Deep Learning for SARS COV-2 Genome Sequences
The SARS-CoV-2 virus which originated in Wuhan, China has since spread throughout the world and is affecting millions of people. When there is a novel virus outbreak, it is crucial to quickly determine if the epidemic is a result of the novel virus or a well-known virus. We propose a deep learning a...
Ausführliche Beschreibung
Autor*in: |
Albert Whata [verfasserIn] Charles Chimedza [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 9(2021), Seite 59597-59611 |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2021 ; pages:59597-59611 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2021.3073728 |
---|
Katalog-ID: |
DOAJ062759299 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ062759299 | ||
003 | DE-627 | ||
005 | 20230309022855.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2021.3073728 |2 doi | |
035 | |a (DE-627)DOAJ062759299 | ||
035 | |a (DE-599)DOAJ3e8e72879b0a41d589e47794019f5fba | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Albert Whata |e verfasserin |4 aut | |
245 | 1 | 0 | |a Deep Learning for SARS COV-2 Genome Sequences |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The SARS-CoV-2 virus which originated in Wuhan, China has since spread throughout the world and is affecting millions of people. When there is a novel virus outbreak, it is crucial to quickly determine if the epidemic is a result of the novel virus or a well-known virus. We propose a deep learning algorithm that uses a convolutional neural network (CNN) as well as a bi-directional long short-term memory (Bi-LSTM) neural network, for the classification of the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) amongst Coronaviruses. Besides, we classify whether a genome sequence contains candidate regulatory motifs or otherwise. Regulatory motifs bind to transcription factors. Transcription factors are responsible for the expression of genes. The experimental results show that at peak performance, the proposed convolutional neural network bi-directional long short-term memory (CNN-Bi-LSTM) model achieves a classification accuracy of 99.95%, area under curve receiver operating characteristic (AUC ROC) of 100.00%, a specificity of 99.97%, the sensitivity of 99.97%, Cohen's Kappa equal to 0.9978, Mathews Correlation Coefficient (MCC) equal to 0.9978 for the classification of SARS CoV-2 amongst Coronaviruses. Also, the CNN-Bi-LSTM correctly detects whether a sequence has candidate regulatory motifs or binding-sites with a classification accuracy of 99.76%, AUC ROC of 100.00%, a specificity of 99.76%, a sensitivity of 99.76%, MCC equal to 0.9980, and Cohen's Kappa of 0.9970 at peak performance. These results are encouraging enough to recognise deep learning algorithms as alternative avenues for detecting SARS CoV-2 as well as detecting regulatory motifs in the SARS CoV-2 genes. | ||
650 | 4 | |a Bi-directional long-short memory | |
650 | 4 | |a convolutional neural network | |
650 | 4 | |a coronavirus deep learning | |
650 | 4 | |a deoxyribonucleic acid | |
650 | 4 | |a SARS-CoV-2 | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Charles Chimedza |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 9(2021), Seite 59597-59611 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2021 |g pages:59597-59611 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2021.3073728 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/3e8e72879b0a41d589e47794019f5fba |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/9405995/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2021 |h 59597-59611 |
author_variant |
a w aw c c cc |
---|---|
matchkey_str |
article:21693536:2021----::eperigosrcvgn |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
TK |
publishDate |
2021 |
allfields |
10.1109/ACCESS.2021.3073728 doi (DE-627)DOAJ062759299 (DE-599)DOAJ3e8e72879b0a41d589e47794019f5fba DE-627 ger DE-627 rakwb eng TK1-9971 Albert Whata verfasserin aut Deep Learning for SARS COV-2 Genome Sequences 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The SARS-CoV-2 virus which originated in Wuhan, China has since spread throughout the world and is affecting millions of people. When there is a novel virus outbreak, it is crucial to quickly determine if the epidemic is a result of the novel virus or a well-known virus. We propose a deep learning algorithm that uses a convolutional neural network (CNN) as well as a bi-directional long short-term memory (Bi-LSTM) neural network, for the classification of the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) amongst Coronaviruses. Besides, we classify whether a genome sequence contains candidate regulatory motifs or otherwise. Regulatory motifs bind to transcription factors. Transcription factors are responsible for the expression of genes. The experimental results show that at peak performance, the proposed convolutional neural network bi-directional long short-term memory (CNN-Bi-LSTM) model achieves a classification accuracy of 99.95%, area under curve receiver operating characteristic (AUC ROC) of 100.00%, a specificity of 99.97%, the sensitivity of 99.97%, Cohen's Kappa equal to 0.9978, Mathews Correlation Coefficient (MCC) equal to 0.9978 for the classification of SARS CoV-2 amongst Coronaviruses. Also, the CNN-Bi-LSTM correctly detects whether a sequence has candidate regulatory motifs or binding-sites with a classification accuracy of 99.76%, AUC ROC of 100.00%, a specificity of 99.76%, a sensitivity of 99.76%, MCC equal to 0.9980, and Cohen's Kappa of 0.9970 at peak performance. These results are encouraging enough to recognise deep learning algorithms as alternative avenues for detecting SARS CoV-2 as well as detecting regulatory motifs in the SARS CoV-2 genes. Bi-directional long-short memory convolutional neural network coronavirus deep learning deoxyribonucleic acid SARS-CoV-2 Electrical engineering. Electronics. Nuclear engineering Charles Chimedza verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 59597-59611 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:59597-59611 https://doi.org/10.1109/ACCESS.2021.3073728 kostenfrei https://doaj.org/article/3e8e72879b0a41d589e47794019f5fba kostenfrei https://ieeexplore.ieee.org/document/9405995/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 59597-59611 |
spelling |
10.1109/ACCESS.2021.3073728 doi (DE-627)DOAJ062759299 (DE-599)DOAJ3e8e72879b0a41d589e47794019f5fba DE-627 ger DE-627 rakwb eng TK1-9971 Albert Whata verfasserin aut Deep Learning for SARS COV-2 Genome Sequences 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The SARS-CoV-2 virus which originated in Wuhan, China has since spread throughout the world and is affecting millions of people. When there is a novel virus outbreak, it is crucial to quickly determine if the epidemic is a result of the novel virus or a well-known virus. We propose a deep learning algorithm that uses a convolutional neural network (CNN) as well as a bi-directional long short-term memory (Bi-LSTM) neural network, for the classification of the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) amongst Coronaviruses. Besides, we classify whether a genome sequence contains candidate regulatory motifs or otherwise. Regulatory motifs bind to transcription factors. Transcription factors are responsible for the expression of genes. The experimental results show that at peak performance, the proposed convolutional neural network bi-directional long short-term memory (CNN-Bi-LSTM) model achieves a classification accuracy of 99.95%, area under curve receiver operating characteristic (AUC ROC) of 100.00%, a specificity of 99.97%, the sensitivity of 99.97%, Cohen's Kappa equal to 0.9978, Mathews Correlation Coefficient (MCC) equal to 0.9978 for the classification of SARS CoV-2 amongst Coronaviruses. Also, the CNN-Bi-LSTM correctly detects whether a sequence has candidate regulatory motifs or binding-sites with a classification accuracy of 99.76%, AUC ROC of 100.00%, a specificity of 99.76%, a sensitivity of 99.76%, MCC equal to 0.9980, and Cohen's Kappa of 0.9970 at peak performance. These results are encouraging enough to recognise deep learning algorithms as alternative avenues for detecting SARS CoV-2 as well as detecting regulatory motifs in the SARS CoV-2 genes. Bi-directional long-short memory convolutional neural network coronavirus deep learning deoxyribonucleic acid SARS-CoV-2 Electrical engineering. Electronics. Nuclear engineering Charles Chimedza verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 59597-59611 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:59597-59611 https://doi.org/10.1109/ACCESS.2021.3073728 kostenfrei https://doaj.org/article/3e8e72879b0a41d589e47794019f5fba kostenfrei https://ieeexplore.ieee.org/document/9405995/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 59597-59611 |
allfields_unstemmed |
10.1109/ACCESS.2021.3073728 doi (DE-627)DOAJ062759299 (DE-599)DOAJ3e8e72879b0a41d589e47794019f5fba DE-627 ger DE-627 rakwb eng TK1-9971 Albert Whata verfasserin aut Deep Learning for SARS COV-2 Genome Sequences 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The SARS-CoV-2 virus which originated in Wuhan, China has since spread throughout the world and is affecting millions of people. When there is a novel virus outbreak, it is crucial to quickly determine if the epidemic is a result of the novel virus or a well-known virus. We propose a deep learning algorithm that uses a convolutional neural network (CNN) as well as a bi-directional long short-term memory (Bi-LSTM) neural network, for the classification of the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) amongst Coronaviruses. Besides, we classify whether a genome sequence contains candidate regulatory motifs or otherwise. Regulatory motifs bind to transcription factors. Transcription factors are responsible for the expression of genes. The experimental results show that at peak performance, the proposed convolutional neural network bi-directional long short-term memory (CNN-Bi-LSTM) model achieves a classification accuracy of 99.95%, area under curve receiver operating characteristic (AUC ROC) of 100.00%, a specificity of 99.97%, the sensitivity of 99.97%, Cohen's Kappa equal to 0.9978, Mathews Correlation Coefficient (MCC) equal to 0.9978 for the classification of SARS CoV-2 amongst Coronaviruses. Also, the CNN-Bi-LSTM correctly detects whether a sequence has candidate regulatory motifs or binding-sites with a classification accuracy of 99.76%, AUC ROC of 100.00%, a specificity of 99.76%, a sensitivity of 99.76%, MCC equal to 0.9980, and Cohen's Kappa of 0.9970 at peak performance. These results are encouraging enough to recognise deep learning algorithms as alternative avenues for detecting SARS CoV-2 as well as detecting regulatory motifs in the SARS CoV-2 genes. Bi-directional long-short memory convolutional neural network coronavirus deep learning deoxyribonucleic acid SARS-CoV-2 Electrical engineering. Electronics. Nuclear engineering Charles Chimedza verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 59597-59611 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:59597-59611 https://doi.org/10.1109/ACCESS.2021.3073728 kostenfrei https://doaj.org/article/3e8e72879b0a41d589e47794019f5fba kostenfrei https://ieeexplore.ieee.org/document/9405995/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 59597-59611 |
allfieldsGer |
10.1109/ACCESS.2021.3073728 doi (DE-627)DOAJ062759299 (DE-599)DOAJ3e8e72879b0a41d589e47794019f5fba DE-627 ger DE-627 rakwb eng TK1-9971 Albert Whata verfasserin aut Deep Learning for SARS COV-2 Genome Sequences 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The SARS-CoV-2 virus which originated in Wuhan, China has since spread throughout the world and is affecting millions of people. When there is a novel virus outbreak, it is crucial to quickly determine if the epidemic is a result of the novel virus or a well-known virus. We propose a deep learning algorithm that uses a convolutional neural network (CNN) as well as a bi-directional long short-term memory (Bi-LSTM) neural network, for the classification of the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) amongst Coronaviruses. Besides, we classify whether a genome sequence contains candidate regulatory motifs or otherwise. Regulatory motifs bind to transcription factors. Transcription factors are responsible for the expression of genes. The experimental results show that at peak performance, the proposed convolutional neural network bi-directional long short-term memory (CNN-Bi-LSTM) model achieves a classification accuracy of 99.95%, area under curve receiver operating characteristic (AUC ROC) of 100.00%, a specificity of 99.97%, the sensitivity of 99.97%, Cohen's Kappa equal to 0.9978, Mathews Correlation Coefficient (MCC) equal to 0.9978 for the classification of SARS CoV-2 amongst Coronaviruses. Also, the CNN-Bi-LSTM correctly detects whether a sequence has candidate regulatory motifs or binding-sites with a classification accuracy of 99.76%, AUC ROC of 100.00%, a specificity of 99.76%, a sensitivity of 99.76%, MCC equal to 0.9980, and Cohen's Kappa of 0.9970 at peak performance. These results are encouraging enough to recognise deep learning algorithms as alternative avenues for detecting SARS CoV-2 as well as detecting regulatory motifs in the SARS CoV-2 genes. Bi-directional long-short memory convolutional neural network coronavirus deep learning deoxyribonucleic acid SARS-CoV-2 Electrical engineering. Electronics. Nuclear engineering Charles Chimedza verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 59597-59611 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:59597-59611 https://doi.org/10.1109/ACCESS.2021.3073728 kostenfrei https://doaj.org/article/3e8e72879b0a41d589e47794019f5fba kostenfrei https://ieeexplore.ieee.org/document/9405995/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 59597-59611 |
allfieldsSound |
10.1109/ACCESS.2021.3073728 doi (DE-627)DOAJ062759299 (DE-599)DOAJ3e8e72879b0a41d589e47794019f5fba DE-627 ger DE-627 rakwb eng TK1-9971 Albert Whata verfasserin aut Deep Learning for SARS COV-2 Genome Sequences 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The SARS-CoV-2 virus which originated in Wuhan, China has since spread throughout the world and is affecting millions of people. When there is a novel virus outbreak, it is crucial to quickly determine if the epidemic is a result of the novel virus or a well-known virus. We propose a deep learning algorithm that uses a convolutional neural network (CNN) as well as a bi-directional long short-term memory (Bi-LSTM) neural network, for the classification of the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) amongst Coronaviruses. Besides, we classify whether a genome sequence contains candidate regulatory motifs or otherwise. Regulatory motifs bind to transcription factors. Transcription factors are responsible for the expression of genes. The experimental results show that at peak performance, the proposed convolutional neural network bi-directional long short-term memory (CNN-Bi-LSTM) model achieves a classification accuracy of 99.95%, area under curve receiver operating characteristic (AUC ROC) of 100.00%, a specificity of 99.97%, the sensitivity of 99.97%, Cohen's Kappa equal to 0.9978, Mathews Correlation Coefficient (MCC) equal to 0.9978 for the classification of SARS CoV-2 amongst Coronaviruses. Also, the CNN-Bi-LSTM correctly detects whether a sequence has candidate regulatory motifs or binding-sites with a classification accuracy of 99.76%, AUC ROC of 100.00%, a specificity of 99.76%, a sensitivity of 99.76%, MCC equal to 0.9980, and Cohen's Kappa of 0.9970 at peak performance. These results are encouraging enough to recognise deep learning algorithms as alternative avenues for detecting SARS CoV-2 as well as detecting regulatory motifs in the SARS CoV-2 genes. Bi-directional long-short memory convolutional neural network coronavirus deep learning deoxyribonucleic acid SARS-CoV-2 Electrical engineering. Electronics. Nuclear engineering Charles Chimedza verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 59597-59611 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:59597-59611 https://doi.org/10.1109/ACCESS.2021.3073728 kostenfrei https://doaj.org/article/3e8e72879b0a41d589e47794019f5fba kostenfrei https://ieeexplore.ieee.org/document/9405995/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 59597-59611 |
language |
English |
source |
In IEEE Access 9(2021), Seite 59597-59611 volume:9 year:2021 pages:59597-59611 |
sourceStr |
In IEEE Access 9(2021), Seite 59597-59611 volume:9 year:2021 pages:59597-59611 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Bi-directional long-short memory convolutional neural network coronavirus deep learning deoxyribonucleic acid SARS-CoV-2 Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Albert Whata @@aut@@ Charles Chimedza @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ062759299 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ062759299</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309022855.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2021.3073728</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ062759299</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3e8e72879b0a41d589e47794019f5fba</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Albert Whata</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Deep Learning for SARS COV-2 Genome Sequences</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The SARS-CoV-2 virus which originated in Wuhan, China has since spread throughout the world and is affecting millions of people. When there is a novel virus outbreak, it is crucial to quickly determine if the epidemic is a result of the novel virus or a well-known virus. We propose a deep learning algorithm that uses a convolutional neural network (CNN) as well as a bi-directional long short-term memory (Bi-LSTM) neural network, for the classification of the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) amongst Coronaviruses. Besides, we classify whether a genome sequence contains candidate regulatory motifs or otherwise. Regulatory motifs bind to transcription factors. Transcription factors are responsible for the expression of genes. The experimental results show that at peak performance, the proposed convolutional neural network bi-directional long short-term memory (CNN-Bi-LSTM) model achieves a classification accuracy of 99.95%, area under curve receiver operating characteristic (AUC ROC) of 100.00%, a specificity of 99.97%, the sensitivity of 99.97%, Cohen's Kappa equal to 0.9978, Mathews Correlation Coefficient (MCC) equal to 0.9978 for the classification of SARS CoV-2 amongst Coronaviruses. Also, the CNN-Bi-LSTM correctly detects whether a sequence has candidate regulatory motifs or binding-sites with a classification accuracy of 99.76%, AUC ROC of 100.00%, a specificity of 99.76%, a sensitivity of 99.76%, MCC equal to 0.9980, and Cohen's Kappa of 0.9970 at peak performance. These results are encouraging enough to recognise deep learning algorithms as alternative avenues for detecting SARS CoV-2 as well as detecting regulatory motifs in the SARS CoV-2 genes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bi-directional long-short memory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">convolutional neural network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coronavirus deep learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deoxyribonucleic acid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SARS-CoV-2</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Charles Chimedza</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">9(2021), Seite 59597-59611</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:59597-59611</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2021.3073728</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3e8e72879b0a41d589e47794019f5fba</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9405995/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2021</subfield><subfield code="h">59597-59611</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Albert Whata |
spellingShingle |
Albert Whata misc TK1-9971 misc Bi-directional long-short memory misc convolutional neural network misc coronavirus deep learning misc deoxyribonucleic acid misc SARS-CoV-2 misc Electrical engineering. Electronics. Nuclear engineering Deep Learning for SARS COV-2 Genome Sequences |
authorStr |
Albert Whata |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 Deep Learning for SARS COV-2 Genome Sequences Bi-directional long-short memory convolutional neural network coronavirus deep learning deoxyribonucleic acid SARS-CoV-2 |
topic |
misc TK1-9971 misc Bi-directional long-short memory misc convolutional neural network misc coronavirus deep learning misc deoxyribonucleic acid misc SARS-CoV-2 misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Bi-directional long-short memory misc convolutional neural network misc coronavirus deep learning misc deoxyribonucleic acid misc SARS-CoV-2 misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Bi-directional long-short memory misc convolutional neural network misc coronavirus deep learning misc deoxyribonucleic acid misc SARS-CoV-2 misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
Deep Learning for SARS COV-2 Genome Sequences |
ctrlnum |
(DE-627)DOAJ062759299 (DE-599)DOAJ3e8e72879b0a41d589e47794019f5fba |
title_full |
Deep Learning for SARS COV-2 Genome Sequences |
author_sort |
Albert Whata |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
59597 |
author_browse |
Albert Whata Charles Chimedza |
container_volume |
9 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Albert Whata |
doi_str_mv |
10.1109/ACCESS.2021.3073728 |
author2-role |
verfasserin |
title_sort |
deep learning for sars cov-2 genome sequences |
callnumber |
TK1-9971 |
title_auth |
Deep Learning for SARS COV-2 Genome Sequences |
abstract |
The SARS-CoV-2 virus which originated in Wuhan, China has since spread throughout the world and is affecting millions of people. When there is a novel virus outbreak, it is crucial to quickly determine if the epidemic is a result of the novel virus or a well-known virus. We propose a deep learning algorithm that uses a convolutional neural network (CNN) as well as a bi-directional long short-term memory (Bi-LSTM) neural network, for the classification of the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) amongst Coronaviruses. Besides, we classify whether a genome sequence contains candidate regulatory motifs or otherwise. Regulatory motifs bind to transcription factors. Transcription factors are responsible for the expression of genes. The experimental results show that at peak performance, the proposed convolutional neural network bi-directional long short-term memory (CNN-Bi-LSTM) model achieves a classification accuracy of 99.95%, area under curve receiver operating characteristic (AUC ROC) of 100.00%, a specificity of 99.97%, the sensitivity of 99.97%, Cohen's Kappa equal to 0.9978, Mathews Correlation Coefficient (MCC) equal to 0.9978 for the classification of SARS CoV-2 amongst Coronaviruses. Also, the CNN-Bi-LSTM correctly detects whether a sequence has candidate regulatory motifs or binding-sites with a classification accuracy of 99.76%, AUC ROC of 100.00%, a specificity of 99.76%, a sensitivity of 99.76%, MCC equal to 0.9980, and Cohen's Kappa of 0.9970 at peak performance. These results are encouraging enough to recognise deep learning algorithms as alternative avenues for detecting SARS CoV-2 as well as detecting regulatory motifs in the SARS CoV-2 genes. |
abstractGer |
The SARS-CoV-2 virus which originated in Wuhan, China has since spread throughout the world and is affecting millions of people. When there is a novel virus outbreak, it is crucial to quickly determine if the epidemic is a result of the novel virus or a well-known virus. We propose a deep learning algorithm that uses a convolutional neural network (CNN) as well as a bi-directional long short-term memory (Bi-LSTM) neural network, for the classification of the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) amongst Coronaviruses. Besides, we classify whether a genome sequence contains candidate regulatory motifs or otherwise. Regulatory motifs bind to transcription factors. Transcription factors are responsible for the expression of genes. The experimental results show that at peak performance, the proposed convolutional neural network bi-directional long short-term memory (CNN-Bi-LSTM) model achieves a classification accuracy of 99.95%, area under curve receiver operating characteristic (AUC ROC) of 100.00%, a specificity of 99.97%, the sensitivity of 99.97%, Cohen's Kappa equal to 0.9978, Mathews Correlation Coefficient (MCC) equal to 0.9978 for the classification of SARS CoV-2 amongst Coronaviruses. Also, the CNN-Bi-LSTM correctly detects whether a sequence has candidate regulatory motifs or binding-sites with a classification accuracy of 99.76%, AUC ROC of 100.00%, a specificity of 99.76%, a sensitivity of 99.76%, MCC equal to 0.9980, and Cohen's Kappa of 0.9970 at peak performance. These results are encouraging enough to recognise deep learning algorithms as alternative avenues for detecting SARS CoV-2 as well as detecting regulatory motifs in the SARS CoV-2 genes. |
abstract_unstemmed |
The SARS-CoV-2 virus which originated in Wuhan, China has since spread throughout the world and is affecting millions of people. When there is a novel virus outbreak, it is crucial to quickly determine if the epidemic is a result of the novel virus or a well-known virus. We propose a deep learning algorithm that uses a convolutional neural network (CNN) as well as a bi-directional long short-term memory (Bi-LSTM) neural network, for the classification of the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) amongst Coronaviruses. Besides, we classify whether a genome sequence contains candidate regulatory motifs or otherwise. Regulatory motifs bind to transcription factors. Transcription factors are responsible for the expression of genes. The experimental results show that at peak performance, the proposed convolutional neural network bi-directional long short-term memory (CNN-Bi-LSTM) model achieves a classification accuracy of 99.95%, area under curve receiver operating characteristic (AUC ROC) of 100.00%, a specificity of 99.97%, the sensitivity of 99.97%, Cohen's Kappa equal to 0.9978, Mathews Correlation Coefficient (MCC) equal to 0.9978 for the classification of SARS CoV-2 amongst Coronaviruses. Also, the CNN-Bi-LSTM correctly detects whether a sequence has candidate regulatory motifs or binding-sites with a classification accuracy of 99.76%, AUC ROC of 100.00%, a specificity of 99.76%, a sensitivity of 99.76%, MCC equal to 0.9980, and Cohen's Kappa of 0.9970 at peak performance. These results are encouraging enough to recognise deep learning algorithms as alternative avenues for detecting SARS CoV-2 as well as detecting regulatory motifs in the SARS CoV-2 genes. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Deep Learning for SARS COV-2 Genome Sequences |
url |
https://doi.org/10.1109/ACCESS.2021.3073728 https://doaj.org/article/3e8e72879b0a41d589e47794019f5fba https://ieeexplore.ieee.org/document/9405995/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Charles Chimedza |
author2Str |
Charles Chimedza |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2021.3073728 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T13:53:20.387Z |
_version_ |
1803566239340036096 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ062759299</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309022855.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2021.3073728</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ062759299</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3e8e72879b0a41d589e47794019f5fba</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Albert Whata</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Deep Learning for SARS COV-2 Genome Sequences</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The SARS-CoV-2 virus which originated in Wuhan, China has since spread throughout the world and is affecting millions of people. When there is a novel virus outbreak, it is crucial to quickly determine if the epidemic is a result of the novel virus or a well-known virus. We propose a deep learning algorithm that uses a convolutional neural network (CNN) as well as a bi-directional long short-term memory (Bi-LSTM) neural network, for the classification of the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) amongst Coronaviruses. Besides, we classify whether a genome sequence contains candidate regulatory motifs or otherwise. Regulatory motifs bind to transcription factors. Transcription factors are responsible for the expression of genes. The experimental results show that at peak performance, the proposed convolutional neural network bi-directional long short-term memory (CNN-Bi-LSTM) model achieves a classification accuracy of 99.95%, area under curve receiver operating characteristic (AUC ROC) of 100.00%, a specificity of 99.97%, the sensitivity of 99.97%, Cohen's Kappa equal to 0.9978, Mathews Correlation Coefficient (MCC) equal to 0.9978 for the classification of SARS CoV-2 amongst Coronaviruses. Also, the CNN-Bi-LSTM correctly detects whether a sequence has candidate regulatory motifs or binding-sites with a classification accuracy of 99.76%, AUC ROC of 100.00%, a specificity of 99.76%, a sensitivity of 99.76%, MCC equal to 0.9980, and Cohen's Kappa of 0.9970 at peak performance. These results are encouraging enough to recognise deep learning algorithms as alternative avenues for detecting SARS CoV-2 as well as detecting regulatory motifs in the SARS CoV-2 genes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bi-directional long-short memory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">convolutional neural network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coronavirus deep learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deoxyribonucleic acid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SARS-CoV-2</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Charles Chimedza</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">9(2021), Seite 59597-59611</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:59597-59611</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2021.3073728</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3e8e72879b0a41d589e47794019f5fba</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9405995/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2021</subfield><subfield code="h">59597-59611</subfield></datafield></record></collection>
|
score |
7.401063 |