stages of Electric Arc Furnace Steelmaking |
abstract |
Electric arc furnace (EAF) steel bottom-blowing can effectively improve the temperature and composition uniformity of the molten pool during smelting process. To explore the effect of molten-steel characteristics on bottom-blowing at various stages of smelting, we divided the smelting process of the EAF into four stages: the melting stage, the early decarburization stage, the intermediate smelting stage, and the ending smelting stage. The numerical simulation software ANSYS Fluent 18.2 was used to simulate the velocity field of molten steel under the condition of bottom-blowing stirring in different stages in EAF steelmaking process. The properties of bottom-blowing and the kinetic conditions of the steel-slag at this interface were investigated. Our results showed that at a bottom-blowing gas flow rate of 100 L/min, the average flow rates of the four stages were v1 = 0.0081 m/s, v2 = 0.0069 m/s, v3 = 0.0063 m/s, and v4 = 0.0053 m/s. The physical model verification confirmed the results, that is, the viscosity of molten steel decreased as the smelting progressed, and the flow velocity of the molten steel caused by the agitation of bottom-blowing also decreased, the effect of bottom-blowing decreased. Based on these results, a theoretical basis was provided for the development of the bottom-blowing process. |
abstractGer |
Electric arc furnace (EAF) steel bottom-blowing can effectively improve the temperature and composition uniformity of the molten pool during smelting process. To explore the effect of molten-steel characteristics on bottom-blowing at various stages of smelting, we divided the smelting process of the EAF into four stages: the melting stage, the early decarburization stage, the intermediate smelting stage, and the ending smelting stage. The numerical simulation software ANSYS Fluent 18.2 was used to simulate the velocity field of molten steel under the condition of bottom-blowing stirring in different stages in EAF steelmaking process. The properties of bottom-blowing and the kinetic conditions of the steel-slag at this interface were investigated. Our results showed that at a bottom-blowing gas flow rate of 100 L/min, the average flow rates of the four stages were v1 = 0.0081 m/s, v2 = 0.0069 m/s, v3 = 0.0063 m/s, and v4 = 0.0053 m/s. The physical model verification confirmed the results, that is, the viscosity of molten steel decreased as the smelting progressed, and the flow velocity of the molten steel caused by the agitation of bottom-blowing also decreased, the effect of bottom-blowing decreased. Based on these results, a theoretical basis was provided for the development of the bottom-blowing process. |
abstract_unstemmed |
Electric arc furnace (EAF) steel bottom-blowing can effectively improve the temperature and composition uniformity of the molten pool during smelting process. To explore the effect of molten-steel characteristics on bottom-blowing at various stages of smelting, we divided the smelting process of the EAF into four stages: the melting stage, the early decarburization stage, the intermediate smelting stage, and the ending smelting stage. The numerical simulation software ANSYS Fluent 18.2 was used to simulate the velocity field of molten steel under the condition of bottom-blowing stirring in different stages in EAF steelmaking process. The properties of bottom-blowing and the kinetic conditions of the steel-slag at this interface were investigated. Our results showed that at a bottom-blowing gas flow rate of 100 L/min, the average flow rates of the four stages were v1 = 0.0081 m/s, v2 = 0.0069 m/s, v3 = 0.0063 m/s, and v4 = 0.0053 m/s. The physical model verification confirmed the results, that is, the viscosity of molten steel decreased as the smelting progressed, and the flow velocity of the molten steel caused by the agitation of bottom-blowing also decreased, the effect of bottom-blowing decreased. Based on these results, a theoretical basis was provided for the development of the bottom-blowing process. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
5, p 799 |
title_short |
Numerical Simulation of Bottom-Blowing Stirring in Different Smelting Stages of Electric Arc Furnace Steelmaking |
url |
https://doi.org/10.3390/met11050799 https://doaj.org/article/8f4297f5def9457d966007bbd56163f1 https://www.mdpi.com/2075-4701/11/5/799 https://doaj.org/toc/2075-4701 |
remote_bool |
true |
author2 |
Lingzhi Yang Yufeng Guo Feng Chen Shuai Wang Fuqiang Zheng Bo Li |
author2Str |
Lingzhi Yang Yufeng Guo Feng Chen Shuai Wang Fuqiang Zheng Bo Li |
ppnlink |
718627172 |
callnumber-subject |
TN - Mining Engineering and Metallurgy |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/met11050799 |
callnumber-a |
TN1-997 |
up_date |
2024-07-04T01:05:20.947Z |
_version_ |
1803608518504218624 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ062297295</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412181305.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/met11050799</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ062297295</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8f4297f5def9457d966007bbd56163f1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TN1-997</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hang Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical Simulation of Bottom-Blowing Stirring in Different Smelting Stages of Electric Arc Furnace Steelmaking</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Electric arc furnace (EAF) steel bottom-blowing can effectively improve the temperature and composition uniformity of the molten pool during smelting process. To explore the effect of molten-steel characteristics on bottom-blowing at various stages of smelting, we divided the smelting process of the EAF into four stages: the melting stage, the early decarburization stage, the intermediate smelting stage, and the ending smelting stage. The numerical simulation software ANSYS Fluent 18.2 was used to simulate the velocity field of molten steel under the condition of bottom-blowing stirring in different stages in EAF steelmaking process. The properties of bottom-blowing and the kinetic conditions of the steel-slag at this interface were investigated. Our results showed that at a bottom-blowing gas flow rate of 100 L/min, the average flow rates of the four stages were v1 = 0.0081 m/s, v2 = 0.0069 m/s, v3 = 0.0063 m/s, and v4 = 0.0053 m/s. The physical model verification confirmed the results, that is, the viscosity of molten steel decreased as the smelting progressed, and the flow velocity of the molten steel caused by the agitation of bottom-blowing also decreased, the effect of bottom-blowing decreased. Based on these results, a theoretical basis was provided for the development of the bottom-blowing process.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electric arc furnace steelmaking</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bottom-stirring</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">different smelting time</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">molten steel flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">numerical simulation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mining engineering. Metallurgy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lingzhi Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yufeng Guo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Feng Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shuai Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fuqiang Zheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bo Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Metals</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">11(2021), 5, p 799</subfield><subfield code="w">(DE-627)718627172</subfield><subfield code="w">(DE-600)2662252-X</subfield><subfield code="x">20754701</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:5, p 799</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/met11050799</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8f4297f5def9457d966007bbd56163f1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-4701/11/5/799</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-4701</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2021</subfield><subfield code="e">5, p 799</subfield></datafield></record></collection>
|
score |
7.4011936 |