Convolutional Neural Network Based Approval Prediction of Enhancement Reports
For a given software enhancement report, identifying its possible approval status could help software developers by suggesting feature enhancements to compete in the software industry. An automatic solution for the approval prediction of enhancements could assist all the participants in resolving en...
Ausführliche Beschreibung
Autor*in: |
Jun Cheng [verfasserIn] Mazhar Sadiq [verfasserIn] Olga A. Kalugina [verfasserIn] Sadeem Ahmad Nafees [verfasserIn] Qasim Umer [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 9(2021), Seite 122412-122424 |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2021 ; pages:122412-122424 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2021.3108624 |
---|
Katalog-ID: |
DOAJ062740113 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ062740113 | ||
003 | DE-627 | ||
005 | 20230309022753.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2021.3108624 |2 doi | |
035 | |a (DE-627)DOAJ062740113 | ||
035 | |a (DE-599)DOAJ0096db12e70e4e7bace63d2fcb7d4da2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Jun Cheng |e verfasserin |4 aut | |
245 | 1 | 0 | |a Convolutional Neural Network Based Approval Prediction of Enhancement Reports |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a For a given software enhancement report, identifying its possible approval status could help software developers by suggesting feature enhancements to compete in the software industry. An automatic solution for the approval prediction of enhancements could assist all the participants in resolving enhancements. The key challenges are the preprocessing of noisy textual information and the state-of-the-art feature models to combine the syntactical and semantic word information available in the given text. To this end, we propose a deep learning based approach for the approval prediction of enhancement reports that incorporates the users’ sentiments involved in the text. First, we preprocess the textual information of all enhancement reports to avoid noise. Second, we compute the sentiment of each enhancement report using Senti4SD. Third, we combine the bag-of-words (BOW) representation and traditional word2vec based representation to learn the novel deep representation (a recurrent neural network (RNN) with attention based representation) of preprocessed text. Using an attention mechanism enables the model to remember the context over a long sequence of words in an enhancement report. Fourth, based on sentiment and deep representation, we train a deep learning based classifier for the approval prediction of enhancement reports. Finally, we reuse the 40, 000 enhancement reports from 10 real software applications to evaluate the proposed approach. The cross-application evaluation suggests that the proposed approach is accurate and outperforms the state-of-the-art. The results of the proposed approach improve the precision from 86.52% to 90.56%, recall from 66.45% to 80.10%, and f-measure from 78.12% to 85.01%. | ||
650 | 4 | |a Deep learning algorithms | |
650 | 4 | |a classification | |
650 | 4 | |a enhancement reports | |
650 | 4 | |a approval prediction | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Mazhar Sadiq |e verfasserin |4 aut | |
700 | 0 | |a Olga A. Kalugina |e verfasserin |4 aut | |
700 | 0 | |a Sadeem Ahmad Nafees |e verfasserin |4 aut | |
700 | 0 | |a Qasim Umer |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 9(2021), Seite 122412-122424 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2021 |g pages:122412-122424 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2021.3108624 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/0096db12e70e4e7bace63d2fcb7d4da2 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/9524733/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2021 |h 122412-122424 |
author_variant |
j c jc m s ms o a k oak s a n san q u qu |
---|---|
matchkey_str |
article:21693536:2021----::ovltoanuantokaeapoapeitoo |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
TK |
publishDate |
2021 |
allfields |
10.1109/ACCESS.2021.3108624 doi (DE-627)DOAJ062740113 (DE-599)DOAJ0096db12e70e4e7bace63d2fcb7d4da2 DE-627 ger DE-627 rakwb eng TK1-9971 Jun Cheng verfasserin aut Convolutional Neural Network Based Approval Prediction of Enhancement Reports 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier For a given software enhancement report, identifying its possible approval status could help software developers by suggesting feature enhancements to compete in the software industry. An automatic solution for the approval prediction of enhancements could assist all the participants in resolving enhancements. The key challenges are the preprocessing of noisy textual information and the state-of-the-art feature models to combine the syntactical and semantic word information available in the given text. To this end, we propose a deep learning based approach for the approval prediction of enhancement reports that incorporates the users’ sentiments involved in the text. First, we preprocess the textual information of all enhancement reports to avoid noise. Second, we compute the sentiment of each enhancement report using Senti4SD. Third, we combine the bag-of-words (BOW) representation and traditional word2vec based representation to learn the novel deep representation (a recurrent neural network (RNN) with attention based representation) of preprocessed text. Using an attention mechanism enables the model to remember the context over a long sequence of words in an enhancement report. Fourth, based on sentiment and deep representation, we train a deep learning based classifier for the approval prediction of enhancement reports. Finally, we reuse the 40, 000 enhancement reports from 10 real software applications to evaluate the proposed approach. The cross-application evaluation suggests that the proposed approach is accurate and outperforms the state-of-the-art. The results of the proposed approach improve the precision from 86.52% to 90.56%, recall from 66.45% to 80.10%, and f-measure from 78.12% to 85.01%. Deep learning algorithms classification enhancement reports approval prediction Electrical engineering. Electronics. Nuclear engineering Mazhar Sadiq verfasserin aut Olga A. Kalugina verfasserin aut Sadeem Ahmad Nafees verfasserin aut Qasim Umer verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 122412-122424 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:122412-122424 https://doi.org/10.1109/ACCESS.2021.3108624 kostenfrei https://doaj.org/article/0096db12e70e4e7bace63d2fcb7d4da2 kostenfrei https://ieeexplore.ieee.org/document/9524733/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 122412-122424 |
spelling |
10.1109/ACCESS.2021.3108624 doi (DE-627)DOAJ062740113 (DE-599)DOAJ0096db12e70e4e7bace63d2fcb7d4da2 DE-627 ger DE-627 rakwb eng TK1-9971 Jun Cheng verfasserin aut Convolutional Neural Network Based Approval Prediction of Enhancement Reports 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier For a given software enhancement report, identifying its possible approval status could help software developers by suggesting feature enhancements to compete in the software industry. An automatic solution for the approval prediction of enhancements could assist all the participants in resolving enhancements. The key challenges are the preprocessing of noisy textual information and the state-of-the-art feature models to combine the syntactical and semantic word information available in the given text. To this end, we propose a deep learning based approach for the approval prediction of enhancement reports that incorporates the users’ sentiments involved in the text. First, we preprocess the textual information of all enhancement reports to avoid noise. Second, we compute the sentiment of each enhancement report using Senti4SD. Third, we combine the bag-of-words (BOW) representation and traditional word2vec based representation to learn the novel deep representation (a recurrent neural network (RNN) with attention based representation) of preprocessed text. Using an attention mechanism enables the model to remember the context over a long sequence of words in an enhancement report. Fourth, based on sentiment and deep representation, we train a deep learning based classifier for the approval prediction of enhancement reports. Finally, we reuse the 40, 000 enhancement reports from 10 real software applications to evaluate the proposed approach. The cross-application evaluation suggests that the proposed approach is accurate and outperforms the state-of-the-art. The results of the proposed approach improve the precision from 86.52% to 90.56%, recall from 66.45% to 80.10%, and f-measure from 78.12% to 85.01%. Deep learning algorithms classification enhancement reports approval prediction Electrical engineering. Electronics. Nuclear engineering Mazhar Sadiq verfasserin aut Olga A. Kalugina verfasserin aut Sadeem Ahmad Nafees verfasserin aut Qasim Umer verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 122412-122424 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:122412-122424 https://doi.org/10.1109/ACCESS.2021.3108624 kostenfrei https://doaj.org/article/0096db12e70e4e7bace63d2fcb7d4da2 kostenfrei https://ieeexplore.ieee.org/document/9524733/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 122412-122424 |
allfields_unstemmed |
10.1109/ACCESS.2021.3108624 doi (DE-627)DOAJ062740113 (DE-599)DOAJ0096db12e70e4e7bace63d2fcb7d4da2 DE-627 ger DE-627 rakwb eng TK1-9971 Jun Cheng verfasserin aut Convolutional Neural Network Based Approval Prediction of Enhancement Reports 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier For a given software enhancement report, identifying its possible approval status could help software developers by suggesting feature enhancements to compete in the software industry. An automatic solution for the approval prediction of enhancements could assist all the participants in resolving enhancements. The key challenges are the preprocessing of noisy textual information and the state-of-the-art feature models to combine the syntactical and semantic word information available in the given text. To this end, we propose a deep learning based approach for the approval prediction of enhancement reports that incorporates the users’ sentiments involved in the text. First, we preprocess the textual information of all enhancement reports to avoid noise. Second, we compute the sentiment of each enhancement report using Senti4SD. Third, we combine the bag-of-words (BOW) representation and traditional word2vec based representation to learn the novel deep representation (a recurrent neural network (RNN) with attention based representation) of preprocessed text. Using an attention mechanism enables the model to remember the context over a long sequence of words in an enhancement report. Fourth, based on sentiment and deep representation, we train a deep learning based classifier for the approval prediction of enhancement reports. Finally, we reuse the 40, 000 enhancement reports from 10 real software applications to evaluate the proposed approach. The cross-application evaluation suggests that the proposed approach is accurate and outperforms the state-of-the-art. The results of the proposed approach improve the precision from 86.52% to 90.56%, recall from 66.45% to 80.10%, and f-measure from 78.12% to 85.01%. Deep learning algorithms classification enhancement reports approval prediction Electrical engineering. Electronics. Nuclear engineering Mazhar Sadiq verfasserin aut Olga A. Kalugina verfasserin aut Sadeem Ahmad Nafees verfasserin aut Qasim Umer verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 122412-122424 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:122412-122424 https://doi.org/10.1109/ACCESS.2021.3108624 kostenfrei https://doaj.org/article/0096db12e70e4e7bace63d2fcb7d4da2 kostenfrei https://ieeexplore.ieee.org/document/9524733/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 122412-122424 |
allfieldsGer |
10.1109/ACCESS.2021.3108624 doi (DE-627)DOAJ062740113 (DE-599)DOAJ0096db12e70e4e7bace63d2fcb7d4da2 DE-627 ger DE-627 rakwb eng TK1-9971 Jun Cheng verfasserin aut Convolutional Neural Network Based Approval Prediction of Enhancement Reports 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier For a given software enhancement report, identifying its possible approval status could help software developers by suggesting feature enhancements to compete in the software industry. An automatic solution for the approval prediction of enhancements could assist all the participants in resolving enhancements. The key challenges are the preprocessing of noisy textual information and the state-of-the-art feature models to combine the syntactical and semantic word information available in the given text. To this end, we propose a deep learning based approach for the approval prediction of enhancement reports that incorporates the users’ sentiments involved in the text. First, we preprocess the textual information of all enhancement reports to avoid noise. Second, we compute the sentiment of each enhancement report using Senti4SD. Third, we combine the bag-of-words (BOW) representation and traditional word2vec based representation to learn the novel deep representation (a recurrent neural network (RNN) with attention based representation) of preprocessed text. Using an attention mechanism enables the model to remember the context over a long sequence of words in an enhancement report. Fourth, based on sentiment and deep representation, we train a deep learning based classifier for the approval prediction of enhancement reports. Finally, we reuse the 40, 000 enhancement reports from 10 real software applications to evaluate the proposed approach. The cross-application evaluation suggests that the proposed approach is accurate and outperforms the state-of-the-art. The results of the proposed approach improve the precision from 86.52% to 90.56%, recall from 66.45% to 80.10%, and f-measure from 78.12% to 85.01%. Deep learning algorithms classification enhancement reports approval prediction Electrical engineering. Electronics. Nuclear engineering Mazhar Sadiq verfasserin aut Olga A. Kalugina verfasserin aut Sadeem Ahmad Nafees verfasserin aut Qasim Umer verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 122412-122424 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:122412-122424 https://doi.org/10.1109/ACCESS.2021.3108624 kostenfrei https://doaj.org/article/0096db12e70e4e7bace63d2fcb7d4da2 kostenfrei https://ieeexplore.ieee.org/document/9524733/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 122412-122424 |
allfieldsSound |
10.1109/ACCESS.2021.3108624 doi (DE-627)DOAJ062740113 (DE-599)DOAJ0096db12e70e4e7bace63d2fcb7d4da2 DE-627 ger DE-627 rakwb eng TK1-9971 Jun Cheng verfasserin aut Convolutional Neural Network Based Approval Prediction of Enhancement Reports 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier For a given software enhancement report, identifying its possible approval status could help software developers by suggesting feature enhancements to compete in the software industry. An automatic solution for the approval prediction of enhancements could assist all the participants in resolving enhancements. The key challenges are the preprocessing of noisy textual information and the state-of-the-art feature models to combine the syntactical and semantic word information available in the given text. To this end, we propose a deep learning based approach for the approval prediction of enhancement reports that incorporates the users’ sentiments involved in the text. First, we preprocess the textual information of all enhancement reports to avoid noise. Second, we compute the sentiment of each enhancement report using Senti4SD. Third, we combine the bag-of-words (BOW) representation and traditional word2vec based representation to learn the novel deep representation (a recurrent neural network (RNN) with attention based representation) of preprocessed text. Using an attention mechanism enables the model to remember the context over a long sequence of words in an enhancement report. Fourth, based on sentiment and deep representation, we train a deep learning based classifier for the approval prediction of enhancement reports. Finally, we reuse the 40, 000 enhancement reports from 10 real software applications to evaluate the proposed approach. The cross-application evaluation suggests that the proposed approach is accurate and outperforms the state-of-the-art. The results of the proposed approach improve the precision from 86.52% to 90.56%, recall from 66.45% to 80.10%, and f-measure from 78.12% to 85.01%. Deep learning algorithms classification enhancement reports approval prediction Electrical engineering. Electronics. Nuclear engineering Mazhar Sadiq verfasserin aut Olga A. Kalugina verfasserin aut Sadeem Ahmad Nafees verfasserin aut Qasim Umer verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 122412-122424 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:122412-122424 https://doi.org/10.1109/ACCESS.2021.3108624 kostenfrei https://doaj.org/article/0096db12e70e4e7bace63d2fcb7d4da2 kostenfrei https://ieeexplore.ieee.org/document/9524733/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 122412-122424 |
language |
English |
source |
In IEEE Access 9(2021), Seite 122412-122424 volume:9 year:2021 pages:122412-122424 |
sourceStr |
In IEEE Access 9(2021), Seite 122412-122424 volume:9 year:2021 pages:122412-122424 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Deep learning algorithms classification enhancement reports approval prediction Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Jun Cheng @@aut@@ Mazhar Sadiq @@aut@@ Olga A. Kalugina @@aut@@ Sadeem Ahmad Nafees @@aut@@ Qasim Umer @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ062740113 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ062740113</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309022753.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2021.3108624</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ062740113</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ0096db12e70e4e7bace63d2fcb7d4da2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jun Cheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Convolutional Neural Network Based Approval Prediction of Enhancement Reports</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">For a given software enhancement report, identifying its possible approval status could help software developers by suggesting feature enhancements to compete in the software industry. An automatic solution for the approval prediction of enhancements could assist all the participants in resolving enhancements. The key challenges are the preprocessing of noisy textual information and the state-of-the-art feature models to combine the syntactical and semantic word information available in the given text. To this end, we propose a deep learning based approach for the approval prediction of enhancement reports that incorporates the users’ sentiments involved in the text. First, we preprocess the textual information of all enhancement reports to avoid noise. Second, we compute the sentiment of each enhancement report using Senti4SD. Third, we combine the bag-of-words (BOW) representation and traditional word2vec based representation to learn the novel deep representation (a recurrent neural network (RNN) with attention based representation) of preprocessed text. Using an attention mechanism enables the model to remember the context over a long sequence of words in an enhancement report. Fourth, based on sentiment and deep representation, we train a deep learning based classifier for the approval prediction of enhancement reports. Finally, we reuse the 40, 000 enhancement reports from 10 real software applications to evaluate the proposed approach. The cross-application evaluation suggests that the proposed approach is accurate and outperforms the state-of-the-art. The results of the proposed approach improve the precision from 86.52% to 90.56%, recall from 66.45% to 80.10%, and f-measure from 78.12% to 85.01%.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep learning algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">classification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">enhancement reports</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">approval prediction</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mazhar Sadiq</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Olga A. Kalugina</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sadeem Ahmad Nafees</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qasim Umer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">9(2021), Seite 122412-122424</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:122412-122424</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2021.3108624</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/0096db12e70e4e7bace63d2fcb7d4da2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9524733/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2021</subfield><subfield code="h">122412-122424</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Jun Cheng |
spellingShingle |
Jun Cheng misc TK1-9971 misc Deep learning algorithms misc classification misc enhancement reports misc approval prediction misc Electrical engineering. Electronics. Nuclear engineering Convolutional Neural Network Based Approval Prediction of Enhancement Reports |
authorStr |
Jun Cheng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 Convolutional Neural Network Based Approval Prediction of Enhancement Reports Deep learning algorithms classification enhancement reports approval prediction |
topic |
misc TK1-9971 misc Deep learning algorithms misc classification misc enhancement reports misc approval prediction misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Deep learning algorithms misc classification misc enhancement reports misc approval prediction misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Deep learning algorithms misc classification misc enhancement reports misc approval prediction misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
Convolutional Neural Network Based Approval Prediction of Enhancement Reports |
ctrlnum |
(DE-627)DOAJ062740113 (DE-599)DOAJ0096db12e70e4e7bace63d2fcb7d4da2 |
title_full |
Convolutional Neural Network Based Approval Prediction of Enhancement Reports |
author_sort |
Jun Cheng |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
122412 |
author_browse |
Jun Cheng Mazhar Sadiq Olga A. Kalugina Sadeem Ahmad Nafees Qasim Umer |
container_volume |
9 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Jun Cheng |
doi_str_mv |
10.1109/ACCESS.2021.3108624 |
author2-role |
verfasserin |
title_sort |
convolutional neural network based approval prediction of enhancement reports |
callnumber |
TK1-9971 |
title_auth |
Convolutional Neural Network Based Approval Prediction of Enhancement Reports |
abstract |
For a given software enhancement report, identifying its possible approval status could help software developers by suggesting feature enhancements to compete in the software industry. An automatic solution for the approval prediction of enhancements could assist all the participants in resolving enhancements. The key challenges are the preprocessing of noisy textual information and the state-of-the-art feature models to combine the syntactical and semantic word information available in the given text. To this end, we propose a deep learning based approach for the approval prediction of enhancement reports that incorporates the users’ sentiments involved in the text. First, we preprocess the textual information of all enhancement reports to avoid noise. Second, we compute the sentiment of each enhancement report using Senti4SD. Third, we combine the bag-of-words (BOW) representation and traditional word2vec based representation to learn the novel deep representation (a recurrent neural network (RNN) with attention based representation) of preprocessed text. Using an attention mechanism enables the model to remember the context over a long sequence of words in an enhancement report. Fourth, based on sentiment and deep representation, we train a deep learning based classifier for the approval prediction of enhancement reports. Finally, we reuse the 40, 000 enhancement reports from 10 real software applications to evaluate the proposed approach. The cross-application evaluation suggests that the proposed approach is accurate and outperforms the state-of-the-art. The results of the proposed approach improve the precision from 86.52% to 90.56%, recall from 66.45% to 80.10%, and f-measure from 78.12% to 85.01%. |
abstractGer |
For a given software enhancement report, identifying its possible approval status could help software developers by suggesting feature enhancements to compete in the software industry. An automatic solution for the approval prediction of enhancements could assist all the participants in resolving enhancements. The key challenges are the preprocessing of noisy textual information and the state-of-the-art feature models to combine the syntactical and semantic word information available in the given text. To this end, we propose a deep learning based approach for the approval prediction of enhancement reports that incorporates the users’ sentiments involved in the text. First, we preprocess the textual information of all enhancement reports to avoid noise. Second, we compute the sentiment of each enhancement report using Senti4SD. Third, we combine the bag-of-words (BOW) representation and traditional word2vec based representation to learn the novel deep representation (a recurrent neural network (RNN) with attention based representation) of preprocessed text. Using an attention mechanism enables the model to remember the context over a long sequence of words in an enhancement report. Fourth, based on sentiment and deep representation, we train a deep learning based classifier for the approval prediction of enhancement reports. Finally, we reuse the 40, 000 enhancement reports from 10 real software applications to evaluate the proposed approach. The cross-application evaluation suggests that the proposed approach is accurate and outperforms the state-of-the-art. The results of the proposed approach improve the precision from 86.52% to 90.56%, recall from 66.45% to 80.10%, and f-measure from 78.12% to 85.01%. |
abstract_unstemmed |
For a given software enhancement report, identifying its possible approval status could help software developers by suggesting feature enhancements to compete in the software industry. An automatic solution for the approval prediction of enhancements could assist all the participants in resolving enhancements. The key challenges are the preprocessing of noisy textual information and the state-of-the-art feature models to combine the syntactical and semantic word information available in the given text. To this end, we propose a deep learning based approach for the approval prediction of enhancement reports that incorporates the users’ sentiments involved in the text. First, we preprocess the textual information of all enhancement reports to avoid noise. Second, we compute the sentiment of each enhancement report using Senti4SD. Third, we combine the bag-of-words (BOW) representation and traditional word2vec based representation to learn the novel deep representation (a recurrent neural network (RNN) with attention based representation) of preprocessed text. Using an attention mechanism enables the model to remember the context over a long sequence of words in an enhancement report. Fourth, based on sentiment and deep representation, we train a deep learning based classifier for the approval prediction of enhancement reports. Finally, we reuse the 40, 000 enhancement reports from 10 real software applications to evaluate the proposed approach. The cross-application evaluation suggests that the proposed approach is accurate and outperforms the state-of-the-art. The results of the proposed approach improve the precision from 86.52% to 90.56%, recall from 66.45% to 80.10%, and f-measure from 78.12% to 85.01%. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Convolutional Neural Network Based Approval Prediction of Enhancement Reports |
url |
https://doi.org/10.1109/ACCESS.2021.3108624 https://doaj.org/article/0096db12e70e4e7bace63d2fcb7d4da2 https://ieeexplore.ieee.org/document/9524733/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Mazhar Sadiq Olga A. Kalugina Sadeem Ahmad Nafees Qasim Umer |
author2Str |
Mazhar Sadiq Olga A. Kalugina Sadeem Ahmad Nafees Qasim Umer |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2021.3108624 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T13:47:03.342Z |
_version_ |
1803565843975503872 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ062740113</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309022753.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2021.3108624</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ062740113</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ0096db12e70e4e7bace63d2fcb7d4da2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jun Cheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Convolutional Neural Network Based Approval Prediction of Enhancement Reports</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">For a given software enhancement report, identifying its possible approval status could help software developers by suggesting feature enhancements to compete in the software industry. An automatic solution for the approval prediction of enhancements could assist all the participants in resolving enhancements. The key challenges are the preprocessing of noisy textual information and the state-of-the-art feature models to combine the syntactical and semantic word information available in the given text. To this end, we propose a deep learning based approach for the approval prediction of enhancement reports that incorporates the users’ sentiments involved in the text. First, we preprocess the textual information of all enhancement reports to avoid noise. Second, we compute the sentiment of each enhancement report using Senti4SD. Third, we combine the bag-of-words (BOW) representation and traditional word2vec based representation to learn the novel deep representation (a recurrent neural network (RNN) with attention based representation) of preprocessed text. Using an attention mechanism enables the model to remember the context over a long sequence of words in an enhancement report. Fourth, based on sentiment and deep representation, we train a deep learning based classifier for the approval prediction of enhancement reports. Finally, we reuse the 40, 000 enhancement reports from 10 real software applications to evaluate the proposed approach. The cross-application evaluation suggests that the proposed approach is accurate and outperforms the state-of-the-art. The results of the proposed approach improve the precision from 86.52% to 90.56%, recall from 66.45% to 80.10%, and f-measure from 78.12% to 85.01%.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep learning algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">classification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">enhancement reports</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">approval prediction</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mazhar Sadiq</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Olga A. Kalugina</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sadeem Ahmad Nafees</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qasim Umer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">9(2021), Seite 122412-122424</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:122412-122424</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2021.3108624</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/0096db12e70e4e7bace63d2fcb7d4da2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9524733/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2021</subfield><subfield code="h">122412-122424</subfield></datafield></record></collection>
|
score |
7.4001474 |