Tea clone classification using deep CNN with residual and densely connections
Tea clone of Gambung series is a superior variety of tea that has high productivity and quality. Smallholder farmers usually plant these clones in the same areas. However, each clone has different productivity or quality, so it is difficult to predict the production quality in the same area. To unif...
Ausführliche Beschreibung
Autor*in: |
Ade Ramdan [verfasserIn] Vicky Zilvan [verfasserIn] Endang Suryawati [verfasserIn] Hilman F Pardede [verfasserIn] Vitria Puspitasari Rahadi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch ; Indonesisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Jurnal Teknologi dan Sistem Komputer - Diponegoro University, 2016, 8(2020), 4, Seite 289-296 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2020 ; number:4 ; pages:289-296 |
Links: |
---|
DOI / URN: |
10.14710/jtsiskom.2020.13768 |
---|
Katalog-ID: |
DOAJ06292141X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ06292141X | ||
003 | DE-627 | ||
005 | 20240414050112.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.14710/jtsiskom.2020.13768 |2 doi | |
035 | |a (DE-627)DOAJ06292141X | ||
035 | |a (DE-599)DOAJ7e404f1be1be49bf904bee94c1b24e39 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng |a ind | ||
050 | 0 | |a QA75.5-76.95 | |
100 | 0 | |a Ade Ramdan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Tea clone classification using deep CNN with residual and densely connections |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Tea clone of Gambung series is a superior variety of tea that has high productivity and quality. Smallholder farmers usually plant these clones in the same areas. However, each clone has different productivity or quality, so it is difficult to predict the production quality in the same area. To uniform the variety of clones in an area, smallholder farmers still need experts to identify each plant because one and other clones share the same visual characteristics. We propose a tea clone identification system using deep CNN with skip connection methods, i.e., residual connections and densely connections, to tackle this problem. Our study shows that the proposed method is affected by the hyperparameter setting and the combining feature maps method. For the combining method, the concatenation method on a densely connected network shows better performance than the summation method on a residual connected network. | ||
650 | 4 | |a klon teh gambung | |
650 | 4 | |a deep cnn | |
650 | 4 | |a skip connection | |
650 | 4 | |a densely connected networks | |
650 | 4 | |a residual connected networks | |
653 | 0 | |a Electronic computers. Computer science | |
700 | 0 | |a Vicky Zilvan |e verfasserin |4 aut | |
700 | 0 | |a Endang Suryawati |e verfasserin |4 aut | |
700 | 0 | |a Hilman F Pardede |e verfasserin |4 aut | |
700 | 0 | |a Vitria Puspitasari Rahadi |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Jurnal Teknologi dan Sistem Komputer |d Diponegoro University, 2016 |g 8(2020), 4, Seite 289-296 |w (DE-627)1760616818 |w (DE-600)3070232-X |x 23380403 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2020 |g number:4 |g pages:289-296 |
856 | 4 | 0 | |u https://doi.org/10.14710/jtsiskom.2020.13768 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/7e404f1be1be49bf904bee94c1b24e39 |z kostenfrei |
856 | 4 | 0 | |u https://jtsiskom.undip.ac.id/index.php/jtsiskom/article/view/13768 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2338-0403 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
951 | |a AR | ||
952 | |d 8 |j 2020 |e 4 |h 289-296 |
author_variant |
a r ar v z vz e s es h f p hfp v p r vpr |
---|---|
matchkey_str |
article:23380403:2020----::ecoelsiiainsndecniheiuln |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
QA |
publishDate |
2020 |
allfields |
10.14710/jtsiskom.2020.13768 doi (DE-627)DOAJ06292141X (DE-599)DOAJ7e404f1be1be49bf904bee94c1b24e39 DE-627 ger DE-627 rakwb eng ind QA75.5-76.95 Ade Ramdan verfasserin aut Tea clone classification using deep CNN with residual and densely connections 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Tea clone of Gambung series is a superior variety of tea that has high productivity and quality. Smallholder farmers usually plant these clones in the same areas. However, each clone has different productivity or quality, so it is difficult to predict the production quality in the same area. To uniform the variety of clones in an area, smallholder farmers still need experts to identify each plant because one and other clones share the same visual characteristics. We propose a tea clone identification system using deep CNN with skip connection methods, i.e., residual connections and densely connections, to tackle this problem. Our study shows that the proposed method is affected by the hyperparameter setting and the combining feature maps method. For the combining method, the concatenation method on a densely connected network shows better performance than the summation method on a residual connected network. klon teh gambung deep cnn skip connection densely connected networks residual connected networks Electronic computers. Computer science Vicky Zilvan verfasserin aut Endang Suryawati verfasserin aut Hilman F Pardede verfasserin aut Vitria Puspitasari Rahadi verfasserin aut In Jurnal Teknologi dan Sistem Komputer Diponegoro University, 2016 8(2020), 4, Seite 289-296 (DE-627)1760616818 (DE-600)3070232-X 23380403 nnns volume:8 year:2020 number:4 pages:289-296 https://doi.org/10.14710/jtsiskom.2020.13768 kostenfrei https://doaj.org/article/7e404f1be1be49bf904bee94c1b24e39 kostenfrei https://jtsiskom.undip.ac.id/index.php/jtsiskom/article/view/13768 kostenfrei https://doaj.org/toc/2338-0403 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 8 2020 4 289-296 |
spelling |
10.14710/jtsiskom.2020.13768 doi (DE-627)DOAJ06292141X (DE-599)DOAJ7e404f1be1be49bf904bee94c1b24e39 DE-627 ger DE-627 rakwb eng ind QA75.5-76.95 Ade Ramdan verfasserin aut Tea clone classification using deep CNN with residual and densely connections 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Tea clone of Gambung series is a superior variety of tea that has high productivity and quality. Smallholder farmers usually plant these clones in the same areas. However, each clone has different productivity or quality, so it is difficult to predict the production quality in the same area. To uniform the variety of clones in an area, smallholder farmers still need experts to identify each plant because one and other clones share the same visual characteristics. We propose a tea clone identification system using deep CNN with skip connection methods, i.e., residual connections and densely connections, to tackle this problem. Our study shows that the proposed method is affected by the hyperparameter setting and the combining feature maps method. For the combining method, the concatenation method on a densely connected network shows better performance than the summation method on a residual connected network. klon teh gambung deep cnn skip connection densely connected networks residual connected networks Electronic computers. Computer science Vicky Zilvan verfasserin aut Endang Suryawati verfasserin aut Hilman F Pardede verfasserin aut Vitria Puspitasari Rahadi verfasserin aut In Jurnal Teknologi dan Sistem Komputer Diponegoro University, 2016 8(2020), 4, Seite 289-296 (DE-627)1760616818 (DE-600)3070232-X 23380403 nnns volume:8 year:2020 number:4 pages:289-296 https://doi.org/10.14710/jtsiskom.2020.13768 kostenfrei https://doaj.org/article/7e404f1be1be49bf904bee94c1b24e39 kostenfrei https://jtsiskom.undip.ac.id/index.php/jtsiskom/article/view/13768 kostenfrei https://doaj.org/toc/2338-0403 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 8 2020 4 289-296 |
allfields_unstemmed |
10.14710/jtsiskom.2020.13768 doi (DE-627)DOAJ06292141X (DE-599)DOAJ7e404f1be1be49bf904bee94c1b24e39 DE-627 ger DE-627 rakwb eng ind QA75.5-76.95 Ade Ramdan verfasserin aut Tea clone classification using deep CNN with residual and densely connections 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Tea clone of Gambung series is a superior variety of tea that has high productivity and quality. Smallholder farmers usually plant these clones in the same areas. However, each clone has different productivity or quality, so it is difficult to predict the production quality in the same area. To uniform the variety of clones in an area, smallholder farmers still need experts to identify each plant because one and other clones share the same visual characteristics. We propose a tea clone identification system using deep CNN with skip connection methods, i.e., residual connections and densely connections, to tackle this problem. Our study shows that the proposed method is affected by the hyperparameter setting and the combining feature maps method. For the combining method, the concatenation method on a densely connected network shows better performance than the summation method on a residual connected network. klon teh gambung deep cnn skip connection densely connected networks residual connected networks Electronic computers. Computer science Vicky Zilvan verfasserin aut Endang Suryawati verfasserin aut Hilman F Pardede verfasserin aut Vitria Puspitasari Rahadi verfasserin aut In Jurnal Teknologi dan Sistem Komputer Diponegoro University, 2016 8(2020), 4, Seite 289-296 (DE-627)1760616818 (DE-600)3070232-X 23380403 nnns volume:8 year:2020 number:4 pages:289-296 https://doi.org/10.14710/jtsiskom.2020.13768 kostenfrei https://doaj.org/article/7e404f1be1be49bf904bee94c1b24e39 kostenfrei https://jtsiskom.undip.ac.id/index.php/jtsiskom/article/view/13768 kostenfrei https://doaj.org/toc/2338-0403 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 8 2020 4 289-296 |
allfieldsGer |
10.14710/jtsiskom.2020.13768 doi (DE-627)DOAJ06292141X (DE-599)DOAJ7e404f1be1be49bf904bee94c1b24e39 DE-627 ger DE-627 rakwb eng ind QA75.5-76.95 Ade Ramdan verfasserin aut Tea clone classification using deep CNN with residual and densely connections 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Tea clone of Gambung series is a superior variety of tea that has high productivity and quality. Smallholder farmers usually plant these clones in the same areas. However, each clone has different productivity or quality, so it is difficult to predict the production quality in the same area. To uniform the variety of clones in an area, smallholder farmers still need experts to identify each plant because one and other clones share the same visual characteristics. We propose a tea clone identification system using deep CNN with skip connection methods, i.e., residual connections and densely connections, to tackle this problem. Our study shows that the proposed method is affected by the hyperparameter setting and the combining feature maps method. For the combining method, the concatenation method on a densely connected network shows better performance than the summation method on a residual connected network. klon teh gambung deep cnn skip connection densely connected networks residual connected networks Electronic computers. Computer science Vicky Zilvan verfasserin aut Endang Suryawati verfasserin aut Hilman F Pardede verfasserin aut Vitria Puspitasari Rahadi verfasserin aut In Jurnal Teknologi dan Sistem Komputer Diponegoro University, 2016 8(2020), 4, Seite 289-296 (DE-627)1760616818 (DE-600)3070232-X 23380403 nnns volume:8 year:2020 number:4 pages:289-296 https://doi.org/10.14710/jtsiskom.2020.13768 kostenfrei https://doaj.org/article/7e404f1be1be49bf904bee94c1b24e39 kostenfrei https://jtsiskom.undip.ac.id/index.php/jtsiskom/article/view/13768 kostenfrei https://doaj.org/toc/2338-0403 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 8 2020 4 289-296 |
allfieldsSound |
10.14710/jtsiskom.2020.13768 doi (DE-627)DOAJ06292141X (DE-599)DOAJ7e404f1be1be49bf904bee94c1b24e39 DE-627 ger DE-627 rakwb eng ind QA75.5-76.95 Ade Ramdan verfasserin aut Tea clone classification using deep CNN with residual and densely connections 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Tea clone of Gambung series is a superior variety of tea that has high productivity and quality. Smallholder farmers usually plant these clones in the same areas. However, each clone has different productivity or quality, so it is difficult to predict the production quality in the same area. To uniform the variety of clones in an area, smallholder farmers still need experts to identify each plant because one and other clones share the same visual characteristics. We propose a tea clone identification system using deep CNN with skip connection methods, i.e., residual connections and densely connections, to tackle this problem. Our study shows that the proposed method is affected by the hyperparameter setting and the combining feature maps method. For the combining method, the concatenation method on a densely connected network shows better performance than the summation method on a residual connected network. klon teh gambung deep cnn skip connection densely connected networks residual connected networks Electronic computers. Computer science Vicky Zilvan verfasserin aut Endang Suryawati verfasserin aut Hilman F Pardede verfasserin aut Vitria Puspitasari Rahadi verfasserin aut In Jurnal Teknologi dan Sistem Komputer Diponegoro University, 2016 8(2020), 4, Seite 289-296 (DE-627)1760616818 (DE-600)3070232-X 23380403 nnns volume:8 year:2020 number:4 pages:289-296 https://doi.org/10.14710/jtsiskom.2020.13768 kostenfrei https://doaj.org/article/7e404f1be1be49bf904bee94c1b24e39 kostenfrei https://jtsiskom.undip.ac.id/index.php/jtsiskom/article/view/13768 kostenfrei https://doaj.org/toc/2338-0403 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 8 2020 4 289-296 |
language |
English Indonesian |
source |
In Jurnal Teknologi dan Sistem Komputer 8(2020), 4, Seite 289-296 volume:8 year:2020 number:4 pages:289-296 |
sourceStr |
In Jurnal Teknologi dan Sistem Komputer 8(2020), 4, Seite 289-296 volume:8 year:2020 number:4 pages:289-296 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
klon teh gambung deep cnn skip connection densely connected networks residual connected networks Electronic computers. Computer science |
isfreeaccess_bool |
true |
container_title |
Jurnal Teknologi dan Sistem Komputer |
authorswithroles_txt_mv |
Ade Ramdan @@aut@@ Vicky Zilvan @@aut@@ Endang Suryawati @@aut@@ Hilman F Pardede @@aut@@ Vitria Puspitasari Rahadi @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
1760616818 |
id |
DOAJ06292141X |
language_de |
englisch Sangiang |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ06292141X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414050112.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.14710/jtsiskom.2020.13768</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ06292141X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7e404f1be1be49bf904bee94c1b24e39</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">ind</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA75.5-76.95</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ade Ramdan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Tea clone classification using deep CNN with residual and densely connections</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Tea clone of Gambung series is a superior variety of tea that has high productivity and quality. Smallholder farmers usually plant these clones in the same areas. However, each clone has different productivity or quality, so it is difficult to predict the production quality in the same area. To uniform the variety of clones in an area, smallholder farmers still need experts to identify each plant because one and other clones share the same visual characteristics. We propose a tea clone identification system using deep CNN with skip connection methods, i.e., residual connections and densely connections, to tackle this problem. Our study shows that the proposed method is affected by the hyperparameter setting and the combining feature maps method. For the combining method, the concatenation method on a densely connected network shows better performance than the summation method on a residual connected network.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">klon teh gambung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deep cnn</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">skip connection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">densely connected networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">residual connected networks</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronic computers. Computer science</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vicky Zilvan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Endang Suryawati</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hilman F Pardede</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vitria Puspitasari Rahadi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Jurnal Teknologi dan Sistem Komputer</subfield><subfield code="d">Diponegoro University, 2016</subfield><subfield code="g">8(2020), 4, Seite 289-296</subfield><subfield code="w">(DE-627)1760616818</subfield><subfield code="w">(DE-600)3070232-X</subfield><subfield code="x">23380403</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:289-296</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.14710/jtsiskom.2020.13768</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7e404f1be1be49bf904bee94c1b24e39</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://jtsiskom.undip.ac.id/index.php/jtsiskom/article/view/13768</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2338-0403</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="e">4</subfield><subfield code="h">289-296</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Ade Ramdan |
spellingShingle |
Ade Ramdan misc QA75.5-76.95 misc klon teh gambung misc deep cnn misc skip connection misc densely connected networks misc residual connected networks misc Electronic computers. Computer science Tea clone classification using deep CNN with residual and densely connections |
authorStr |
Ade Ramdan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1760616818 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA75 |
illustrated |
Not Illustrated |
issn |
23380403 |
topic_title |
QA75.5-76.95 Tea clone classification using deep CNN with residual and densely connections klon teh gambung deep cnn skip connection densely connected networks residual connected networks |
topic |
misc QA75.5-76.95 misc klon teh gambung misc deep cnn misc skip connection misc densely connected networks misc residual connected networks misc Electronic computers. Computer science |
topic_unstemmed |
misc QA75.5-76.95 misc klon teh gambung misc deep cnn misc skip connection misc densely connected networks misc residual connected networks misc Electronic computers. Computer science |
topic_browse |
misc QA75.5-76.95 misc klon teh gambung misc deep cnn misc skip connection misc densely connected networks misc residual connected networks misc Electronic computers. Computer science |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Jurnal Teknologi dan Sistem Komputer |
hierarchy_parent_id |
1760616818 |
hierarchy_top_title |
Jurnal Teknologi dan Sistem Komputer |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1760616818 (DE-600)3070232-X |
title |
Tea clone classification using deep CNN with residual and densely connections |
ctrlnum |
(DE-627)DOAJ06292141X (DE-599)DOAJ7e404f1be1be49bf904bee94c1b24e39 |
title_full |
Tea clone classification using deep CNN with residual and densely connections |
author_sort |
Ade Ramdan |
journal |
Jurnal Teknologi dan Sistem Komputer |
journalStr |
Jurnal Teknologi dan Sistem Komputer |
callnumber-first-code |
Q |
lang_code |
eng ind |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
289 |
author_browse |
Ade Ramdan Vicky Zilvan Endang Suryawati Hilman F Pardede Vitria Puspitasari Rahadi |
container_volume |
8 |
class |
QA75.5-76.95 |
format_se |
Elektronische Aufsätze |
author-letter |
Ade Ramdan |
doi_str_mv |
10.14710/jtsiskom.2020.13768 |
author2-role |
verfasserin |
title_sort |
tea clone classification using deep cnn with residual and densely connections |
callnumber |
QA75.5-76.95 |
title_auth |
Tea clone classification using deep CNN with residual and densely connections |
abstract |
Tea clone of Gambung series is a superior variety of tea that has high productivity and quality. Smallholder farmers usually plant these clones in the same areas. However, each clone has different productivity or quality, so it is difficult to predict the production quality in the same area. To uniform the variety of clones in an area, smallholder farmers still need experts to identify each plant because one and other clones share the same visual characteristics. We propose a tea clone identification system using deep CNN with skip connection methods, i.e., residual connections and densely connections, to tackle this problem. Our study shows that the proposed method is affected by the hyperparameter setting and the combining feature maps method. For the combining method, the concatenation method on a densely connected network shows better performance than the summation method on a residual connected network. |
abstractGer |
Tea clone of Gambung series is a superior variety of tea that has high productivity and quality. Smallholder farmers usually plant these clones in the same areas. However, each clone has different productivity or quality, so it is difficult to predict the production quality in the same area. To uniform the variety of clones in an area, smallholder farmers still need experts to identify each plant because one and other clones share the same visual characteristics. We propose a tea clone identification system using deep CNN with skip connection methods, i.e., residual connections and densely connections, to tackle this problem. Our study shows that the proposed method is affected by the hyperparameter setting and the combining feature maps method. For the combining method, the concatenation method on a densely connected network shows better performance than the summation method on a residual connected network. |
abstract_unstemmed |
Tea clone of Gambung series is a superior variety of tea that has high productivity and quality. Smallholder farmers usually plant these clones in the same areas. However, each clone has different productivity or quality, so it is difficult to predict the production quality in the same area. To uniform the variety of clones in an area, smallholder farmers still need experts to identify each plant because one and other clones share the same visual characteristics. We propose a tea clone identification system using deep CNN with skip connection methods, i.e., residual connections and densely connections, to tackle this problem. Our study shows that the proposed method is affected by the hyperparameter setting and the combining feature maps method. For the combining method, the concatenation method on a densely connected network shows better performance than the summation method on a residual connected network. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ |
container_issue |
4 |
title_short |
Tea clone classification using deep CNN with residual and densely connections |
url |
https://doi.org/10.14710/jtsiskom.2020.13768 https://doaj.org/article/7e404f1be1be49bf904bee94c1b24e39 https://jtsiskom.undip.ac.id/index.php/jtsiskom/article/view/13768 https://doaj.org/toc/2338-0403 |
remote_bool |
true |
author2 |
Vicky Zilvan Endang Suryawati Hilman F Pardede Vitria Puspitasari Rahadi |
author2Str |
Vicky Zilvan Endang Suryawati Hilman F Pardede Vitria Puspitasari Rahadi |
ppnlink |
1760616818 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.14710/jtsiskom.2020.13768 |
callnumber-a |
QA75.5-76.95 |
up_date |
2024-07-03T14:49:38.939Z |
_version_ |
1803569782001238016 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ06292141X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414050112.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.14710/jtsiskom.2020.13768</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ06292141X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7e404f1be1be49bf904bee94c1b24e39</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">ind</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA75.5-76.95</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ade Ramdan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Tea clone classification using deep CNN with residual and densely connections</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Tea clone of Gambung series is a superior variety of tea that has high productivity and quality. Smallholder farmers usually plant these clones in the same areas. However, each clone has different productivity or quality, so it is difficult to predict the production quality in the same area. To uniform the variety of clones in an area, smallholder farmers still need experts to identify each plant because one and other clones share the same visual characteristics. We propose a tea clone identification system using deep CNN with skip connection methods, i.e., residual connections and densely connections, to tackle this problem. Our study shows that the proposed method is affected by the hyperparameter setting and the combining feature maps method. For the combining method, the concatenation method on a densely connected network shows better performance than the summation method on a residual connected network.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">klon teh gambung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deep cnn</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">skip connection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">densely connected networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">residual connected networks</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronic computers. Computer science</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vicky Zilvan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Endang Suryawati</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hilman F Pardede</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vitria Puspitasari Rahadi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Jurnal Teknologi dan Sistem Komputer</subfield><subfield code="d">Diponegoro University, 2016</subfield><subfield code="g">8(2020), 4, Seite 289-296</subfield><subfield code="w">(DE-627)1760616818</subfield><subfield code="w">(DE-600)3070232-X</subfield><subfield code="x">23380403</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:289-296</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.14710/jtsiskom.2020.13768</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7e404f1be1be49bf904bee94c1b24e39</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://jtsiskom.undip.ac.id/index.php/jtsiskom/article/view/13768</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2338-0403</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="e">4</subfield><subfield code="h">289-296</subfield></datafield></record></collection>
|
score |
7.4020844 |