Specification of Modified Jarvis Model Parameterization for <i<Pinus cembra</i<
The high ambient ozone concentrations cause impairing effects on vegetation leading to plant injuries. The potential ozone uptake to vegetation through open stomata can be quantified using stomatal conductance measurements under the local environmental conditions. This study compares the ozone stoma...
Ausführliche Beschreibung
Autor*in: |
Anna Buchholcerová [verfasserIn] Peter Fleischer [verfasserIn] Dušan Štefánik [verfasserIn] Svetlana Bičárová [verfasserIn] Veronika Lukasová [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Atmosphere - MDPI AG, 2011, 12(2021), 11, p 1388 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2021 ; number:11, p 1388 |
Links: |
---|
DOI / URN: |
10.3390/atmos12111388 |
---|
Katalog-ID: |
DOAJ062645404 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ062645404 | ||
003 | DE-627 | ||
005 | 20240412133000.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/atmos12111388 |2 doi | |
035 | |a (DE-627)DOAJ062645404 | ||
035 | |a (DE-599)DOAJ34ba8b5d5e174cdcba56350e3f034b37 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QC851-999 | |
100 | 0 | |a Anna Buchholcerová |e verfasserin |4 aut | |
245 | 1 | 0 | |a Specification of Modified Jarvis Model Parameterization for <i<Pinus cembra</i< |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The high ambient ozone concentrations cause impairing effects on vegetation leading to plant injuries. The potential ozone uptake to vegetation through open stomata can be quantified using stomatal conductance measurements under the local environmental conditions. This study compares the ozone stomatal conductance to vegetation obtained with a modified Jarvis formula adopted from the Vegetation Manual of United Nations Economic Commission for Europe, and experimental field measurements’ data. The stomatal conductance was measured by a portable photosynthesis and gas exchange analyzer system LiCOR6400. The measurements were performed in the submontane environment of the High Tatra Mountains in Slovakia on Swiss pine (<i<Pinus cembra</i<), as a native species of the local flora. According to previous studies, Swiss pine is considered as an ozone-sensitive species. The modified Jarvis model for the ozone stomatal conductance is compared with the field measurements. The suitable parameterization of the modified Jarvis model for Swiss pine is obtained. The parameterization of stomatal conductance for Swiss pine in the local environment would help understand its specificity and similarity to other conifer species. In the case of using parameterization for a boreal coniferous from the Vegetation Manual of the International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops, validation of the model with the measurements without temperature adjustment of the conifer chamber achieved a coefficient of determination of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mi<R</mi<<mn<2</mn<</msup<<mo<=</mo<<mn<0.75</mn<</mrow<</semantics<</math<</inline-formula<. This result is not in contradiction with the previous researches. With the optimal set of parameters, obtained in this paper, the Jarvis model reaches <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mi<R</mi<<mn<2</mn<</msup<<mo<=</mo<<mn<0.85</mn<</mrow<</semantics<</math<</inline-formula<. The data suggest that Jarvis-type models with appropriate parameterization are applicable for stomatal conductance estimation for <i<Pinus cembra</i< when the measurements do not modify the temperature regime. | ||
650 | 4 | |a <i<Pinus cembra</i< L. | |
650 | 4 | |a stomatal conductance | |
650 | 4 | |a ozone | |
650 | 4 | |a submontane environment | |
653 | 0 | |a Meteorology. Climatology | |
700 | 0 | |a Peter Fleischer |e verfasserin |4 aut | |
700 | 0 | |a Dušan Štefánik |e verfasserin |4 aut | |
700 | 0 | |a Svetlana Bičárová |e verfasserin |4 aut | |
700 | 0 | |a Veronika Lukasová |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Atmosphere |d MDPI AG, 2011 |g 12(2021), 11, p 1388 |w (DE-627)657584010 |w (DE-600)2605928-9 |x 20734433 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2021 |g number:11, p 1388 |
856 | 4 | 0 | |u https://doi.org/10.3390/atmos12111388 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/34ba8b5d5e174cdcba56350e3f034b37 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2073-4433/12/11/1388 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2073-4433 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2021 |e 11, p 1388 |
author_variant |
a b ab p f pf d š dš s b sb v l vl |
---|---|
matchkey_str |
article:20734433:2021----::pcfctoomdfejrimdlaaeeiai |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
QC |
publishDate |
2021 |
allfields |
10.3390/atmos12111388 doi (DE-627)DOAJ062645404 (DE-599)DOAJ34ba8b5d5e174cdcba56350e3f034b37 DE-627 ger DE-627 rakwb eng QC851-999 Anna Buchholcerová verfasserin aut Specification of Modified Jarvis Model Parameterization for <i<Pinus cembra</i< 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The high ambient ozone concentrations cause impairing effects on vegetation leading to plant injuries. The potential ozone uptake to vegetation through open stomata can be quantified using stomatal conductance measurements under the local environmental conditions. This study compares the ozone stomatal conductance to vegetation obtained with a modified Jarvis formula adopted from the Vegetation Manual of United Nations Economic Commission for Europe, and experimental field measurements’ data. The stomatal conductance was measured by a portable photosynthesis and gas exchange analyzer system LiCOR6400. The measurements were performed in the submontane environment of the High Tatra Mountains in Slovakia on Swiss pine (<i<Pinus cembra</i<), as a native species of the local flora. According to previous studies, Swiss pine is considered as an ozone-sensitive species. The modified Jarvis model for the ozone stomatal conductance is compared with the field measurements. The suitable parameterization of the modified Jarvis model for Swiss pine is obtained. The parameterization of stomatal conductance for Swiss pine in the local environment would help understand its specificity and similarity to other conifer species. In the case of using parameterization for a boreal coniferous from the Vegetation Manual of the International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops, validation of the model with the measurements without temperature adjustment of the conifer chamber achieved a coefficient of determination of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mi<R</mi<<mn<2</mn<</msup<<mo<=</mo<<mn<0.75</mn<</mrow<</semantics<</math<</inline-formula<. This result is not in contradiction with the previous researches. With the optimal set of parameters, obtained in this paper, the Jarvis model reaches <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mi<R</mi<<mn<2</mn<</msup<<mo<=</mo<<mn<0.85</mn<</mrow<</semantics<</math<</inline-formula<. The data suggest that Jarvis-type models with appropriate parameterization are applicable for stomatal conductance estimation for <i<Pinus cembra</i< when the measurements do not modify the temperature regime. <i<Pinus cembra</i< L. stomatal conductance ozone submontane environment Meteorology. Climatology Peter Fleischer verfasserin aut Dušan Štefánik verfasserin aut Svetlana Bičárová verfasserin aut Veronika Lukasová verfasserin aut In Atmosphere MDPI AG, 2011 12(2021), 11, p 1388 (DE-627)657584010 (DE-600)2605928-9 20734433 nnns volume:12 year:2021 number:11, p 1388 https://doi.org/10.3390/atmos12111388 kostenfrei https://doaj.org/article/34ba8b5d5e174cdcba56350e3f034b37 kostenfrei https://www.mdpi.com/2073-4433/12/11/1388 kostenfrei https://doaj.org/toc/2073-4433 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2021 11, p 1388 |
spelling |
10.3390/atmos12111388 doi (DE-627)DOAJ062645404 (DE-599)DOAJ34ba8b5d5e174cdcba56350e3f034b37 DE-627 ger DE-627 rakwb eng QC851-999 Anna Buchholcerová verfasserin aut Specification of Modified Jarvis Model Parameterization for <i<Pinus cembra</i< 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The high ambient ozone concentrations cause impairing effects on vegetation leading to plant injuries. The potential ozone uptake to vegetation through open stomata can be quantified using stomatal conductance measurements under the local environmental conditions. This study compares the ozone stomatal conductance to vegetation obtained with a modified Jarvis formula adopted from the Vegetation Manual of United Nations Economic Commission for Europe, and experimental field measurements’ data. The stomatal conductance was measured by a portable photosynthesis and gas exchange analyzer system LiCOR6400. The measurements were performed in the submontane environment of the High Tatra Mountains in Slovakia on Swiss pine (<i<Pinus cembra</i<), as a native species of the local flora. According to previous studies, Swiss pine is considered as an ozone-sensitive species. The modified Jarvis model for the ozone stomatal conductance is compared with the field measurements. The suitable parameterization of the modified Jarvis model for Swiss pine is obtained. The parameterization of stomatal conductance for Swiss pine in the local environment would help understand its specificity and similarity to other conifer species. In the case of using parameterization for a boreal coniferous from the Vegetation Manual of the International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops, validation of the model with the measurements without temperature adjustment of the conifer chamber achieved a coefficient of determination of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mi<R</mi<<mn<2</mn<</msup<<mo<=</mo<<mn<0.75</mn<</mrow<</semantics<</math<</inline-formula<. This result is not in contradiction with the previous researches. With the optimal set of parameters, obtained in this paper, the Jarvis model reaches <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mi<R</mi<<mn<2</mn<</msup<<mo<=</mo<<mn<0.85</mn<</mrow<</semantics<</math<</inline-formula<. The data suggest that Jarvis-type models with appropriate parameterization are applicable for stomatal conductance estimation for <i<Pinus cembra</i< when the measurements do not modify the temperature regime. <i<Pinus cembra</i< L. stomatal conductance ozone submontane environment Meteorology. Climatology Peter Fleischer verfasserin aut Dušan Štefánik verfasserin aut Svetlana Bičárová verfasserin aut Veronika Lukasová verfasserin aut In Atmosphere MDPI AG, 2011 12(2021), 11, p 1388 (DE-627)657584010 (DE-600)2605928-9 20734433 nnns volume:12 year:2021 number:11, p 1388 https://doi.org/10.3390/atmos12111388 kostenfrei https://doaj.org/article/34ba8b5d5e174cdcba56350e3f034b37 kostenfrei https://www.mdpi.com/2073-4433/12/11/1388 kostenfrei https://doaj.org/toc/2073-4433 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2021 11, p 1388 |
allfields_unstemmed |
10.3390/atmos12111388 doi (DE-627)DOAJ062645404 (DE-599)DOAJ34ba8b5d5e174cdcba56350e3f034b37 DE-627 ger DE-627 rakwb eng QC851-999 Anna Buchholcerová verfasserin aut Specification of Modified Jarvis Model Parameterization for <i<Pinus cembra</i< 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The high ambient ozone concentrations cause impairing effects on vegetation leading to plant injuries. The potential ozone uptake to vegetation through open stomata can be quantified using stomatal conductance measurements under the local environmental conditions. This study compares the ozone stomatal conductance to vegetation obtained with a modified Jarvis formula adopted from the Vegetation Manual of United Nations Economic Commission for Europe, and experimental field measurements’ data. The stomatal conductance was measured by a portable photosynthesis and gas exchange analyzer system LiCOR6400. The measurements were performed in the submontane environment of the High Tatra Mountains in Slovakia on Swiss pine (<i<Pinus cembra</i<), as a native species of the local flora. According to previous studies, Swiss pine is considered as an ozone-sensitive species. The modified Jarvis model for the ozone stomatal conductance is compared with the field measurements. The suitable parameterization of the modified Jarvis model for Swiss pine is obtained. The parameterization of stomatal conductance for Swiss pine in the local environment would help understand its specificity and similarity to other conifer species. In the case of using parameterization for a boreal coniferous from the Vegetation Manual of the International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops, validation of the model with the measurements without temperature adjustment of the conifer chamber achieved a coefficient of determination of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mi<R</mi<<mn<2</mn<</msup<<mo<=</mo<<mn<0.75</mn<</mrow<</semantics<</math<</inline-formula<. This result is not in contradiction with the previous researches. With the optimal set of parameters, obtained in this paper, the Jarvis model reaches <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mi<R</mi<<mn<2</mn<</msup<<mo<=</mo<<mn<0.85</mn<</mrow<</semantics<</math<</inline-formula<. The data suggest that Jarvis-type models with appropriate parameterization are applicable for stomatal conductance estimation for <i<Pinus cembra</i< when the measurements do not modify the temperature regime. <i<Pinus cembra</i< L. stomatal conductance ozone submontane environment Meteorology. Climatology Peter Fleischer verfasserin aut Dušan Štefánik verfasserin aut Svetlana Bičárová verfasserin aut Veronika Lukasová verfasserin aut In Atmosphere MDPI AG, 2011 12(2021), 11, p 1388 (DE-627)657584010 (DE-600)2605928-9 20734433 nnns volume:12 year:2021 number:11, p 1388 https://doi.org/10.3390/atmos12111388 kostenfrei https://doaj.org/article/34ba8b5d5e174cdcba56350e3f034b37 kostenfrei https://www.mdpi.com/2073-4433/12/11/1388 kostenfrei https://doaj.org/toc/2073-4433 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2021 11, p 1388 |
allfieldsGer |
10.3390/atmos12111388 doi (DE-627)DOAJ062645404 (DE-599)DOAJ34ba8b5d5e174cdcba56350e3f034b37 DE-627 ger DE-627 rakwb eng QC851-999 Anna Buchholcerová verfasserin aut Specification of Modified Jarvis Model Parameterization for <i<Pinus cembra</i< 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The high ambient ozone concentrations cause impairing effects on vegetation leading to plant injuries. The potential ozone uptake to vegetation through open stomata can be quantified using stomatal conductance measurements under the local environmental conditions. This study compares the ozone stomatal conductance to vegetation obtained with a modified Jarvis formula adopted from the Vegetation Manual of United Nations Economic Commission for Europe, and experimental field measurements’ data. The stomatal conductance was measured by a portable photosynthesis and gas exchange analyzer system LiCOR6400. The measurements were performed in the submontane environment of the High Tatra Mountains in Slovakia on Swiss pine (<i<Pinus cembra</i<), as a native species of the local flora. According to previous studies, Swiss pine is considered as an ozone-sensitive species. The modified Jarvis model for the ozone stomatal conductance is compared with the field measurements. The suitable parameterization of the modified Jarvis model for Swiss pine is obtained. The parameterization of stomatal conductance for Swiss pine in the local environment would help understand its specificity and similarity to other conifer species. In the case of using parameterization for a boreal coniferous from the Vegetation Manual of the International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops, validation of the model with the measurements without temperature adjustment of the conifer chamber achieved a coefficient of determination of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mi<R</mi<<mn<2</mn<</msup<<mo<=</mo<<mn<0.75</mn<</mrow<</semantics<</math<</inline-formula<. This result is not in contradiction with the previous researches. With the optimal set of parameters, obtained in this paper, the Jarvis model reaches <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mi<R</mi<<mn<2</mn<</msup<<mo<=</mo<<mn<0.85</mn<</mrow<</semantics<</math<</inline-formula<. The data suggest that Jarvis-type models with appropriate parameterization are applicable for stomatal conductance estimation for <i<Pinus cembra</i< when the measurements do not modify the temperature regime. <i<Pinus cembra</i< L. stomatal conductance ozone submontane environment Meteorology. Climatology Peter Fleischer verfasserin aut Dušan Štefánik verfasserin aut Svetlana Bičárová verfasserin aut Veronika Lukasová verfasserin aut In Atmosphere MDPI AG, 2011 12(2021), 11, p 1388 (DE-627)657584010 (DE-600)2605928-9 20734433 nnns volume:12 year:2021 number:11, p 1388 https://doi.org/10.3390/atmos12111388 kostenfrei https://doaj.org/article/34ba8b5d5e174cdcba56350e3f034b37 kostenfrei https://www.mdpi.com/2073-4433/12/11/1388 kostenfrei https://doaj.org/toc/2073-4433 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2021 11, p 1388 |
allfieldsSound |
10.3390/atmos12111388 doi (DE-627)DOAJ062645404 (DE-599)DOAJ34ba8b5d5e174cdcba56350e3f034b37 DE-627 ger DE-627 rakwb eng QC851-999 Anna Buchholcerová verfasserin aut Specification of Modified Jarvis Model Parameterization for <i<Pinus cembra</i< 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The high ambient ozone concentrations cause impairing effects on vegetation leading to plant injuries. The potential ozone uptake to vegetation through open stomata can be quantified using stomatal conductance measurements under the local environmental conditions. This study compares the ozone stomatal conductance to vegetation obtained with a modified Jarvis formula adopted from the Vegetation Manual of United Nations Economic Commission for Europe, and experimental field measurements’ data. The stomatal conductance was measured by a portable photosynthesis and gas exchange analyzer system LiCOR6400. The measurements were performed in the submontane environment of the High Tatra Mountains in Slovakia on Swiss pine (<i<Pinus cembra</i<), as a native species of the local flora. According to previous studies, Swiss pine is considered as an ozone-sensitive species. The modified Jarvis model for the ozone stomatal conductance is compared with the field measurements. The suitable parameterization of the modified Jarvis model for Swiss pine is obtained. The parameterization of stomatal conductance for Swiss pine in the local environment would help understand its specificity and similarity to other conifer species. In the case of using parameterization for a boreal coniferous from the Vegetation Manual of the International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops, validation of the model with the measurements without temperature adjustment of the conifer chamber achieved a coefficient of determination of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mi<R</mi<<mn<2</mn<</msup<<mo<=</mo<<mn<0.75</mn<</mrow<</semantics<</math<</inline-formula<. This result is not in contradiction with the previous researches. With the optimal set of parameters, obtained in this paper, the Jarvis model reaches <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mi<R</mi<<mn<2</mn<</msup<<mo<=</mo<<mn<0.85</mn<</mrow<</semantics<</math<</inline-formula<. The data suggest that Jarvis-type models with appropriate parameterization are applicable for stomatal conductance estimation for <i<Pinus cembra</i< when the measurements do not modify the temperature regime. <i<Pinus cembra</i< L. stomatal conductance ozone submontane environment Meteorology. Climatology Peter Fleischer verfasserin aut Dušan Štefánik verfasserin aut Svetlana Bičárová verfasserin aut Veronika Lukasová verfasserin aut In Atmosphere MDPI AG, 2011 12(2021), 11, p 1388 (DE-627)657584010 (DE-600)2605928-9 20734433 nnns volume:12 year:2021 number:11, p 1388 https://doi.org/10.3390/atmos12111388 kostenfrei https://doaj.org/article/34ba8b5d5e174cdcba56350e3f034b37 kostenfrei https://www.mdpi.com/2073-4433/12/11/1388 kostenfrei https://doaj.org/toc/2073-4433 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2021 11, p 1388 |
language |
English |
source |
In Atmosphere 12(2021), 11, p 1388 volume:12 year:2021 number:11, p 1388 |
sourceStr |
In Atmosphere 12(2021), 11, p 1388 volume:12 year:2021 number:11, p 1388 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
<i<Pinus cembra</i< L. stomatal conductance ozone submontane environment Meteorology. Climatology |
isfreeaccess_bool |
true |
container_title |
Atmosphere |
authorswithroles_txt_mv |
Anna Buchholcerová @@aut@@ Peter Fleischer @@aut@@ Dušan Štefánik @@aut@@ Svetlana Bičárová @@aut@@ Veronika Lukasová @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
657584010 |
id |
DOAJ062645404 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ062645404</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412133000.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/atmos12111388</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ062645404</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ34ba8b5d5e174cdcba56350e3f034b37</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC851-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Anna Buchholcerová</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Specification of Modified Jarvis Model Parameterization for <i<Pinus cembra</i<</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The high ambient ozone concentrations cause impairing effects on vegetation leading to plant injuries. The potential ozone uptake to vegetation through open stomata can be quantified using stomatal conductance measurements under the local environmental conditions. This study compares the ozone stomatal conductance to vegetation obtained with a modified Jarvis formula adopted from the Vegetation Manual of United Nations Economic Commission for Europe, and experimental field measurements’ data. The stomatal conductance was measured by a portable photosynthesis and gas exchange analyzer system LiCOR6400. The measurements were performed in the submontane environment of the High Tatra Mountains in Slovakia on Swiss pine (<i<Pinus cembra</i<), as a native species of the local flora. According to previous studies, Swiss pine is considered as an ozone-sensitive species. The modified Jarvis model for the ozone stomatal conductance is compared with the field measurements. The suitable parameterization of the modified Jarvis model for Swiss pine is obtained. The parameterization of stomatal conductance for Swiss pine in the local environment would help understand its specificity and similarity to other conifer species. In the case of using parameterization for a boreal coniferous from the Vegetation Manual of the International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops, validation of the model with the measurements without temperature adjustment of the conifer chamber achieved a coefficient of determination of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mi<R</mi<<mn<2</mn<</msup<<mo<=</mo<<mn<0.75</mn<</mrow<</semantics<</math<</inline-formula<. This result is not in contradiction with the previous researches. With the optimal set of parameters, obtained in this paper, the Jarvis model reaches <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mi<R</mi<<mn<2</mn<</msup<<mo<=</mo<<mn<0.85</mn<</mrow<</semantics<</math<</inline-formula<. The data suggest that Jarvis-type models with appropriate parameterization are applicable for stomatal conductance estimation for <i<Pinus cembra</i< when the measurements do not modify the temperature regime.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<Pinus cembra</i< L.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stomatal conductance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ozone</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">submontane environment</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Meteorology. Climatology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Peter Fleischer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dušan Štefánik</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Svetlana Bičárová</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Veronika Lukasová</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Atmosphere</subfield><subfield code="d">MDPI AG, 2011</subfield><subfield code="g">12(2021), 11, p 1388</subfield><subfield code="w">(DE-627)657584010</subfield><subfield code="w">(DE-600)2605928-9</subfield><subfield code="x">20734433</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:11, p 1388</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/atmos12111388</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/34ba8b5d5e174cdcba56350e3f034b37</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4433/12/11/1388</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4433</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2021</subfield><subfield code="e">11, p 1388</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Anna Buchholcerová |
spellingShingle |
Anna Buchholcerová misc QC851-999 misc <i<Pinus cembra</i< L. misc stomatal conductance misc ozone misc submontane environment misc Meteorology. Climatology Specification of Modified Jarvis Model Parameterization for <i<Pinus cembra</i< |
authorStr |
Anna Buchholcerová |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)657584010 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QC851-999 |
illustrated |
Not Illustrated |
issn |
20734433 |
topic_title |
QC851-999 Specification of Modified Jarvis Model Parameterization for <i<Pinus cembra</i< <i<Pinus cembra</i< L. stomatal conductance ozone submontane environment |
topic |
misc QC851-999 misc <i<Pinus cembra</i< L. misc stomatal conductance misc ozone misc submontane environment misc Meteorology. Climatology |
topic_unstemmed |
misc QC851-999 misc <i<Pinus cembra</i< L. misc stomatal conductance misc ozone misc submontane environment misc Meteorology. Climatology |
topic_browse |
misc QC851-999 misc <i<Pinus cembra</i< L. misc stomatal conductance misc ozone misc submontane environment misc Meteorology. Climatology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Atmosphere |
hierarchy_parent_id |
657584010 |
hierarchy_top_title |
Atmosphere |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)657584010 (DE-600)2605928-9 |
title |
Specification of Modified Jarvis Model Parameterization for <i<Pinus cembra</i< |
ctrlnum |
(DE-627)DOAJ062645404 (DE-599)DOAJ34ba8b5d5e174cdcba56350e3f034b37 |
title_full |
Specification of Modified Jarvis Model Parameterization for <i<Pinus cembra</i< |
author_sort |
Anna Buchholcerová |
journal |
Atmosphere |
journalStr |
Atmosphere |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Anna Buchholcerová Peter Fleischer Dušan Štefánik Svetlana Bičárová Veronika Lukasová |
container_volume |
12 |
class |
QC851-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Anna Buchholcerová |
doi_str_mv |
10.3390/atmos12111388 |
author2-role |
verfasserin |
title_sort |
specification of modified jarvis model parameterization for <i<pinus cembra</i< |
callnumber |
QC851-999 |
title_auth |
Specification of Modified Jarvis Model Parameterization for <i<Pinus cembra</i< |
abstract |
The high ambient ozone concentrations cause impairing effects on vegetation leading to plant injuries. The potential ozone uptake to vegetation through open stomata can be quantified using stomatal conductance measurements under the local environmental conditions. This study compares the ozone stomatal conductance to vegetation obtained with a modified Jarvis formula adopted from the Vegetation Manual of United Nations Economic Commission for Europe, and experimental field measurements’ data. The stomatal conductance was measured by a portable photosynthesis and gas exchange analyzer system LiCOR6400. The measurements were performed in the submontane environment of the High Tatra Mountains in Slovakia on Swiss pine (<i<Pinus cembra</i<), as a native species of the local flora. According to previous studies, Swiss pine is considered as an ozone-sensitive species. The modified Jarvis model for the ozone stomatal conductance is compared with the field measurements. The suitable parameterization of the modified Jarvis model for Swiss pine is obtained. The parameterization of stomatal conductance for Swiss pine in the local environment would help understand its specificity and similarity to other conifer species. In the case of using parameterization for a boreal coniferous from the Vegetation Manual of the International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops, validation of the model with the measurements without temperature adjustment of the conifer chamber achieved a coefficient of determination of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mi<R</mi<<mn<2</mn<</msup<<mo<=</mo<<mn<0.75</mn<</mrow<</semantics<</math<</inline-formula<. This result is not in contradiction with the previous researches. With the optimal set of parameters, obtained in this paper, the Jarvis model reaches <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mi<R</mi<<mn<2</mn<</msup<<mo<=</mo<<mn<0.85</mn<</mrow<</semantics<</math<</inline-formula<. The data suggest that Jarvis-type models with appropriate parameterization are applicable for stomatal conductance estimation for <i<Pinus cembra</i< when the measurements do not modify the temperature regime. |
abstractGer |
The high ambient ozone concentrations cause impairing effects on vegetation leading to plant injuries. The potential ozone uptake to vegetation through open stomata can be quantified using stomatal conductance measurements under the local environmental conditions. This study compares the ozone stomatal conductance to vegetation obtained with a modified Jarvis formula adopted from the Vegetation Manual of United Nations Economic Commission for Europe, and experimental field measurements’ data. The stomatal conductance was measured by a portable photosynthesis and gas exchange analyzer system LiCOR6400. The measurements were performed in the submontane environment of the High Tatra Mountains in Slovakia on Swiss pine (<i<Pinus cembra</i<), as a native species of the local flora. According to previous studies, Swiss pine is considered as an ozone-sensitive species. The modified Jarvis model for the ozone stomatal conductance is compared with the field measurements. The suitable parameterization of the modified Jarvis model for Swiss pine is obtained. The parameterization of stomatal conductance for Swiss pine in the local environment would help understand its specificity and similarity to other conifer species. In the case of using parameterization for a boreal coniferous from the Vegetation Manual of the International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops, validation of the model with the measurements without temperature adjustment of the conifer chamber achieved a coefficient of determination of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mi<R</mi<<mn<2</mn<</msup<<mo<=</mo<<mn<0.75</mn<</mrow<</semantics<</math<</inline-formula<. This result is not in contradiction with the previous researches. With the optimal set of parameters, obtained in this paper, the Jarvis model reaches <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mi<R</mi<<mn<2</mn<</msup<<mo<=</mo<<mn<0.85</mn<</mrow<</semantics<</math<</inline-formula<. The data suggest that Jarvis-type models with appropriate parameterization are applicable for stomatal conductance estimation for <i<Pinus cembra</i< when the measurements do not modify the temperature regime. |
abstract_unstemmed |
The high ambient ozone concentrations cause impairing effects on vegetation leading to plant injuries. The potential ozone uptake to vegetation through open stomata can be quantified using stomatal conductance measurements under the local environmental conditions. This study compares the ozone stomatal conductance to vegetation obtained with a modified Jarvis formula adopted from the Vegetation Manual of United Nations Economic Commission for Europe, and experimental field measurements’ data. The stomatal conductance was measured by a portable photosynthesis and gas exchange analyzer system LiCOR6400. The measurements were performed in the submontane environment of the High Tatra Mountains in Slovakia on Swiss pine (<i<Pinus cembra</i<), as a native species of the local flora. According to previous studies, Swiss pine is considered as an ozone-sensitive species. The modified Jarvis model for the ozone stomatal conductance is compared with the field measurements. The suitable parameterization of the modified Jarvis model for Swiss pine is obtained. The parameterization of stomatal conductance for Swiss pine in the local environment would help understand its specificity and similarity to other conifer species. In the case of using parameterization for a boreal coniferous from the Vegetation Manual of the International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops, validation of the model with the measurements without temperature adjustment of the conifer chamber achieved a coefficient of determination of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mi<R</mi<<mn<2</mn<</msup<<mo<=</mo<<mn<0.75</mn<</mrow<</semantics<</math<</inline-formula<. This result is not in contradiction with the previous researches. With the optimal set of parameters, obtained in this paper, the Jarvis model reaches <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mi<R</mi<<mn<2</mn<</msup<<mo<=</mo<<mn<0.85</mn<</mrow<</semantics<</math<</inline-formula<. The data suggest that Jarvis-type models with appropriate parameterization are applicable for stomatal conductance estimation for <i<Pinus cembra</i< when the measurements do not modify the temperature regime. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
11, p 1388 |
title_short |
Specification of Modified Jarvis Model Parameterization for <i<Pinus cembra</i< |
url |
https://doi.org/10.3390/atmos12111388 https://doaj.org/article/34ba8b5d5e174cdcba56350e3f034b37 https://www.mdpi.com/2073-4433/12/11/1388 https://doaj.org/toc/2073-4433 |
remote_bool |
true |
author2 |
Peter Fleischer Dušan Štefánik Svetlana Bičárová Veronika Lukasová |
author2Str |
Peter Fleischer Dušan Štefánik Svetlana Bičárová Veronika Lukasová |
ppnlink |
657584010 |
callnumber-subject |
QC - Physics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/atmos12111388 |
callnumber-a |
QC851-999 |
up_date |
2024-07-04T02:24:09.751Z |
_version_ |
1803613477016698880 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ062645404</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412133000.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/atmos12111388</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ062645404</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ34ba8b5d5e174cdcba56350e3f034b37</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC851-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Anna Buchholcerová</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Specification of Modified Jarvis Model Parameterization for <i<Pinus cembra</i<</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The high ambient ozone concentrations cause impairing effects on vegetation leading to plant injuries. The potential ozone uptake to vegetation through open stomata can be quantified using stomatal conductance measurements under the local environmental conditions. This study compares the ozone stomatal conductance to vegetation obtained with a modified Jarvis formula adopted from the Vegetation Manual of United Nations Economic Commission for Europe, and experimental field measurements’ data. The stomatal conductance was measured by a portable photosynthesis and gas exchange analyzer system LiCOR6400. The measurements were performed in the submontane environment of the High Tatra Mountains in Slovakia on Swiss pine (<i<Pinus cembra</i<), as a native species of the local flora. According to previous studies, Swiss pine is considered as an ozone-sensitive species. The modified Jarvis model for the ozone stomatal conductance is compared with the field measurements. The suitable parameterization of the modified Jarvis model for Swiss pine is obtained. The parameterization of stomatal conductance for Swiss pine in the local environment would help understand its specificity and similarity to other conifer species. In the case of using parameterization for a boreal coniferous from the Vegetation Manual of the International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops, validation of the model with the measurements without temperature adjustment of the conifer chamber achieved a coefficient of determination of <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mi<R</mi<<mn<2</mn<</msup<<mo<=</mo<<mn<0.75</mn<</mrow<</semantics<</math<</inline-formula<. This result is not in contradiction with the previous researches. With the optimal set of parameters, obtained in this paper, the Jarvis model reaches <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msup<<mi<R</mi<<mn<2</mn<</msup<<mo<=</mo<<mn<0.85</mn<</mrow<</semantics<</math<</inline-formula<. The data suggest that Jarvis-type models with appropriate parameterization are applicable for stomatal conductance estimation for <i<Pinus cembra</i< when the measurements do not modify the temperature regime.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<Pinus cembra</i< L.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stomatal conductance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ozone</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">submontane environment</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Meteorology. Climatology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Peter Fleischer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dušan Štefánik</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Svetlana Bičárová</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Veronika Lukasová</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Atmosphere</subfield><subfield code="d">MDPI AG, 2011</subfield><subfield code="g">12(2021), 11, p 1388</subfield><subfield code="w">(DE-627)657584010</subfield><subfield code="w">(DE-600)2605928-9</subfield><subfield code="x">20734433</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:11, p 1388</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/atmos12111388</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/34ba8b5d5e174cdcba56350e3f034b37</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4433/12/11/1388</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4433</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2021</subfield><subfield code="e">11, p 1388</subfield></datafield></record></collection>
|
score |
7.4026995 |