Socio-technical modeling of smart energy systems: a co-simulation design for domestic energy demand
Abstract To tackle the climate crisis, the European energy strategy relies on consumers taking ownership of the energy transition, accelerating decarbonisation through investments in low-carbon technologies and ensuring system stability and reliability by actively participating in the market. Theref...
Ausführliche Beschreibung
Autor*in: |
Matteo Barsanti [verfasserIn] Jan Sören Schwarz [verfasserIn] Lionel Guy Gérard Constantin [verfasserIn] Pranay Kasturi [verfasserIn] Claudia R. Binder [verfasserIn] Sebastian Lehnhoff [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Energy Informatics - SpringerOpen, 2018, 4(2021), S3, Seite 13 |
---|---|
Übergeordnetes Werk: |
volume:4 ; year:2021 ; number:S3 ; pages:13 |
Links: |
---|
DOI / URN: |
10.1186/s42162-021-00180-6 |
---|
Katalog-ID: |
DOAJ06263707X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ06263707X | ||
003 | DE-627 | ||
005 | 20230503012115.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s42162-021-00180-6 |2 doi | |
035 | |a (DE-627)DOAJ06263707X | ||
035 | |a (DE-599)DOAJ947592b71593468f998c3fb2e842856d | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a HD9502-9502.5 | |
100 | 0 | |a Matteo Barsanti |e verfasserin |4 aut | |
245 | 1 | 0 | |a Socio-technical modeling of smart energy systems: a co-simulation design for domestic energy demand |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract To tackle the climate crisis, the European energy strategy relies on consumers taking ownership of the energy transition, accelerating decarbonisation through investments in low-carbon technologies and ensuring system stability and reliability by actively participating in the market. Therefore, tools are needed to better understand an increasingly complex and actor-dense energy system, tracking socio-technical dynamics that occur at its margins and then predicting the effects on larger scales. Yet, existing domestic energy demand models are not flexible enough to incorporate a wide range of socio-technical factors, and to be incorporated into larger energy system simulation environments. Here, a co-simulation design for domestic energy demand modeling is presented and motivated on the basis of four design principles: granularity, scalability, modularity and transparency. Microsimulation of domestic energy demand, through the Python open source library demod, shows that it is possible to achieve high detail and high temporal resolution without compromising scalability. Furthermore, mosaik, an open source co-simulation framework, makes it possible to generate, integrate and orchestrate a multitude of demod-based instances with other independent models, which for the illustrative purposes of this study are represented by a heat pump model. The authors hope that the detailed documentation of the proposed solution will encourage interdisciplinary and collaborative efforts to develop a simulation ecosystem capable of investigating alternative energy transition pathways and evaluating policy interventions through the socio-technical lens. | ||
650 | 4 | |a Co-simulation | |
650 | 4 | |a Socio-technical simulation | |
650 | 4 | |a Smart energy system | |
650 | 4 | |a Domestic energy demand | |
650 | 4 | |a Granularity | |
650 | 4 | |a Modularity | |
653 | 0 | |a Energy industries. Energy policy. Fuel trade | |
700 | 0 | |a Jan Sören Schwarz |e verfasserin |4 aut | |
700 | 0 | |a Lionel Guy Gérard Constantin |e verfasserin |4 aut | |
700 | 0 | |a Pranay Kasturi |e verfasserin |4 aut | |
700 | 0 | |a Claudia R. Binder |e verfasserin |4 aut | |
700 | 0 | |a Sebastian Lehnhoff |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Energy Informatics |d SpringerOpen, 2018 |g 4(2021), S3, Seite 13 |w (DE-627)1031001387 |x 25208942 |7 nnns |
773 | 1 | 8 | |g volume:4 |g year:2021 |g number:S3 |g pages:13 |
856 | 4 | 0 | |u https://doi.org/10.1186/s42162-021-00180-6 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/947592b71593468f998c3fb2e842856d |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1186/s42162-021-00180-6 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2520-8942 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 4 |j 2021 |e S3 |h 13 |
author_variant |
m b mb j s s jss l g g c lggc p k pk c r b crb s l sl |
---|---|
matchkey_str |
article:25208942:2021----::oitcncloeigfmreegssescsmltodsgf |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
HD |
publishDate |
2021 |
allfields |
10.1186/s42162-021-00180-6 doi (DE-627)DOAJ06263707X (DE-599)DOAJ947592b71593468f998c3fb2e842856d DE-627 ger DE-627 rakwb eng HD9502-9502.5 Matteo Barsanti verfasserin aut Socio-technical modeling of smart energy systems: a co-simulation design for domestic energy demand 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract To tackle the climate crisis, the European energy strategy relies on consumers taking ownership of the energy transition, accelerating decarbonisation through investments in low-carbon technologies and ensuring system stability and reliability by actively participating in the market. Therefore, tools are needed to better understand an increasingly complex and actor-dense energy system, tracking socio-technical dynamics that occur at its margins and then predicting the effects on larger scales. Yet, existing domestic energy demand models are not flexible enough to incorporate a wide range of socio-technical factors, and to be incorporated into larger energy system simulation environments. Here, a co-simulation design for domestic energy demand modeling is presented and motivated on the basis of four design principles: granularity, scalability, modularity and transparency. Microsimulation of domestic energy demand, through the Python open source library demod, shows that it is possible to achieve high detail and high temporal resolution without compromising scalability. Furthermore, mosaik, an open source co-simulation framework, makes it possible to generate, integrate and orchestrate a multitude of demod-based instances with other independent models, which for the illustrative purposes of this study are represented by a heat pump model. The authors hope that the detailed documentation of the proposed solution will encourage interdisciplinary and collaborative efforts to develop a simulation ecosystem capable of investigating alternative energy transition pathways and evaluating policy interventions through the socio-technical lens. Co-simulation Socio-technical simulation Smart energy system Domestic energy demand Granularity Modularity Energy industries. Energy policy. Fuel trade Jan Sören Schwarz verfasserin aut Lionel Guy Gérard Constantin verfasserin aut Pranay Kasturi verfasserin aut Claudia R. Binder verfasserin aut Sebastian Lehnhoff verfasserin aut In Energy Informatics SpringerOpen, 2018 4(2021), S3, Seite 13 (DE-627)1031001387 25208942 nnns volume:4 year:2021 number:S3 pages:13 https://doi.org/10.1186/s42162-021-00180-6 kostenfrei https://doaj.org/article/947592b71593468f998c3fb2e842856d kostenfrei https://doi.org/10.1186/s42162-021-00180-6 kostenfrei https://doaj.org/toc/2520-8942 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2021 S3 13 |
spelling |
10.1186/s42162-021-00180-6 doi (DE-627)DOAJ06263707X (DE-599)DOAJ947592b71593468f998c3fb2e842856d DE-627 ger DE-627 rakwb eng HD9502-9502.5 Matteo Barsanti verfasserin aut Socio-technical modeling of smart energy systems: a co-simulation design for domestic energy demand 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract To tackle the climate crisis, the European energy strategy relies on consumers taking ownership of the energy transition, accelerating decarbonisation through investments in low-carbon technologies and ensuring system stability and reliability by actively participating in the market. Therefore, tools are needed to better understand an increasingly complex and actor-dense energy system, tracking socio-technical dynamics that occur at its margins and then predicting the effects on larger scales. Yet, existing domestic energy demand models are not flexible enough to incorporate a wide range of socio-technical factors, and to be incorporated into larger energy system simulation environments. Here, a co-simulation design for domestic energy demand modeling is presented and motivated on the basis of four design principles: granularity, scalability, modularity and transparency. Microsimulation of domestic energy demand, through the Python open source library demod, shows that it is possible to achieve high detail and high temporal resolution without compromising scalability. Furthermore, mosaik, an open source co-simulation framework, makes it possible to generate, integrate and orchestrate a multitude of demod-based instances with other independent models, which for the illustrative purposes of this study are represented by a heat pump model. The authors hope that the detailed documentation of the proposed solution will encourage interdisciplinary and collaborative efforts to develop a simulation ecosystem capable of investigating alternative energy transition pathways and evaluating policy interventions through the socio-technical lens. Co-simulation Socio-technical simulation Smart energy system Domestic energy demand Granularity Modularity Energy industries. Energy policy. Fuel trade Jan Sören Schwarz verfasserin aut Lionel Guy Gérard Constantin verfasserin aut Pranay Kasturi verfasserin aut Claudia R. Binder verfasserin aut Sebastian Lehnhoff verfasserin aut In Energy Informatics SpringerOpen, 2018 4(2021), S3, Seite 13 (DE-627)1031001387 25208942 nnns volume:4 year:2021 number:S3 pages:13 https://doi.org/10.1186/s42162-021-00180-6 kostenfrei https://doaj.org/article/947592b71593468f998c3fb2e842856d kostenfrei https://doi.org/10.1186/s42162-021-00180-6 kostenfrei https://doaj.org/toc/2520-8942 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2021 S3 13 |
allfields_unstemmed |
10.1186/s42162-021-00180-6 doi (DE-627)DOAJ06263707X (DE-599)DOAJ947592b71593468f998c3fb2e842856d DE-627 ger DE-627 rakwb eng HD9502-9502.5 Matteo Barsanti verfasserin aut Socio-technical modeling of smart energy systems: a co-simulation design for domestic energy demand 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract To tackle the climate crisis, the European energy strategy relies on consumers taking ownership of the energy transition, accelerating decarbonisation through investments in low-carbon technologies and ensuring system stability and reliability by actively participating in the market. Therefore, tools are needed to better understand an increasingly complex and actor-dense energy system, tracking socio-technical dynamics that occur at its margins and then predicting the effects on larger scales. Yet, existing domestic energy demand models are not flexible enough to incorporate a wide range of socio-technical factors, and to be incorporated into larger energy system simulation environments. Here, a co-simulation design for domestic energy demand modeling is presented and motivated on the basis of four design principles: granularity, scalability, modularity and transparency. Microsimulation of domestic energy demand, through the Python open source library demod, shows that it is possible to achieve high detail and high temporal resolution without compromising scalability. Furthermore, mosaik, an open source co-simulation framework, makes it possible to generate, integrate and orchestrate a multitude of demod-based instances with other independent models, which for the illustrative purposes of this study are represented by a heat pump model. The authors hope that the detailed documentation of the proposed solution will encourage interdisciplinary and collaborative efforts to develop a simulation ecosystem capable of investigating alternative energy transition pathways and evaluating policy interventions through the socio-technical lens. Co-simulation Socio-technical simulation Smart energy system Domestic energy demand Granularity Modularity Energy industries. Energy policy. Fuel trade Jan Sören Schwarz verfasserin aut Lionel Guy Gérard Constantin verfasserin aut Pranay Kasturi verfasserin aut Claudia R. Binder verfasserin aut Sebastian Lehnhoff verfasserin aut In Energy Informatics SpringerOpen, 2018 4(2021), S3, Seite 13 (DE-627)1031001387 25208942 nnns volume:4 year:2021 number:S3 pages:13 https://doi.org/10.1186/s42162-021-00180-6 kostenfrei https://doaj.org/article/947592b71593468f998c3fb2e842856d kostenfrei https://doi.org/10.1186/s42162-021-00180-6 kostenfrei https://doaj.org/toc/2520-8942 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2021 S3 13 |
allfieldsGer |
10.1186/s42162-021-00180-6 doi (DE-627)DOAJ06263707X (DE-599)DOAJ947592b71593468f998c3fb2e842856d DE-627 ger DE-627 rakwb eng HD9502-9502.5 Matteo Barsanti verfasserin aut Socio-technical modeling of smart energy systems: a co-simulation design for domestic energy demand 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract To tackle the climate crisis, the European energy strategy relies on consumers taking ownership of the energy transition, accelerating decarbonisation through investments in low-carbon technologies and ensuring system stability and reliability by actively participating in the market. Therefore, tools are needed to better understand an increasingly complex and actor-dense energy system, tracking socio-technical dynamics that occur at its margins and then predicting the effects on larger scales. Yet, existing domestic energy demand models are not flexible enough to incorporate a wide range of socio-technical factors, and to be incorporated into larger energy system simulation environments. Here, a co-simulation design for domestic energy demand modeling is presented and motivated on the basis of four design principles: granularity, scalability, modularity and transparency. Microsimulation of domestic energy demand, through the Python open source library demod, shows that it is possible to achieve high detail and high temporal resolution without compromising scalability. Furthermore, mosaik, an open source co-simulation framework, makes it possible to generate, integrate and orchestrate a multitude of demod-based instances with other independent models, which for the illustrative purposes of this study are represented by a heat pump model. The authors hope that the detailed documentation of the proposed solution will encourage interdisciplinary and collaborative efforts to develop a simulation ecosystem capable of investigating alternative energy transition pathways and evaluating policy interventions through the socio-technical lens. Co-simulation Socio-technical simulation Smart energy system Domestic energy demand Granularity Modularity Energy industries. Energy policy. Fuel trade Jan Sören Schwarz verfasserin aut Lionel Guy Gérard Constantin verfasserin aut Pranay Kasturi verfasserin aut Claudia R. Binder verfasserin aut Sebastian Lehnhoff verfasserin aut In Energy Informatics SpringerOpen, 2018 4(2021), S3, Seite 13 (DE-627)1031001387 25208942 nnns volume:4 year:2021 number:S3 pages:13 https://doi.org/10.1186/s42162-021-00180-6 kostenfrei https://doaj.org/article/947592b71593468f998c3fb2e842856d kostenfrei https://doi.org/10.1186/s42162-021-00180-6 kostenfrei https://doaj.org/toc/2520-8942 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2021 S3 13 |
allfieldsSound |
10.1186/s42162-021-00180-6 doi (DE-627)DOAJ06263707X (DE-599)DOAJ947592b71593468f998c3fb2e842856d DE-627 ger DE-627 rakwb eng HD9502-9502.5 Matteo Barsanti verfasserin aut Socio-technical modeling of smart energy systems: a co-simulation design for domestic energy demand 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract To tackle the climate crisis, the European energy strategy relies on consumers taking ownership of the energy transition, accelerating decarbonisation through investments in low-carbon technologies and ensuring system stability and reliability by actively participating in the market. Therefore, tools are needed to better understand an increasingly complex and actor-dense energy system, tracking socio-technical dynamics that occur at its margins and then predicting the effects on larger scales. Yet, existing domestic energy demand models are not flexible enough to incorporate a wide range of socio-technical factors, and to be incorporated into larger energy system simulation environments. Here, a co-simulation design for domestic energy demand modeling is presented and motivated on the basis of four design principles: granularity, scalability, modularity and transparency. Microsimulation of domestic energy demand, through the Python open source library demod, shows that it is possible to achieve high detail and high temporal resolution without compromising scalability. Furthermore, mosaik, an open source co-simulation framework, makes it possible to generate, integrate and orchestrate a multitude of demod-based instances with other independent models, which for the illustrative purposes of this study are represented by a heat pump model. The authors hope that the detailed documentation of the proposed solution will encourage interdisciplinary and collaborative efforts to develop a simulation ecosystem capable of investigating alternative energy transition pathways and evaluating policy interventions through the socio-technical lens. Co-simulation Socio-technical simulation Smart energy system Domestic energy demand Granularity Modularity Energy industries. Energy policy. Fuel trade Jan Sören Schwarz verfasserin aut Lionel Guy Gérard Constantin verfasserin aut Pranay Kasturi verfasserin aut Claudia R. Binder verfasserin aut Sebastian Lehnhoff verfasserin aut In Energy Informatics SpringerOpen, 2018 4(2021), S3, Seite 13 (DE-627)1031001387 25208942 nnns volume:4 year:2021 number:S3 pages:13 https://doi.org/10.1186/s42162-021-00180-6 kostenfrei https://doaj.org/article/947592b71593468f998c3fb2e842856d kostenfrei https://doi.org/10.1186/s42162-021-00180-6 kostenfrei https://doaj.org/toc/2520-8942 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2021 S3 13 |
language |
English |
source |
In Energy Informatics 4(2021), S3, Seite 13 volume:4 year:2021 number:S3 pages:13 |
sourceStr |
In Energy Informatics 4(2021), S3, Seite 13 volume:4 year:2021 number:S3 pages:13 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Co-simulation Socio-technical simulation Smart energy system Domestic energy demand Granularity Modularity Energy industries. Energy policy. Fuel trade |
isfreeaccess_bool |
true |
container_title |
Energy Informatics |
authorswithroles_txt_mv |
Matteo Barsanti @@aut@@ Jan Sören Schwarz @@aut@@ Lionel Guy Gérard Constantin @@aut@@ Pranay Kasturi @@aut@@ Claudia R. Binder @@aut@@ Sebastian Lehnhoff @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
1031001387 |
id |
DOAJ06263707X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ06263707X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503012115.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s42162-021-00180-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ06263707X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ947592b71593468f998c3fb2e842856d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">HD9502-9502.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Matteo Barsanti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Socio-technical modeling of smart energy systems: a co-simulation design for domestic energy demand</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract To tackle the climate crisis, the European energy strategy relies on consumers taking ownership of the energy transition, accelerating decarbonisation through investments in low-carbon technologies and ensuring system stability and reliability by actively participating in the market. Therefore, tools are needed to better understand an increasingly complex and actor-dense energy system, tracking socio-technical dynamics that occur at its margins and then predicting the effects on larger scales. Yet, existing domestic energy demand models are not flexible enough to incorporate a wide range of socio-technical factors, and to be incorporated into larger energy system simulation environments. Here, a co-simulation design for domestic energy demand modeling is presented and motivated on the basis of four design principles: granularity, scalability, modularity and transparency. Microsimulation of domestic energy demand, through the Python open source library demod, shows that it is possible to achieve high detail and high temporal resolution without compromising scalability. Furthermore, mosaik, an open source co-simulation framework, makes it possible to generate, integrate and orchestrate a multitude of demod-based instances with other independent models, which for the illustrative purposes of this study are represented by a heat pump model. The authors hope that the detailed documentation of the proposed solution will encourage interdisciplinary and collaborative efforts to develop a simulation ecosystem capable of investigating alternative energy transition pathways and evaluating policy interventions through the socio-technical lens.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Co-simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Socio-technical simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Smart energy system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Domestic energy demand</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Granularity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modularity</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Energy industries. Energy policy. Fuel trade</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jan Sören Schwarz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lionel Guy Gérard Constantin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pranay Kasturi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Claudia R. Binder</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sebastian Lehnhoff</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energy Informatics</subfield><subfield code="d">SpringerOpen, 2018</subfield><subfield code="g">4(2021), S3, Seite 13</subfield><subfield code="w">(DE-627)1031001387</subfield><subfield code="x">25208942</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:4</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:S3</subfield><subfield code="g">pages:13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s42162-021-00180-6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/947592b71593468f998c3fb2e842856d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s42162-021-00180-6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2520-8942</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">4</subfield><subfield code="j">2021</subfield><subfield code="e">S3</subfield><subfield code="h">13</subfield></datafield></record></collection>
|
callnumber-first |
H - Social Science |
author |
Matteo Barsanti |
spellingShingle |
Matteo Barsanti misc HD9502-9502.5 misc Co-simulation misc Socio-technical simulation misc Smart energy system misc Domestic energy demand misc Granularity misc Modularity misc Energy industries. Energy policy. Fuel trade Socio-technical modeling of smart energy systems: a co-simulation design for domestic energy demand |
authorStr |
Matteo Barsanti |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1031001387 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
HD9502-9502 |
illustrated |
Not Illustrated |
issn |
25208942 |
topic_title |
HD9502-9502.5 Socio-technical modeling of smart energy systems: a co-simulation design for domestic energy demand Co-simulation Socio-technical simulation Smart energy system Domestic energy demand Granularity Modularity |
topic |
misc HD9502-9502.5 misc Co-simulation misc Socio-technical simulation misc Smart energy system misc Domestic energy demand misc Granularity misc Modularity misc Energy industries. Energy policy. Fuel trade |
topic_unstemmed |
misc HD9502-9502.5 misc Co-simulation misc Socio-technical simulation misc Smart energy system misc Domestic energy demand misc Granularity misc Modularity misc Energy industries. Energy policy. Fuel trade |
topic_browse |
misc HD9502-9502.5 misc Co-simulation misc Socio-technical simulation misc Smart energy system misc Domestic energy demand misc Granularity misc Modularity misc Energy industries. Energy policy. Fuel trade |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Energy Informatics |
hierarchy_parent_id |
1031001387 |
hierarchy_top_title |
Energy Informatics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1031001387 |
title |
Socio-technical modeling of smart energy systems: a co-simulation design for domestic energy demand |
ctrlnum |
(DE-627)DOAJ06263707X (DE-599)DOAJ947592b71593468f998c3fb2e842856d |
title_full |
Socio-technical modeling of smart energy systems: a co-simulation design for domestic energy demand |
author_sort |
Matteo Barsanti |
journal |
Energy Informatics |
journalStr |
Energy Informatics |
callnumber-first-code |
H |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
13 |
author_browse |
Matteo Barsanti Jan Sören Schwarz Lionel Guy Gérard Constantin Pranay Kasturi Claudia R. Binder Sebastian Lehnhoff |
container_volume |
4 |
class |
HD9502-9502.5 |
format_se |
Elektronische Aufsätze |
author-letter |
Matteo Barsanti |
doi_str_mv |
10.1186/s42162-021-00180-6 |
author2-role |
verfasserin |
title_sort |
socio-technical modeling of smart energy systems: a co-simulation design for domestic energy demand |
callnumber |
HD9502-9502.5 |
title_auth |
Socio-technical modeling of smart energy systems: a co-simulation design for domestic energy demand |
abstract |
Abstract To tackle the climate crisis, the European energy strategy relies on consumers taking ownership of the energy transition, accelerating decarbonisation through investments in low-carbon technologies and ensuring system stability and reliability by actively participating in the market. Therefore, tools are needed to better understand an increasingly complex and actor-dense energy system, tracking socio-technical dynamics that occur at its margins and then predicting the effects on larger scales. Yet, existing domestic energy demand models are not flexible enough to incorporate a wide range of socio-technical factors, and to be incorporated into larger energy system simulation environments. Here, a co-simulation design for domestic energy demand modeling is presented and motivated on the basis of four design principles: granularity, scalability, modularity and transparency. Microsimulation of domestic energy demand, through the Python open source library demod, shows that it is possible to achieve high detail and high temporal resolution without compromising scalability. Furthermore, mosaik, an open source co-simulation framework, makes it possible to generate, integrate and orchestrate a multitude of demod-based instances with other independent models, which for the illustrative purposes of this study are represented by a heat pump model. The authors hope that the detailed documentation of the proposed solution will encourage interdisciplinary and collaborative efforts to develop a simulation ecosystem capable of investigating alternative energy transition pathways and evaluating policy interventions through the socio-technical lens. |
abstractGer |
Abstract To tackle the climate crisis, the European energy strategy relies on consumers taking ownership of the energy transition, accelerating decarbonisation through investments in low-carbon technologies and ensuring system stability and reliability by actively participating in the market. Therefore, tools are needed to better understand an increasingly complex and actor-dense energy system, tracking socio-technical dynamics that occur at its margins and then predicting the effects on larger scales. Yet, existing domestic energy demand models are not flexible enough to incorporate a wide range of socio-technical factors, and to be incorporated into larger energy system simulation environments. Here, a co-simulation design for domestic energy demand modeling is presented and motivated on the basis of four design principles: granularity, scalability, modularity and transparency. Microsimulation of domestic energy demand, through the Python open source library demod, shows that it is possible to achieve high detail and high temporal resolution without compromising scalability. Furthermore, mosaik, an open source co-simulation framework, makes it possible to generate, integrate and orchestrate a multitude of demod-based instances with other independent models, which for the illustrative purposes of this study are represented by a heat pump model. The authors hope that the detailed documentation of the proposed solution will encourage interdisciplinary and collaborative efforts to develop a simulation ecosystem capable of investigating alternative energy transition pathways and evaluating policy interventions through the socio-technical lens. |
abstract_unstemmed |
Abstract To tackle the climate crisis, the European energy strategy relies on consumers taking ownership of the energy transition, accelerating decarbonisation through investments in low-carbon technologies and ensuring system stability and reliability by actively participating in the market. Therefore, tools are needed to better understand an increasingly complex and actor-dense energy system, tracking socio-technical dynamics that occur at its margins and then predicting the effects on larger scales. Yet, existing domestic energy demand models are not flexible enough to incorporate a wide range of socio-technical factors, and to be incorporated into larger energy system simulation environments. Here, a co-simulation design for domestic energy demand modeling is presented and motivated on the basis of four design principles: granularity, scalability, modularity and transparency. Microsimulation of domestic energy demand, through the Python open source library demod, shows that it is possible to achieve high detail and high temporal resolution without compromising scalability. Furthermore, mosaik, an open source co-simulation framework, makes it possible to generate, integrate and orchestrate a multitude of demod-based instances with other independent models, which for the illustrative purposes of this study are represented by a heat pump model. The authors hope that the detailed documentation of the proposed solution will encourage interdisciplinary and collaborative efforts to develop a simulation ecosystem capable of investigating alternative energy transition pathways and evaluating policy interventions through the socio-technical lens. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
S3 |
title_short |
Socio-technical modeling of smart energy systems: a co-simulation design for domestic energy demand |
url |
https://doi.org/10.1186/s42162-021-00180-6 https://doaj.org/article/947592b71593468f998c3fb2e842856d https://doaj.org/toc/2520-8942 |
remote_bool |
true |
author2 |
Jan Sören Schwarz Lionel Guy Gérard Constantin Pranay Kasturi Claudia R. Binder Sebastian Lehnhoff |
author2Str |
Jan Sören Schwarz Lionel Guy Gérard Constantin Pranay Kasturi Claudia R. Binder Sebastian Lehnhoff |
ppnlink |
1031001387 |
callnumber-subject |
HD - Industries, Land Use, Labor |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s42162-021-00180-6 |
callnumber-a |
HD9502-9502.5 |
up_date |
2024-07-04T02:22:35.410Z |
_version_ |
1803613378090893312 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ06263707X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503012115.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s42162-021-00180-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ06263707X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ947592b71593468f998c3fb2e842856d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">HD9502-9502.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Matteo Barsanti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Socio-technical modeling of smart energy systems: a co-simulation design for domestic energy demand</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract To tackle the climate crisis, the European energy strategy relies on consumers taking ownership of the energy transition, accelerating decarbonisation through investments in low-carbon technologies and ensuring system stability and reliability by actively participating in the market. Therefore, tools are needed to better understand an increasingly complex and actor-dense energy system, tracking socio-technical dynamics that occur at its margins and then predicting the effects on larger scales. Yet, existing domestic energy demand models are not flexible enough to incorporate a wide range of socio-technical factors, and to be incorporated into larger energy system simulation environments. Here, a co-simulation design for domestic energy demand modeling is presented and motivated on the basis of four design principles: granularity, scalability, modularity and transparency. Microsimulation of domestic energy demand, through the Python open source library demod, shows that it is possible to achieve high detail and high temporal resolution without compromising scalability. Furthermore, mosaik, an open source co-simulation framework, makes it possible to generate, integrate and orchestrate a multitude of demod-based instances with other independent models, which for the illustrative purposes of this study are represented by a heat pump model. The authors hope that the detailed documentation of the proposed solution will encourage interdisciplinary and collaborative efforts to develop a simulation ecosystem capable of investigating alternative energy transition pathways and evaluating policy interventions through the socio-technical lens.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Co-simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Socio-technical simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Smart energy system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Domestic energy demand</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Granularity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modularity</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Energy industries. Energy policy. Fuel trade</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jan Sören Schwarz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lionel Guy Gérard Constantin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pranay Kasturi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Claudia R. Binder</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sebastian Lehnhoff</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energy Informatics</subfield><subfield code="d">SpringerOpen, 2018</subfield><subfield code="g">4(2021), S3, Seite 13</subfield><subfield code="w">(DE-627)1031001387</subfield><subfield code="x">25208942</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:4</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:S3</subfield><subfield code="g">pages:13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s42162-021-00180-6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/947592b71593468f998c3fb2e842856d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s42162-021-00180-6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2520-8942</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">4</subfield><subfield code="j">2021</subfield><subfield code="e">S3</subfield><subfield code="h">13</subfield></datafield></record></collection>
|
score |
7.400422 |