Computing multiple ABC index and multiple GA index of some grid graphs
Topological indices are the atomic descriptors that portray the structures of chemical compounds and they help us to anticipate certain physico-compound properties like boiling point, enthalpy of vaporization and steadiness. The atom bond connectivity (ABC) index and geometric arithmetic (GA) index...
Ausführliche Beschreibung
Autor*in: |
Gao Wei [verfasserIn] Siddiqui Muhammad Kamran [verfasserIn] Naeem Muhammad [verfasserIn] Imran Muhammad [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Open Physics - De Gruyter, 2015, 16(2018), 1, Seite 588-598 |
---|---|
Übergeordnetes Werk: |
volume:16 ; year:2018 ; number:1 ; pages:588-598 |
Links: |
---|
DOI / URN: |
10.1515/phys-2018-0077 |
---|
Katalog-ID: |
DOAJ062478508 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ062478508 | ||
003 | DE-627 | ||
005 | 20230309021345.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1515/phys-2018-0077 |2 doi | |
035 | |a (DE-627)DOAJ062478508 | ||
035 | |a (DE-599)DOAJf50da6427c1f4f4daec2cab496c110d2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QC1-999 | |
100 | 0 | |a Gao Wei |e verfasserin |4 aut | |
245 | 1 | 0 | |a Computing multiple ABC index and multiple GA index of some grid graphs |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Topological indices are the atomic descriptors that portray the structures of chemical compounds and they help us to anticipate certain physico-compound properties like boiling point, enthalpy of vaporization and steadiness. The atom bond connectivity (ABC) index and geometric arithmetic (GA) index are topological indices which are defined as ABC(G)=∑uv∈E(G)du+dv−2dudv $ABC(G)=\sum_{uv\in E(G)}\sqrt{\frac{d_u+d_v-2}{d_ud_v}}$ and GA(G)=∑uv∈E(G)2dudvdu+dv $GA(G)=\sum_{uv\in E(G)}\frac{2\sqrt{d_ud_v}}{d_u+d_v}$ , respectively, where du is the degree of the vertex u. The aim of this paper is to introduced the new versions of ABC index and GA index namely multiple atom bond connectivity (ABC) index and multiple geometric arithmetic (GA) index. As an application, we have computed these newly defined indices for the octagonal grid Opq $O_p^q$ , the hexagonal grid H(p, q) and the square grid Gp, q. Also, we compared these results obtained with the ones by other indices like the ABC4 index and the GA5 index. | ||
650 | 4 | |a atom-bond-connectivity index | |
650 | 4 | |a geometric-arithmetic index | |
650 | 4 | |a octagonal grid | |
650 | 4 | |a hexagonal grid | |
650 | 4 | |a square grid | |
650 | 4 | |a 02.10.ox | |
653 | 0 | |a Physics | |
700 | 0 | |a Siddiqui Muhammad Kamran |e verfasserin |4 aut | |
700 | 0 | |a Naeem Muhammad |e verfasserin |4 aut | |
700 | 0 | |a Imran Muhammad |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Open Physics |d De Gruyter, 2015 |g 16(2018), 1, Seite 588-598 |w (DE-627)820684708 |w (DE-600)2814058-8 |x 23915471 |7 nnns |
773 | 1 | 8 | |g volume:16 |g year:2018 |g number:1 |g pages:588-598 |
856 | 4 | 0 | |u https://doi.org/10.1515/phys-2018-0077 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/f50da6427c1f4f4daec2cab496c110d2 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1515/phys-2018-0077 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2391-5471 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 16 |j 2018 |e 1 |h 588-598 |
author_variant |
g w gw s m k smk n m nm i m im |
---|---|
matchkey_str |
article:23915471:2018----::optnmlilacneadutpeane |
hierarchy_sort_str |
2018 |
callnumber-subject-code |
QC |
publishDate |
2018 |
allfields |
10.1515/phys-2018-0077 doi (DE-627)DOAJ062478508 (DE-599)DOAJf50da6427c1f4f4daec2cab496c110d2 DE-627 ger DE-627 rakwb eng QC1-999 Gao Wei verfasserin aut Computing multiple ABC index and multiple GA index of some grid graphs 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Topological indices are the atomic descriptors that portray the structures of chemical compounds and they help us to anticipate certain physico-compound properties like boiling point, enthalpy of vaporization and steadiness. The atom bond connectivity (ABC) index and geometric arithmetic (GA) index are topological indices which are defined as ABC(G)=∑uv∈E(G)du+dv−2dudv $ABC(G)=\sum_{uv\in E(G)}\sqrt{\frac{d_u+d_v-2}{d_ud_v}}$ and GA(G)=∑uv∈E(G)2dudvdu+dv $GA(G)=\sum_{uv\in E(G)}\frac{2\sqrt{d_ud_v}}{d_u+d_v}$ , respectively, where du is the degree of the vertex u. The aim of this paper is to introduced the new versions of ABC index and GA index namely multiple atom bond connectivity (ABC) index and multiple geometric arithmetic (GA) index. As an application, we have computed these newly defined indices for the octagonal grid Opq $O_p^q$ , the hexagonal grid H(p, q) and the square grid Gp, q. Also, we compared these results obtained with the ones by other indices like the ABC4 index and the GA5 index. atom-bond-connectivity index geometric-arithmetic index octagonal grid hexagonal grid square grid 02.10.ox Physics Siddiqui Muhammad Kamran verfasserin aut Naeem Muhammad verfasserin aut Imran Muhammad verfasserin aut In Open Physics De Gruyter, 2015 16(2018), 1, Seite 588-598 (DE-627)820684708 (DE-600)2814058-8 23915471 nnns volume:16 year:2018 number:1 pages:588-598 https://doi.org/10.1515/phys-2018-0077 kostenfrei https://doaj.org/article/f50da6427c1f4f4daec2cab496c110d2 kostenfrei https://doi.org/10.1515/phys-2018-0077 kostenfrei https://doaj.org/toc/2391-5471 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2018 1 588-598 |
spelling |
10.1515/phys-2018-0077 doi (DE-627)DOAJ062478508 (DE-599)DOAJf50da6427c1f4f4daec2cab496c110d2 DE-627 ger DE-627 rakwb eng QC1-999 Gao Wei verfasserin aut Computing multiple ABC index and multiple GA index of some grid graphs 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Topological indices are the atomic descriptors that portray the structures of chemical compounds and they help us to anticipate certain physico-compound properties like boiling point, enthalpy of vaporization and steadiness. The atom bond connectivity (ABC) index and geometric arithmetic (GA) index are topological indices which are defined as ABC(G)=∑uv∈E(G)du+dv−2dudv $ABC(G)=\sum_{uv\in E(G)}\sqrt{\frac{d_u+d_v-2}{d_ud_v}}$ and GA(G)=∑uv∈E(G)2dudvdu+dv $GA(G)=\sum_{uv\in E(G)}\frac{2\sqrt{d_ud_v}}{d_u+d_v}$ , respectively, where du is the degree of the vertex u. The aim of this paper is to introduced the new versions of ABC index and GA index namely multiple atom bond connectivity (ABC) index and multiple geometric arithmetic (GA) index. As an application, we have computed these newly defined indices for the octagonal grid Opq $O_p^q$ , the hexagonal grid H(p, q) and the square grid Gp, q. Also, we compared these results obtained with the ones by other indices like the ABC4 index and the GA5 index. atom-bond-connectivity index geometric-arithmetic index octagonal grid hexagonal grid square grid 02.10.ox Physics Siddiqui Muhammad Kamran verfasserin aut Naeem Muhammad verfasserin aut Imran Muhammad verfasserin aut In Open Physics De Gruyter, 2015 16(2018), 1, Seite 588-598 (DE-627)820684708 (DE-600)2814058-8 23915471 nnns volume:16 year:2018 number:1 pages:588-598 https://doi.org/10.1515/phys-2018-0077 kostenfrei https://doaj.org/article/f50da6427c1f4f4daec2cab496c110d2 kostenfrei https://doi.org/10.1515/phys-2018-0077 kostenfrei https://doaj.org/toc/2391-5471 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2018 1 588-598 |
allfields_unstemmed |
10.1515/phys-2018-0077 doi (DE-627)DOAJ062478508 (DE-599)DOAJf50da6427c1f4f4daec2cab496c110d2 DE-627 ger DE-627 rakwb eng QC1-999 Gao Wei verfasserin aut Computing multiple ABC index and multiple GA index of some grid graphs 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Topological indices are the atomic descriptors that portray the structures of chemical compounds and they help us to anticipate certain physico-compound properties like boiling point, enthalpy of vaporization and steadiness. The atom bond connectivity (ABC) index and geometric arithmetic (GA) index are topological indices which are defined as ABC(G)=∑uv∈E(G)du+dv−2dudv $ABC(G)=\sum_{uv\in E(G)}\sqrt{\frac{d_u+d_v-2}{d_ud_v}}$ and GA(G)=∑uv∈E(G)2dudvdu+dv $GA(G)=\sum_{uv\in E(G)}\frac{2\sqrt{d_ud_v}}{d_u+d_v}$ , respectively, where du is the degree of the vertex u. The aim of this paper is to introduced the new versions of ABC index and GA index namely multiple atom bond connectivity (ABC) index and multiple geometric arithmetic (GA) index. As an application, we have computed these newly defined indices for the octagonal grid Opq $O_p^q$ , the hexagonal grid H(p, q) and the square grid Gp, q. Also, we compared these results obtained with the ones by other indices like the ABC4 index and the GA5 index. atom-bond-connectivity index geometric-arithmetic index octagonal grid hexagonal grid square grid 02.10.ox Physics Siddiqui Muhammad Kamran verfasserin aut Naeem Muhammad verfasserin aut Imran Muhammad verfasserin aut In Open Physics De Gruyter, 2015 16(2018), 1, Seite 588-598 (DE-627)820684708 (DE-600)2814058-8 23915471 nnns volume:16 year:2018 number:1 pages:588-598 https://doi.org/10.1515/phys-2018-0077 kostenfrei https://doaj.org/article/f50da6427c1f4f4daec2cab496c110d2 kostenfrei https://doi.org/10.1515/phys-2018-0077 kostenfrei https://doaj.org/toc/2391-5471 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2018 1 588-598 |
allfieldsGer |
10.1515/phys-2018-0077 doi (DE-627)DOAJ062478508 (DE-599)DOAJf50da6427c1f4f4daec2cab496c110d2 DE-627 ger DE-627 rakwb eng QC1-999 Gao Wei verfasserin aut Computing multiple ABC index and multiple GA index of some grid graphs 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Topological indices are the atomic descriptors that portray the structures of chemical compounds and they help us to anticipate certain physico-compound properties like boiling point, enthalpy of vaporization and steadiness. The atom bond connectivity (ABC) index and geometric arithmetic (GA) index are topological indices which are defined as ABC(G)=∑uv∈E(G)du+dv−2dudv $ABC(G)=\sum_{uv\in E(G)}\sqrt{\frac{d_u+d_v-2}{d_ud_v}}$ and GA(G)=∑uv∈E(G)2dudvdu+dv $GA(G)=\sum_{uv\in E(G)}\frac{2\sqrt{d_ud_v}}{d_u+d_v}$ , respectively, where du is the degree of the vertex u. The aim of this paper is to introduced the new versions of ABC index and GA index namely multiple atom bond connectivity (ABC) index and multiple geometric arithmetic (GA) index. As an application, we have computed these newly defined indices for the octagonal grid Opq $O_p^q$ , the hexagonal grid H(p, q) and the square grid Gp, q. Also, we compared these results obtained with the ones by other indices like the ABC4 index and the GA5 index. atom-bond-connectivity index geometric-arithmetic index octagonal grid hexagonal grid square grid 02.10.ox Physics Siddiqui Muhammad Kamran verfasserin aut Naeem Muhammad verfasserin aut Imran Muhammad verfasserin aut In Open Physics De Gruyter, 2015 16(2018), 1, Seite 588-598 (DE-627)820684708 (DE-600)2814058-8 23915471 nnns volume:16 year:2018 number:1 pages:588-598 https://doi.org/10.1515/phys-2018-0077 kostenfrei https://doaj.org/article/f50da6427c1f4f4daec2cab496c110d2 kostenfrei https://doi.org/10.1515/phys-2018-0077 kostenfrei https://doaj.org/toc/2391-5471 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2018 1 588-598 |
allfieldsSound |
10.1515/phys-2018-0077 doi (DE-627)DOAJ062478508 (DE-599)DOAJf50da6427c1f4f4daec2cab496c110d2 DE-627 ger DE-627 rakwb eng QC1-999 Gao Wei verfasserin aut Computing multiple ABC index and multiple GA index of some grid graphs 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Topological indices are the atomic descriptors that portray the structures of chemical compounds and they help us to anticipate certain physico-compound properties like boiling point, enthalpy of vaporization and steadiness. The atom bond connectivity (ABC) index and geometric arithmetic (GA) index are topological indices which are defined as ABC(G)=∑uv∈E(G)du+dv−2dudv $ABC(G)=\sum_{uv\in E(G)}\sqrt{\frac{d_u+d_v-2}{d_ud_v}}$ and GA(G)=∑uv∈E(G)2dudvdu+dv $GA(G)=\sum_{uv\in E(G)}\frac{2\sqrt{d_ud_v}}{d_u+d_v}$ , respectively, where du is the degree of the vertex u. The aim of this paper is to introduced the new versions of ABC index and GA index namely multiple atom bond connectivity (ABC) index and multiple geometric arithmetic (GA) index. As an application, we have computed these newly defined indices for the octagonal grid Opq $O_p^q$ , the hexagonal grid H(p, q) and the square grid Gp, q. Also, we compared these results obtained with the ones by other indices like the ABC4 index and the GA5 index. atom-bond-connectivity index geometric-arithmetic index octagonal grid hexagonal grid square grid 02.10.ox Physics Siddiqui Muhammad Kamran verfasserin aut Naeem Muhammad verfasserin aut Imran Muhammad verfasserin aut In Open Physics De Gruyter, 2015 16(2018), 1, Seite 588-598 (DE-627)820684708 (DE-600)2814058-8 23915471 nnns volume:16 year:2018 number:1 pages:588-598 https://doi.org/10.1515/phys-2018-0077 kostenfrei https://doaj.org/article/f50da6427c1f4f4daec2cab496c110d2 kostenfrei https://doi.org/10.1515/phys-2018-0077 kostenfrei https://doaj.org/toc/2391-5471 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2018 1 588-598 |
language |
English |
source |
In Open Physics 16(2018), 1, Seite 588-598 volume:16 year:2018 number:1 pages:588-598 |
sourceStr |
In Open Physics 16(2018), 1, Seite 588-598 volume:16 year:2018 number:1 pages:588-598 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
atom-bond-connectivity index geometric-arithmetic index octagonal grid hexagonal grid square grid 02.10.ox Physics |
isfreeaccess_bool |
true |
container_title |
Open Physics |
authorswithroles_txt_mv |
Gao Wei @@aut@@ Siddiqui Muhammad Kamran @@aut@@ Naeem Muhammad @@aut@@ Imran Muhammad @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
820684708 |
id |
DOAJ062478508 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ062478508</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309021345.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/phys-2018-0077</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ062478508</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf50da6427c1f4f4daec2cab496c110d2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Gao Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computing multiple ABC index and multiple GA index of some grid graphs</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Topological indices are the atomic descriptors that portray the structures of chemical compounds and they help us to anticipate certain physico-compound properties like boiling point, enthalpy of vaporization and steadiness. The atom bond connectivity (ABC) index and geometric arithmetic (GA) index are topological indices which are defined as ABC(G)=∑uv∈E(G)du+dv−2dudv $ABC(G)=\sum_{uv\in E(G)}\sqrt{\frac{d_u+d_v-2}{d_ud_v}}$ and GA(G)=∑uv∈E(G)2dudvdu+dv $GA(G)=\sum_{uv\in E(G)}\frac{2\sqrt{d_ud_v}}{d_u+d_v}$ , respectively, where du is the degree of the vertex u. The aim of this paper is to introduced the new versions of ABC index and GA index namely multiple atom bond connectivity (ABC) index and multiple geometric arithmetic (GA) index. As an application, we have computed these newly defined indices for the octagonal grid Opq $O_p^q$ , the hexagonal grid H(p, q) and the square grid Gp, q. Also, we compared these results obtained with the ones by other indices like the ABC4 index and the GA5 index.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">atom-bond-connectivity index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">geometric-arithmetic index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">octagonal grid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hexagonal grid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">square grid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">02.10.ox</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Siddiqui Muhammad Kamran</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Naeem Muhammad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Imran Muhammad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Open Physics</subfield><subfield code="d">De Gruyter, 2015</subfield><subfield code="g">16(2018), 1, Seite 588-598</subfield><subfield code="w">(DE-627)820684708</subfield><subfield code="w">(DE-600)2814058-8</subfield><subfield code="x">23915471</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:588-598</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/phys-2018-0077</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f50da6427c1f4f4daec2cab496c110d2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/phys-2018-0077</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2391-5471</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2018</subfield><subfield code="e">1</subfield><subfield code="h">588-598</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Gao Wei |
spellingShingle |
Gao Wei misc QC1-999 misc atom-bond-connectivity index misc geometric-arithmetic index misc octagonal grid misc hexagonal grid misc square grid misc 02.10.ox misc Physics Computing multiple ABC index and multiple GA index of some grid graphs |
authorStr |
Gao Wei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)820684708 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QC1-999 |
illustrated |
Not Illustrated |
issn |
23915471 |
topic_title |
QC1-999 Computing multiple ABC index and multiple GA index of some grid graphs atom-bond-connectivity index geometric-arithmetic index octagonal grid hexagonal grid square grid 02.10.ox |
topic |
misc QC1-999 misc atom-bond-connectivity index misc geometric-arithmetic index misc octagonal grid misc hexagonal grid misc square grid misc 02.10.ox misc Physics |
topic_unstemmed |
misc QC1-999 misc atom-bond-connectivity index misc geometric-arithmetic index misc octagonal grid misc hexagonal grid misc square grid misc 02.10.ox misc Physics |
topic_browse |
misc QC1-999 misc atom-bond-connectivity index misc geometric-arithmetic index misc octagonal grid misc hexagonal grid misc square grid misc 02.10.ox misc Physics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Open Physics |
hierarchy_parent_id |
820684708 |
hierarchy_top_title |
Open Physics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)820684708 (DE-600)2814058-8 |
title |
Computing multiple ABC index and multiple GA index of some grid graphs |
ctrlnum |
(DE-627)DOAJ062478508 (DE-599)DOAJf50da6427c1f4f4daec2cab496c110d2 |
title_full |
Computing multiple ABC index and multiple GA index of some grid graphs |
author_sort |
Gao Wei |
journal |
Open Physics |
journalStr |
Open Physics |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
588 |
author_browse |
Gao Wei Siddiqui Muhammad Kamran Naeem Muhammad Imran Muhammad |
container_volume |
16 |
class |
QC1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Gao Wei |
doi_str_mv |
10.1515/phys-2018-0077 |
author2-role |
verfasserin |
title_sort |
computing multiple abc index and multiple ga index of some grid graphs |
callnumber |
QC1-999 |
title_auth |
Computing multiple ABC index and multiple GA index of some grid graphs |
abstract |
Topological indices are the atomic descriptors that portray the structures of chemical compounds and they help us to anticipate certain physico-compound properties like boiling point, enthalpy of vaporization and steadiness. The atom bond connectivity (ABC) index and geometric arithmetic (GA) index are topological indices which are defined as ABC(G)=∑uv∈E(G)du+dv−2dudv $ABC(G)=\sum_{uv\in E(G)}\sqrt{\frac{d_u+d_v-2}{d_ud_v}}$ and GA(G)=∑uv∈E(G)2dudvdu+dv $GA(G)=\sum_{uv\in E(G)}\frac{2\sqrt{d_ud_v}}{d_u+d_v}$ , respectively, where du is the degree of the vertex u. The aim of this paper is to introduced the new versions of ABC index and GA index namely multiple atom bond connectivity (ABC) index and multiple geometric arithmetic (GA) index. As an application, we have computed these newly defined indices for the octagonal grid Opq $O_p^q$ , the hexagonal grid H(p, q) and the square grid Gp, q. Also, we compared these results obtained with the ones by other indices like the ABC4 index and the GA5 index. |
abstractGer |
Topological indices are the atomic descriptors that portray the structures of chemical compounds and they help us to anticipate certain physico-compound properties like boiling point, enthalpy of vaporization and steadiness. The atom bond connectivity (ABC) index and geometric arithmetic (GA) index are topological indices which are defined as ABC(G)=∑uv∈E(G)du+dv−2dudv $ABC(G)=\sum_{uv\in E(G)}\sqrt{\frac{d_u+d_v-2}{d_ud_v}}$ and GA(G)=∑uv∈E(G)2dudvdu+dv $GA(G)=\sum_{uv\in E(G)}\frac{2\sqrt{d_ud_v}}{d_u+d_v}$ , respectively, where du is the degree of the vertex u. The aim of this paper is to introduced the new versions of ABC index and GA index namely multiple atom bond connectivity (ABC) index and multiple geometric arithmetic (GA) index. As an application, we have computed these newly defined indices for the octagonal grid Opq $O_p^q$ , the hexagonal grid H(p, q) and the square grid Gp, q. Also, we compared these results obtained with the ones by other indices like the ABC4 index and the GA5 index. |
abstract_unstemmed |
Topological indices are the atomic descriptors that portray the structures of chemical compounds and they help us to anticipate certain physico-compound properties like boiling point, enthalpy of vaporization and steadiness. The atom bond connectivity (ABC) index and geometric arithmetic (GA) index are topological indices which are defined as ABC(G)=∑uv∈E(G)du+dv−2dudv $ABC(G)=\sum_{uv\in E(G)}\sqrt{\frac{d_u+d_v-2}{d_ud_v}}$ and GA(G)=∑uv∈E(G)2dudvdu+dv $GA(G)=\sum_{uv\in E(G)}\frac{2\sqrt{d_ud_v}}{d_u+d_v}$ , respectively, where du is the degree of the vertex u. The aim of this paper is to introduced the new versions of ABC index and GA index namely multiple atom bond connectivity (ABC) index and multiple geometric arithmetic (GA) index. As an application, we have computed these newly defined indices for the octagonal grid Opq $O_p^q$ , the hexagonal grid H(p, q) and the square grid Gp, q. Also, we compared these results obtained with the ones by other indices like the ABC4 index and the GA5 index. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Computing multiple ABC index and multiple GA index of some grid graphs |
url |
https://doi.org/10.1515/phys-2018-0077 https://doaj.org/article/f50da6427c1f4f4daec2cab496c110d2 https://doaj.org/toc/2391-5471 |
remote_bool |
true |
author2 |
Siddiqui Muhammad Kamran Naeem Muhammad Imran Muhammad |
author2Str |
Siddiqui Muhammad Kamran Naeem Muhammad Imran Muhammad |
ppnlink |
820684708 |
callnumber-subject |
QC - Physics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1515/phys-2018-0077 |
callnumber-a |
QC1-999 |
up_date |
2024-07-04T01:48:55.196Z |
_version_ |
1803611259742978048 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ062478508</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309021345.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/phys-2018-0077</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ062478508</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf50da6427c1f4f4daec2cab496c110d2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Gao Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computing multiple ABC index and multiple GA index of some grid graphs</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Topological indices are the atomic descriptors that portray the structures of chemical compounds and they help us to anticipate certain physico-compound properties like boiling point, enthalpy of vaporization and steadiness. The atom bond connectivity (ABC) index and geometric arithmetic (GA) index are topological indices which are defined as ABC(G)=∑uv∈E(G)du+dv−2dudv $ABC(G)=\sum_{uv\in E(G)}\sqrt{\frac{d_u+d_v-2}{d_ud_v}}$ and GA(G)=∑uv∈E(G)2dudvdu+dv $GA(G)=\sum_{uv\in E(G)}\frac{2\sqrt{d_ud_v}}{d_u+d_v}$ , respectively, where du is the degree of the vertex u. The aim of this paper is to introduced the new versions of ABC index and GA index namely multiple atom bond connectivity (ABC) index and multiple geometric arithmetic (GA) index. As an application, we have computed these newly defined indices for the octagonal grid Opq $O_p^q$ , the hexagonal grid H(p, q) and the square grid Gp, q. Also, we compared these results obtained with the ones by other indices like the ABC4 index and the GA5 index.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">atom-bond-connectivity index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">geometric-arithmetic index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">octagonal grid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hexagonal grid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">square grid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">02.10.ox</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Siddiqui Muhammad Kamran</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Naeem Muhammad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Imran Muhammad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Open Physics</subfield><subfield code="d">De Gruyter, 2015</subfield><subfield code="g">16(2018), 1, Seite 588-598</subfield><subfield code="w">(DE-627)820684708</subfield><subfield code="w">(DE-600)2814058-8</subfield><subfield code="x">23915471</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:588-598</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/phys-2018-0077</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f50da6427c1f4f4daec2cab496c110d2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/phys-2018-0077</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2391-5471</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2018</subfield><subfield code="e">1</subfield><subfield code="h">588-598</subfield></datafield></record></collection>
|
score |
7.402237 |