Image Restoration by Learning Morphological Opening-Closing Network
Mathematical morphology is a powerful tool for image processing tasks. The main difficulty in designing mathematical morphological algorithm is deciding the order of operators/filters and the corresponding structuring elements (SEs). In this work, we develop morphological network composed of alterna...
Ausführliche Beschreibung
Autor*in: |
Mondal Ranjan [verfasserIn] Dey Moni Shankar [verfasserIn] Chanda Bhabatosh [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Mathematical Morphology ; 4(2020), 1, Seite 87-107 volume:4 ; year:2020 ; number:1 ; pages:87-107 |
---|
Links: |
---|
DOI / URN: |
10.1515/mathm-2020-0103 |
---|
Katalog-ID: |
DOAJ062511149 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ062511149 | ||
003 | DE-627 | ||
005 | 20230228023804.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1515/mathm-2020-0103 |2 doi | |
035 | |a (DE-627)DOAJ062511149 | ||
035 | |a (DE-599)DOAJ6ca22aefcf494fdb83efd716a0886f86 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA1-939 | |
100 | 0 | |a Mondal Ranjan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Image Restoration by Learning Morphological Opening-Closing Network |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Mathematical morphology is a powerful tool for image processing tasks. The main difficulty in designing mathematical morphological algorithm is deciding the order of operators/filters and the corresponding structuring elements (SEs). In this work, we develop morphological network composed of alternate sequences of dilation and erosion layers, which depending on learned SEs, may form opening or closing layers. These layers in the right order along with linear combination (of their outputs) are useful in extracting image features and processing them. Structuring elements in the network are learned by back-propagation method guided by minimization of the loss function. Efficacy of the proposed network is established by applying it to two interesting image restoration problems, namely de-raining and de-hazing. Results are comparable to that of many state-of-the-art algorithms for most of the images. It is also worth mentioning that the number of network parameters to handle is much less than that of popular convolutional neural network for similar tasks. The source code can be found here https://github.com/ranjanZ/Mophological-Opening-Closing-Net | ||
650 | 4 | |a morphological network | |
650 | 4 | |a opening-closing network | |
650 | 4 | |a dilation erosion neurons | |
650 | 4 | |a learning structuring element | |
650 | 4 | |a de-hazing | |
650 | 4 | |a de-raining | |
650 | 4 | |a 68t07 | |
650 | 4 | |a 68t45 | |
650 | 4 | |a 68u10 | |
653 | 0 | |a Mathematics | |
700 | 0 | |a Dey Moni Shankar |e verfasserin |4 aut | |
700 | 0 | |a Chanda Bhabatosh |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Mathematical Morphology |g 4(2020), 1, Seite 87-107 |
773 | 1 | 8 | |g volume:4 |g year:2020 |g number:1 |g pages:87-107 |
856 | 4 | 0 | |u https://doi.org/10.1515/mathm-2020-0103 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/6ca22aefcf494fdb83efd716a0886f86 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1515/mathm-2020-0103 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2353-3390 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
951 | |a AR | ||
952 | |d 4 |j 2020 |e 1 |h 87-107 |
author_variant |
m r mr d m s dms c b cb |
---|---|
matchkey_str |
mondalranjandeymonishankarchandabhabatos:2020----:mgrsoainyerigopooiaoei |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
QA |
publishDate |
2020 |
allfields |
10.1515/mathm-2020-0103 doi (DE-627)DOAJ062511149 (DE-599)DOAJ6ca22aefcf494fdb83efd716a0886f86 DE-627 ger DE-627 rakwb eng QA1-939 Mondal Ranjan verfasserin aut Image Restoration by Learning Morphological Opening-Closing Network 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Mathematical morphology is a powerful tool for image processing tasks. The main difficulty in designing mathematical morphological algorithm is deciding the order of operators/filters and the corresponding structuring elements (SEs). In this work, we develop morphological network composed of alternate sequences of dilation and erosion layers, which depending on learned SEs, may form opening or closing layers. These layers in the right order along with linear combination (of their outputs) are useful in extracting image features and processing them. Structuring elements in the network are learned by back-propagation method guided by minimization of the loss function. Efficacy of the proposed network is established by applying it to two interesting image restoration problems, namely de-raining and de-hazing. Results are comparable to that of many state-of-the-art algorithms for most of the images. It is also worth mentioning that the number of network parameters to handle is much less than that of popular convolutional neural network for similar tasks. The source code can be found here https://github.com/ranjanZ/Mophological-Opening-Closing-Net morphological network opening-closing network dilation erosion neurons learning structuring element de-hazing de-raining 68t07 68t45 68u10 Mathematics Dey Moni Shankar verfasserin aut Chanda Bhabatosh verfasserin aut In Mathematical Morphology 4(2020), 1, Seite 87-107 volume:4 year:2020 number:1 pages:87-107 https://doi.org/10.1515/mathm-2020-0103 kostenfrei https://doaj.org/article/6ca22aefcf494fdb83efd716a0886f86 kostenfrei https://doi.org/10.1515/mathm-2020-0103 kostenfrei https://doaj.org/toc/2353-3390 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 4 2020 1 87-107 |
spelling |
10.1515/mathm-2020-0103 doi (DE-627)DOAJ062511149 (DE-599)DOAJ6ca22aefcf494fdb83efd716a0886f86 DE-627 ger DE-627 rakwb eng QA1-939 Mondal Ranjan verfasserin aut Image Restoration by Learning Morphological Opening-Closing Network 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Mathematical morphology is a powerful tool for image processing tasks. The main difficulty in designing mathematical morphological algorithm is deciding the order of operators/filters and the corresponding structuring elements (SEs). In this work, we develop morphological network composed of alternate sequences of dilation and erosion layers, which depending on learned SEs, may form opening or closing layers. These layers in the right order along with linear combination (of their outputs) are useful in extracting image features and processing them. Structuring elements in the network are learned by back-propagation method guided by minimization of the loss function. Efficacy of the proposed network is established by applying it to two interesting image restoration problems, namely de-raining and de-hazing. Results are comparable to that of many state-of-the-art algorithms for most of the images. It is also worth mentioning that the number of network parameters to handle is much less than that of popular convolutional neural network for similar tasks. The source code can be found here https://github.com/ranjanZ/Mophological-Opening-Closing-Net morphological network opening-closing network dilation erosion neurons learning structuring element de-hazing de-raining 68t07 68t45 68u10 Mathematics Dey Moni Shankar verfasserin aut Chanda Bhabatosh verfasserin aut In Mathematical Morphology 4(2020), 1, Seite 87-107 volume:4 year:2020 number:1 pages:87-107 https://doi.org/10.1515/mathm-2020-0103 kostenfrei https://doaj.org/article/6ca22aefcf494fdb83efd716a0886f86 kostenfrei https://doi.org/10.1515/mathm-2020-0103 kostenfrei https://doaj.org/toc/2353-3390 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 4 2020 1 87-107 |
allfields_unstemmed |
10.1515/mathm-2020-0103 doi (DE-627)DOAJ062511149 (DE-599)DOAJ6ca22aefcf494fdb83efd716a0886f86 DE-627 ger DE-627 rakwb eng QA1-939 Mondal Ranjan verfasserin aut Image Restoration by Learning Morphological Opening-Closing Network 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Mathematical morphology is a powerful tool for image processing tasks. The main difficulty in designing mathematical morphological algorithm is deciding the order of operators/filters and the corresponding structuring elements (SEs). In this work, we develop morphological network composed of alternate sequences of dilation and erosion layers, which depending on learned SEs, may form opening or closing layers. These layers in the right order along with linear combination (of their outputs) are useful in extracting image features and processing them. Structuring elements in the network are learned by back-propagation method guided by minimization of the loss function. Efficacy of the proposed network is established by applying it to two interesting image restoration problems, namely de-raining and de-hazing. Results are comparable to that of many state-of-the-art algorithms for most of the images. It is also worth mentioning that the number of network parameters to handle is much less than that of popular convolutional neural network for similar tasks. The source code can be found here https://github.com/ranjanZ/Mophological-Opening-Closing-Net morphological network opening-closing network dilation erosion neurons learning structuring element de-hazing de-raining 68t07 68t45 68u10 Mathematics Dey Moni Shankar verfasserin aut Chanda Bhabatosh verfasserin aut In Mathematical Morphology 4(2020), 1, Seite 87-107 volume:4 year:2020 number:1 pages:87-107 https://doi.org/10.1515/mathm-2020-0103 kostenfrei https://doaj.org/article/6ca22aefcf494fdb83efd716a0886f86 kostenfrei https://doi.org/10.1515/mathm-2020-0103 kostenfrei https://doaj.org/toc/2353-3390 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 4 2020 1 87-107 |
allfieldsGer |
10.1515/mathm-2020-0103 doi (DE-627)DOAJ062511149 (DE-599)DOAJ6ca22aefcf494fdb83efd716a0886f86 DE-627 ger DE-627 rakwb eng QA1-939 Mondal Ranjan verfasserin aut Image Restoration by Learning Morphological Opening-Closing Network 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Mathematical morphology is a powerful tool for image processing tasks. The main difficulty in designing mathematical morphological algorithm is deciding the order of operators/filters and the corresponding structuring elements (SEs). In this work, we develop morphological network composed of alternate sequences of dilation and erosion layers, which depending on learned SEs, may form opening or closing layers. These layers in the right order along with linear combination (of their outputs) are useful in extracting image features and processing them. Structuring elements in the network are learned by back-propagation method guided by minimization of the loss function. Efficacy of the proposed network is established by applying it to two interesting image restoration problems, namely de-raining and de-hazing. Results are comparable to that of many state-of-the-art algorithms for most of the images. It is also worth mentioning that the number of network parameters to handle is much less than that of popular convolutional neural network for similar tasks. The source code can be found here https://github.com/ranjanZ/Mophological-Opening-Closing-Net morphological network opening-closing network dilation erosion neurons learning structuring element de-hazing de-raining 68t07 68t45 68u10 Mathematics Dey Moni Shankar verfasserin aut Chanda Bhabatosh verfasserin aut In Mathematical Morphology 4(2020), 1, Seite 87-107 volume:4 year:2020 number:1 pages:87-107 https://doi.org/10.1515/mathm-2020-0103 kostenfrei https://doaj.org/article/6ca22aefcf494fdb83efd716a0886f86 kostenfrei https://doi.org/10.1515/mathm-2020-0103 kostenfrei https://doaj.org/toc/2353-3390 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 4 2020 1 87-107 |
allfieldsSound |
10.1515/mathm-2020-0103 doi (DE-627)DOAJ062511149 (DE-599)DOAJ6ca22aefcf494fdb83efd716a0886f86 DE-627 ger DE-627 rakwb eng QA1-939 Mondal Ranjan verfasserin aut Image Restoration by Learning Morphological Opening-Closing Network 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Mathematical morphology is a powerful tool for image processing tasks. The main difficulty in designing mathematical morphological algorithm is deciding the order of operators/filters and the corresponding structuring elements (SEs). In this work, we develop morphological network composed of alternate sequences of dilation and erosion layers, which depending on learned SEs, may form opening or closing layers. These layers in the right order along with linear combination (of their outputs) are useful in extracting image features and processing them. Structuring elements in the network are learned by back-propagation method guided by minimization of the loss function. Efficacy of the proposed network is established by applying it to two interesting image restoration problems, namely de-raining and de-hazing. Results are comparable to that of many state-of-the-art algorithms for most of the images. It is also worth mentioning that the number of network parameters to handle is much less than that of popular convolutional neural network for similar tasks. The source code can be found here https://github.com/ranjanZ/Mophological-Opening-Closing-Net morphological network opening-closing network dilation erosion neurons learning structuring element de-hazing de-raining 68t07 68t45 68u10 Mathematics Dey Moni Shankar verfasserin aut Chanda Bhabatosh verfasserin aut In Mathematical Morphology 4(2020), 1, Seite 87-107 volume:4 year:2020 number:1 pages:87-107 https://doi.org/10.1515/mathm-2020-0103 kostenfrei https://doaj.org/article/6ca22aefcf494fdb83efd716a0886f86 kostenfrei https://doi.org/10.1515/mathm-2020-0103 kostenfrei https://doaj.org/toc/2353-3390 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 4 2020 1 87-107 |
language |
English |
source |
In Mathematical Morphology 4(2020), 1, Seite 87-107 volume:4 year:2020 number:1 pages:87-107 |
sourceStr |
In Mathematical Morphology 4(2020), 1, Seite 87-107 volume:4 year:2020 number:1 pages:87-107 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
morphological network opening-closing network dilation erosion neurons learning structuring element de-hazing de-raining 68t07 68t45 68u10 Mathematics |
isfreeaccess_bool |
true |
container_title |
Mathematical Morphology |
authorswithroles_txt_mv |
Mondal Ranjan @@aut@@ Dey Moni Shankar @@aut@@ Chanda Bhabatosh @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
id |
DOAJ062511149 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ062511149</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230228023804.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/mathm-2020-0103</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ062511149</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6ca22aefcf494fdb83efd716a0886f86</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mondal Ranjan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Image Restoration by Learning Morphological Opening-Closing Network</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Mathematical morphology is a powerful tool for image processing tasks. The main difficulty in designing mathematical morphological algorithm is deciding the order of operators/filters and the corresponding structuring elements (SEs). In this work, we develop morphological network composed of alternate sequences of dilation and erosion layers, which depending on learned SEs, may form opening or closing layers. These layers in the right order along with linear combination (of their outputs) are useful in extracting image features and processing them. Structuring elements in the network are learned by back-propagation method guided by minimization of the loss function. Efficacy of the proposed network is established by applying it to two interesting image restoration problems, namely de-raining and de-hazing. Results are comparable to that of many state-of-the-art algorithms for most of the images. It is also worth mentioning that the number of network parameters to handle is much less than that of popular convolutional neural network for similar tasks. The source code can be found here https://github.com/ranjanZ/Mophological-Opening-Closing-Net</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">morphological network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">opening-closing network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dilation erosion neurons</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">learning structuring element</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">de-hazing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">de-raining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">68t07</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">68t45</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">68u10</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dey Moni Shankar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chanda Bhabatosh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Mathematical Morphology</subfield><subfield code="g">4(2020), 1, Seite 87-107</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:4</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:87-107</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/mathm-2020-0103</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6ca22aefcf494fdb83efd716a0886f86</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/mathm-2020-0103</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2353-3390</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">4</subfield><subfield code="j">2020</subfield><subfield code="e">1</subfield><subfield code="h">87-107</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Mondal Ranjan |
spellingShingle |
Mondal Ranjan misc QA1-939 misc morphological network misc opening-closing network misc dilation erosion neurons misc learning structuring element misc de-hazing misc de-raining misc 68t07 misc 68t45 misc 68u10 misc Mathematics Image Restoration by Learning Morphological Opening-Closing Network |
authorStr |
Mondal Ranjan |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA1-939 |
illustrated |
Not Illustrated |
topic_title |
QA1-939 Image Restoration by Learning Morphological Opening-Closing Network morphological network opening-closing network dilation erosion neurons learning structuring element de-hazing de-raining 68t07 68t45 68u10 |
topic |
misc QA1-939 misc morphological network misc opening-closing network misc dilation erosion neurons misc learning structuring element misc de-hazing misc de-raining misc 68t07 misc 68t45 misc 68u10 misc Mathematics |
topic_unstemmed |
misc QA1-939 misc morphological network misc opening-closing network misc dilation erosion neurons misc learning structuring element misc de-hazing misc de-raining misc 68t07 misc 68t45 misc 68u10 misc Mathematics |
topic_browse |
misc QA1-939 misc morphological network misc opening-closing network misc dilation erosion neurons misc learning structuring element misc de-hazing misc de-raining misc 68t07 misc 68t45 misc 68u10 misc Mathematics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Mathematical Morphology |
hierarchy_top_title |
Mathematical Morphology |
isfreeaccess_txt |
true |
title |
Image Restoration by Learning Morphological Opening-Closing Network |
ctrlnum |
(DE-627)DOAJ062511149 (DE-599)DOAJ6ca22aefcf494fdb83efd716a0886f86 |
title_full |
Image Restoration by Learning Morphological Opening-Closing Network |
author_sort |
Mondal Ranjan |
journal |
Mathematical Morphology |
journalStr |
Mathematical Morphology |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
87 |
author_browse |
Mondal Ranjan Dey Moni Shankar Chanda Bhabatosh |
container_volume |
4 |
class |
QA1-939 |
format_se |
Elektronische Aufsätze |
author-letter |
Mondal Ranjan |
doi_str_mv |
10.1515/mathm-2020-0103 |
author2-role |
verfasserin |
title_sort |
image restoration by learning morphological opening-closing network |
callnumber |
QA1-939 |
title_auth |
Image Restoration by Learning Morphological Opening-Closing Network |
abstract |
Mathematical morphology is a powerful tool for image processing tasks. The main difficulty in designing mathematical morphological algorithm is deciding the order of operators/filters and the corresponding structuring elements (SEs). In this work, we develop morphological network composed of alternate sequences of dilation and erosion layers, which depending on learned SEs, may form opening or closing layers. These layers in the right order along with linear combination (of their outputs) are useful in extracting image features and processing them. Structuring elements in the network are learned by back-propagation method guided by minimization of the loss function. Efficacy of the proposed network is established by applying it to two interesting image restoration problems, namely de-raining and de-hazing. Results are comparable to that of many state-of-the-art algorithms for most of the images. It is also worth mentioning that the number of network parameters to handle is much less than that of popular convolutional neural network for similar tasks. The source code can be found here https://github.com/ranjanZ/Mophological-Opening-Closing-Net |
abstractGer |
Mathematical morphology is a powerful tool for image processing tasks. The main difficulty in designing mathematical morphological algorithm is deciding the order of operators/filters and the corresponding structuring elements (SEs). In this work, we develop morphological network composed of alternate sequences of dilation and erosion layers, which depending on learned SEs, may form opening or closing layers. These layers in the right order along with linear combination (of their outputs) are useful in extracting image features and processing them. Structuring elements in the network are learned by back-propagation method guided by minimization of the loss function. Efficacy of the proposed network is established by applying it to two interesting image restoration problems, namely de-raining and de-hazing. Results are comparable to that of many state-of-the-art algorithms for most of the images. It is also worth mentioning that the number of network parameters to handle is much less than that of popular convolutional neural network for similar tasks. The source code can be found here https://github.com/ranjanZ/Mophological-Opening-Closing-Net |
abstract_unstemmed |
Mathematical morphology is a powerful tool for image processing tasks. The main difficulty in designing mathematical morphological algorithm is deciding the order of operators/filters and the corresponding structuring elements (SEs). In this work, we develop morphological network composed of alternate sequences of dilation and erosion layers, which depending on learned SEs, may form opening or closing layers. These layers in the right order along with linear combination (of their outputs) are useful in extracting image features and processing them. Structuring elements in the network are learned by back-propagation method guided by minimization of the loss function. Efficacy of the proposed network is established by applying it to two interesting image restoration problems, namely de-raining and de-hazing. Results are comparable to that of many state-of-the-art algorithms for most of the images. It is also worth mentioning that the number of network parameters to handle is much less than that of popular convolutional neural network for similar tasks. The source code can be found here https://github.com/ranjanZ/Mophological-Opening-Closing-Net |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ |
container_issue |
1 |
title_short |
Image Restoration by Learning Morphological Opening-Closing Network |
url |
https://doi.org/10.1515/mathm-2020-0103 https://doaj.org/article/6ca22aefcf494fdb83efd716a0886f86 https://doaj.org/toc/2353-3390 |
remote_bool |
true |
author2 |
Dey Moni Shankar Chanda Bhabatosh |
author2Str |
Dey Moni Shankar Chanda Bhabatosh |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1515/mathm-2020-0103 |
callnumber-a |
QA1-939 |
up_date |
2024-07-04T01:55:54.447Z |
_version_ |
1803611699358466048 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ062511149</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230228023804.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/mathm-2020-0103</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ062511149</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6ca22aefcf494fdb83efd716a0886f86</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mondal Ranjan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Image Restoration by Learning Morphological Opening-Closing Network</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Mathematical morphology is a powerful tool for image processing tasks. The main difficulty in designing mathematical morphological algorithm is deciding the order of operators/filters and the corresponding structuring elements (SEs). In this work, we develop morphological network composed of alternate sequences of dilation and erosion layers, which depending on learned SEs, may form opening or closing layers. These layers in the right order along with linear combination (of their outputs) are useful in extracting image features and processing them. Structuring elements in the network are learned by back-propagation method guided by minimization of the loss function. Efficacy of the proposed network is established by applying it to two interesting image restoration problems, namely de-raining and de-hazing. Results are comparable to that of many state-of-the-art algorithms for most of the images. It is also worth mentioning that the number of network parameters to handle is much less than that of popular convolutional neural network for similar tasks. The source code can be found here https://github.com/ranjanZ/Mophological-Opening-Closing-Net</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">morphological network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">opening-closing network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dilation erosion neurons</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">learning structuring element</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">de-hazing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">de-raining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">68t07</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">68t45</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">68u10</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dey Moni Shankar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chanda Bhabatosh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Mathematical Morphology</subfield><subfield code="g">4(2020), 1, Seite 87-107</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:4</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:87-107</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/mathm-2020-0103</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6ca22aefcf494fdb83efd716a0886f86</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/mathm-2020-0103</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2353-3390</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">4</subfield><subfield code="j">2020</subfield><subfield code="e">1</subfield><subfield code="h">87-107</subfield></datafield></record></collection>
|
score |
7.398322 |