Panda: Reinforcement Learning-Based Priority Assignment for Multi-Processor Real-Time Scheduling

Recently, deep reinforcement learning (RL) technologies have been considered as a feasible solution for tackling combinatorial problems in various research and engineering areas. Motivated by this recent success of RL-based approaches, in this paper, we focus on how to utilize RL technologies in the...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Hyunsung Lee [verfasserIn]

Jinkyu Lee [verfasserIn]

Ikjun Yeom [verfasserIn]

Honguk Woo [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2020

Schlagwörter:

Priority assignment

global fixed priority scheduling

encoder-decoder neural network

reinforcement learning

real-time system

Übergeordnetes Werk:

In: IEEE Access - IEEE, 2014, 8(2020), Seite 185570-185583

Übergeordnetes Werk:

volume:8 ; year:2020 ; pages:185570-185583

Links:

Link aufrufen
Link aufrufen
Link aufrufen
Journal toc

DOI / URN:

10.1109/ACCESS.2020.3029040

Katalog-ID:

DOAJ062528912

Nicht das Richtige dabei?

Schreiben Sie uns!