Combining Random Forest and XGBoost Methods in Detecting Early and Mid-Term Winter Wheat Stripe Rust Using Canopy Level Hyperspectral Measurements
Appropriate modeling methods and feature selection algorithms must be selected to improve the accuracy of early and mid-term remote sensing detection of wheat stripe rust. In the current study, we explored the effectiveness of the random forest (RF) algorithm combined with the extreme gradient boost...
Ausführliche Beschreibung
Autor*in: |
Linsheng Huang [verfasserIn] Yong Liu [verfasserIn] Wenjiang Huang [verfasserIn] Yingying Dong [verfasserIn] Huiqin Ma [verfasserIn] Kang Wu [verfasserIn] Anting Guo [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Agriculture - MDPI AG, 2012, 12(2022), 1, p 74 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2022 ; number:1, p 74 |
Links: |
---|
DOI / URN: |
10.3390/agriculture12010074 |
---|
Katalog-ID: |
DOAJ063491699 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ063491699 | ||
003 | DE-627 | ||
005 | 20240414215351.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/agriculture12010074 |2 doi | |
035 | |a (DE-627)DOAJ063491699 | ||
035 | |a (DE-599)DOAJ4c0b1ee7594d469889e56c9d7a79a0b5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a S1-972 | |
100 | 0 | |a Linsheng Huang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Combining Random Forest and XGBoost Methods in Detecting Early and Mid-Term Winter Wheat Stripe Rust Using Canopy Level Hyperspectral Measurements |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Appropriate modeling methods and feature selection algorithms must be selected to improve the accuracy of early and mid-term remote sensing detection of wheat stripe rust. In the current study, we explored the effectiveness of the random forest (RF) algorithm combined with the extreme gradient boosting (XGboost) method for early and mid-term wheat stripe rust detection based on the vegetation indices extracted from canopy level hyperspectral measurements. Initially, 21 vegetation indices that were related to the early and mid-term winter wheat stripe rust were calculated on the basis of canopy level hyperspectral reflectance. Subsequently, the optimal vegetation index combination for disease detection was determined using correlation analysis (CA) combined with RF algorithms. Then, the disease severity detection model of early and mid-term winter wheat stripe rust was constructed using XGBoost method based on the optimal vegetation index combination. For the evaluation and comparison of the initial results, three commonly used classification methods, namely, RF, backpropagation neural network (BPNN), and support vector machine (SVM), were utilized. The vegetation index combinations determined by the single CA algorithm were also used to construct detection models. Compared with the detection models based on the vegetation index combination obtained using the single CA algorithm, the overall accuracy of the four detection models based on the optimal vegetation index combination based on CA combined with RF algorithms increased by 16.1% (XGBoost), 9.7% (RF), 8.1% (SVM), and 8.1% (BPNN). Among the eight models, the XGBoost detection model based on the optimal vegetation index combination using CA combined with RF algorithms, CA-RF-XGBoost, achieved the highest overall accuracy of 87.1% and the highest kappa coefficient of 0.798. Our results indicate that the RF combined with XGBoost can improve the detection accuracy of early and mid-term winter wheat stripe rust effectively at canopy scale. | ||
650 | 4 | |a wheat stripe rust | |
650 | 4 | |a hyperspectral | |
650 | 4 | |a early and mid-term | |
650 | 4 | |a vegetation index | |
650 | 4 | |a random forest | |
650 | 4 | |a extreme gradient boosting | |
653 | 0 | |a Agriculture (General) | |
700 | 0 | |a Yong Liu |e verfasserin |4 aut | |
700 | 0 | |a Wenjiang Huang |e verfasserin |4 aut | |
700 | 0 | |a Yingying Dong |e verfasserin |4 aut | |
700 | 0 | |a Huiqin Ma |e verfasserin |4 aut | |
700 | 0 | |a Kang Wu |e verfasserin |4 aut | |
700 | 0 | |a Anting Guo |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Agriculture |d MDPI AG, 2012 |g 12(2022), 1, p 74 |w (DE-627)686948173 |w (DE-600)2651678-0 |x 20770472 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2022 |g number:1, p 74 |
856 | 4 | 0 | |u https://doi.org/10.3390/agriculture12010074 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/4c0b1ee7594d469889e56c9d7a79a0b5 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2077-0472/12/1/74 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2077-0472 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2022 |e 1, p 74 |
author_variant |
l h lh y l yl w h wh y d yd h m hm k w kw a g ag |
---|---|
matchkey_str |
article:20770472:2022----::obnnrnofrsadgosmtosneetnerynmdemitrhasrprsuiga |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
S |
publishDate |
2022 |
allfields |
10.3390/agriculture12010074 doi (DE-627)DOAJ063491699 (DE-599)DOAJ4c0b1ee7594d469889e56c9d7a79a0b5 DE-627 ger DE-627 rakwb eng S1-972 Linsheng Huang verfasserin aut Combining Random Forest and XGBoost Methods in Detecting Early and Mid-Term Winter Wheat Stripe Rust Using Canopy Level Hyperspectral Measurements 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Appropriate modeling methods and feature selection algorithms must be selected to improve the accuracy of early and mid-term remote sensing detection of wheat stripe rust. In the current study, we explored the effectiveness of the random forest (RF) algorithm combined with the extreme gradient boosting (XGboost) method for early and mid-term wheat stripe rust detection based on the vegetation indices extracted from canopy level hyperspectral measurements. Initially, 21 vegetation indices that were related to the early and mid-term winter wheat stripe rust were calculated on the basis of canopy level hyperspectral reflectance. Subsequently, the optimal vegetation index combination for disease detection was determined using correlation analysis (CA) combined with RF algorithms. Then, the disease severity detection model of early and mid-term winter wheat stripe rust was constructed using XGBoost method based on the optimal vegetation index combination. For the evaluation and comparison of the initial results, three commonly used classification methods, namely, RF, backpropagation neural network (BPNN), and support vector machine (SVM), were utilized. The vegetation index combinations determined by the single CA algorithm were also used to construct detection models. Compared with the detection models based on the vegetation index combination obtained using the single CA algorithm, the overall accuracy of the four detection models based on the optimal vegetation index combination based on CA combined with RF algorithms increased by 16.1% (XGBoost), 9.7% (RF), 8.1% (SVM), and 8.1% (BPNN). Among the eight models, the XGBoost detection model based on the optimal vegetation index combination using CA combined with RF algorithms, CA-RF-XGBoost, achieved the highest overall accuracy of 87.1% and the highest kappa coefficient of 0.798. Our results indicate that the RF combined with XGBoost can improve the detection accuracy of early and mid-term winter wheat stripe rust effectively at canopy scale. wheat stripe rust hyperspectral early and mid-term vegetation index random forest extreme gradient boosting Agriculture (General) Yong Liu verfasserin aut Wenjiang Huang verfasserin aut Yingying Dong verfasserin aut Huiqin Ma verfasserin aut Kang Wu verfasserin aut Anting Guo verfasserin aut In Agriculture MDPI AG, 2012 12(2022), 1, p 74 (DE-627)686948173 (DE-600)2651678-0 20770472 nnns volume:12 year:2022 number:1, p 74 https://doi.org/10.3390/agriculture12010074 kostenfrei https://doaj.org/article/4c0b1ee7594d469889e56c9d7a79a0b5 kostenfrei https://www.mdpi.com/2077-0472/12/1/74 kostenfrei https://doaj.org/toc/2077-0472 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1, p 74 |
spelling |
10.3390/agriculture12010074 doi (DE-627)DOAJ063491699 (DE-599)DOAJ4c0b1ee7594d469889e56c9d7a79a0b5 DE-627 ger DE-627 rakwb eng S1-972 Linsheng Huang verfasserin aut Combining Random Forest and XGBoost Methods in Detecting Early and Mid-Term Winter Wheat Stripe Rust Using Canopy Level Hyperspectral Measurements 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Appropriate modeling methods and feature selection algorithms must be selected to improve the accuracy of early and mid-term remote sensing detection of wheat stripe rust. In the current study, we explored the effectiveness of the random forest (RF) algorithm combined with the extreme gradient boosting (XGboost) method for early and mid-term wheat stripe rust detection based on the vegetation indices extracted from canopy level hyperspectral measurements. Initially, 21 vegetation indices that were related to the early and mid-term winter wheat stripe rust were calculated on the basis of canopy level hyperspectral reflectance. Subsequently, the optimal vegetation index combination for disease detection was determined using correlation analysis (CA) combined with RF algorithms. Then, the disease severity detection model of early and mid-term winter wheat stripe rust was constructed using XGBoost method based on the optimal vegetation index combination. For the evaluation and comparison of the initial results, three commonly used classification methods, namely, RF, backpropagation neural network (BPNN), and support vector machine (SVM), were utilized. The vegetation index combinations determined by the single CA algorithm were also used to construct detection models. Compared with the detection models based on the vegetation index combination obtained using the single CA algorithm, the overall accuracy of the four detection models based on the optimal vegetation index combination based on CA combined with RF algorithms increased by 16.1% (XGBoost), 9.7% (RF), 8.1% (SVM), and 8.1% (BPNN). Among the eight models, the XGBoost detection model based on the optimal vegetation index combination using CA combined with RF algorithms, CA-RF-XGBoost, achieved the highest overall accuracy of 87.1% and the highest kappa coefficient of 0.798. Our results indicate that the RF combined with XGBoost can improve the detection accuracy of early and mid-term winter wheat stripe rust effectively at canopy scale. wheat stripe rust hyperspectral early and mid-term vegetation index random forest extreme gradient boosting Agriculture (General) Yong Liu verfasserin aut Wenjiang Huang verfasserin aut Yingying Dong verfasserin aut Huiqin Ma verfasserin aut Kang Wu verfasserin aut Anting Guo verfasserin aut In Agriculture MDPI AG, 2012 12(2022), 1, p 74 (DE-627)686948173 (DE-600)2651678-0 20770472 nnns volume:12 year:2022 number:1, p 74 https://doi.org/10.3390/agriculture12010074 kostenfrei https://doaj.org/article/4c0b1ee7594d469889e56c9d7a79a0b5 kostenfrei https://www.mdpi.com/2077-0472/12/1/74 kostenfrei https://doaj.org/toc/2077-0472 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1, p 74 |
allfields_unstemmed |
10.3390/agriculture12010074 doi (DE-627)DOAJ063491699 (DE-599)DOAJ4c0b1ee7594d469889e56c9d7a79a0b5 DE-627 ger DE-627 rakwb eng S1-972 Linsheng Huang verfasserin aut Combining Random Forest and XGBoost Methods in Detecting Early and Mid-Term Winter Wheat Stripe Rust Using Canopy Level Hyperspectral Measurements 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Appropriate modeling methods and feature selection algorithms must be selected to improve the accuracy of early and mid-term remote sensing detection of wheat stripe rust. In the current study, we explored the effectiveness of the random forest (RF) algorithm combined with the extreme gradient boosting (XGboost) method for early and mid-term wheat stripe rust detection based on the vegetation indices extracted from canopy level hyperspectral measurements. Initially, 21 vegetation indices that were related to the early and mid-term winter wheat stripe rust were calculated on the basis of canopy level hyperspectral reflectance. Subsequently, the optimal vegetation index combination for disease detection was determined using correlation analysis (CA) combined with RF algorithms. Then, the disease severity detection model of early and mid-term winter wheat stripe rust was constructed using XGBoost method based on the optimal vegetation index combination. For the evaluation and comparison of the initial results, three commonly used classification methods, namely, RF, backpropagation neural network (BPNN), and support vector machine (SVM), were utilized. The vegetation index combinations determined by the single CA algorithm were also used to construct detection models. Compared with the detection models based on the vegetation index combination obtained using the single CA algorithm, the overall accuracy of the four detection models based on the optimal vegetation index combination based on CA combined with RF algorithms increased by 16.1% (XGBoost), 9.7% (RF), 8.1% (SVM), and 8.1% (BPNN). Among the eight models, the XGBoost detection model based on the optimal vegetation index combination using CA combined with RF algorithms, CA-RF-XGBoost, achieved the highest overall accuracy of 87.1% and the highest kappa coefficient of 0.798. Our results indicate that the RF combined with XGBoost can improve the detection accuracy of early and mid-term winter wheat stripe rust effectively at canopy scale. wheat stripe rust hyperspectral early and mid-term vegetation index random forest extreme gradient boosting Agriculture (General) Yong Liu verfasserin aut Wenjiang Huang verfasserin aut Yingying Dong verfasserin aut Huiqin Ma verfasserin aut Kang Wu verfasserin aut Anting Guo verfasserin aut In Agriculture MDPI AG, 2012 12(2022), 1, p 74 (DE-627)686948173 (DE-600)2651678-0 20770472 nnns volume:12 year:2022 number:1, p 74 https://doi.org/10.3390/agriculture12010074 kostenfrei https://doaj.org/article/4c0b1ee7594d469889e56c9d7a79a0b5 kostenfrei https://www.mdpi.com/2077-0472/12/1/74 kostenfrei https://doaj.org/toc/2077-0472 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1, p 74 |
allfieldsGer |
10.3390/agriculture12010074 doi (DE-627)DOAJ063491699 (DE-599)DOAJ4c0b1ee7594d469889e56c9d7a79a0b5 DE-627 ger DE-627 rakwb eng S1-972 Linsheng Huang verfasserin aut Combining Random Forest and XGBoost Methods in Detecting Early and Mid-Term Winter Wheat Stripe Rust Using Canopy Level Hyperspectral Measurements 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Appropriate modeling methods and feature selection algorithms must be selected to improve the accuracy of early and mid-term remote sensing detection of wheat stripe rust. In the current study, we explored the effectiveness of the random forest (RF) algorithm combined with the extreme gradient boosting (XGboost) method for early and mid-term wheat stripe rust detection based on the vegetation indices extracted from canopy level hyperspectral measurements. Initially, 21 vegetation indices that were related to the early and mid-term winter wheat stripe rust were calculated on the basis of canopy level hyperspectral reflectance. Subsequently, the optimal vegetation index combination for disease detection was determined using correlation analysis (CA) combined with RF algorithms. Then, the disease severity detection model of early and mid-term winter wheat stripe rust was constructed using XGBoost method based on the optimal vegetation index combination. For the evaluation and comparison of the initial results, three commonly used classification methods, namely, RF, backpropagation neural network (BPNN), and support vector machine (SVM), were utilized. The vegetation index combinations determined by the single CA algorithm were also used to construct detection models. Compared with the detection models based on the vegetation index combination obtained using the single CA algorithm, the overall accuracy of the four detection models based on the optimal vegetation index combination based on CA combined with RF algorithms increased by 16.1% (XGBoost), 9.7% (RF), 8.1% (SVM), and 8.1% (BPNN). Among the eight models, the XGBoost detection model based on the optimal vegetation index combination using CA combined with RF algorithms, CA-RF-XGBoost, achieved the highest overall accuracy of 87.1% and the highest kappa coefficient of 0.798. Our results indicate that the RF combined with XGBoost can improve the detection accuracy of early and mid-term winter wheat stripe rust effectively at canopy scale. wheat stripe rust hyperspectral early and mid-term vegetation index random forest extreme gradient boosting Agriculture (General) Yong Liu verfasserin aut Wenjiang Huang verfasserin aut Yingying Dong verfasserin aut Huiqin Ma verfasserin aut Kang Wu verfasserin aut Anting Guo verfasserin aut In Agriculture MDPI AG, 2012 12(2022), 1, p 74 (DE-627)686948173 (DE-600)2651678-0 20770472 nnns volume:12 year:2022 number:1, p 74 https://doi.org/10.3390/agriculture12010074 kostenfrei https://doaj.org/article/4c0b1ee7594d469889e56c9d7a79a0b5 kostenfrei https://www.mdpi.com/2077-0472/12/1/74 kostenfrei https://doaj.org/toc/2077-0472 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1, p 74 |
allfieldsSound |
10.3390/agriculture12010074 doi (DE-627)DOAJ063491699 (DE-599)DOAJ4c0b1ee7594d469889e56c9d7a79a0b5 DE-627 ger DE-627 rakwb eng S1-972 Linsheng Huang verfasserin aut Combining Random Forest and XGBoost Methods in Detecting Early and Mid-Term Winter Wheat Stripe Rust Using Canopy Level Hyperspectral Measurements 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Appropriate modeling methods and feature selection algorithms must be selected to improve the accuracy of early and mid-term remote sensing detection of wheat stripe rust. In the current study, we explored the effectiveness of the random forest (RF) algorithm combined with the extreme gradient boosting (XGboost) method for early and mid-term wheat stripe rust detection based on the vegetation indices extracted from canopy level hyperspectral measurements. Initially, 21 vegetation indices that were related to the early and mid-term winter wheat stripe rust were calculated on the basis of canopy level hyperspectral reflectance. Subsequently, the optimal vegetation index combination for disease detection was determined using correlation analysis (CA) combined with RF algorithms. Then, the disease severity detection model of early and mid-term winter wheat stripe rust was constructed using XGBoost method based on the optimal vegetation index combination. For the evaluation and comparison of the initial results, three commonly used classification methods, namely, RF, backpropagation neural network (BPNN), and support vector machine (SVM), were utilized. The vegetation index combinations determined by the single CA algorithm were also used to construct detection models. Compared with the detection models based on the vegetation index combination obtained using the single CA algorithm, the overall accuracy of the four detection models based on the optimal vegetation index combination based on CA combined with RF algorithms increased by 16.1% (XGBoost), 9.7% (RF), 8.1% (SVM), and 8.1% (BPNN). Among the eight models, the XGBoost detection model based on the optimal vegetation index combination using CA combined with RF algorithms, CA-RF-XGBoost, achieved the highest overall accuracy of 87.1% and the highest kappa coefficient of 0.798. Our results indicate that the RF combined with XGBoost can improve the detection accuracy of early and mid-term winter wheat stripe rust effectively at canopy scale. wheat stripe rust hyperspectral early and mid-term vegetation index random forest extreme gradient boosting Agriculture (General) Yong Liu verfasserin aut Wenjiang Huang verfasserin aut Yingying Dong verfasserin aut Huiqin Ma verfasserin aut Kang Wu verfasserin aut Anting Guo verfasserin aut In Agriculture MDPI AG, 2012 12(2022), 1, p 74 (DE-627)686948173 (DE-600)2651678-0 20770472 nnns volume:12 year:2022 number:1, p 74 https://doi.org/10.3390/agriculture12010074 kostenfrei https://doaj.org/article/4c0b1ee7594d469889e56c9d7a79a0b5 kostenfrei https://www.mdpi.com/2077-0472/12/1/74 kostenfrei https://doaj.org/toc/2077-0472 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1, p 74 |
language |
English |
source |
In Agriculture 12(2022), 1, p 74 volume:12 year:2022 number:1, p 74 |
sourceStr |
In Agriculture 12(2022), 1, p 74 volume:12 year:2022 number:1, p 74 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
wheat stripe rust hyperspectral early and mid-term vegetation index random forest extreme gradient boosting Agriculture (General) |
isfreeaccess_bool |
true |
container_title |
Agriculture |
authorswithroles_txt_mv |
Linsheng Huang @@aut@@ Yong Liu @@aut@@ Wenjiang Huang @@aut@@ Yingying Dong @@aut@@ Huiqin Ma @@aut@@ Kang Wu @@aut@@ Anting Guo @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
686948173 |
id |
DOAJ063491699 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ063491699</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414215351.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/agriculture12010074</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ063491699</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4c0b1ee7594d469889e56c9d7a79a0b5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">S1-972</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Linsheng Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Combining Random Forest and XGBoost Methods in Detecting Early and Mid-Term Winter Wheat Stripe Rust Using Canopy Level Hyperspectral Measurements</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Appropriate modeling methods and feature selection algorithms must be selected to improve the accuracy of early and mid-term remote sensing detection of wheat stripe rust. In the current study, we explored the effectiveness of the random forest (RF) algorithm combined with the extreme gradient boosting (XGboost) method for early and mid-term wheat stripe rust detection based on the vegetation indices extracted from canopy level hyperspectral measurements. Initially, 21 vegetation indices that were related to the early and mid-term winter wheat stripe rust were calculated on the basis of canopy level hyperspectral reflectance. Subsequently, the optimal vegetation index combination for disease detection was determined using correlation analysis (CA) combined with RF algorithms. Then, the disease severity detection model of early and mid-term winter wheat stripe rust was constructed using XGBoost method based on the optimal vegetation index combination. For the evaluation and comparison of the initial results, three commonly used classification methods, namely, RF, backpropagation neural network (BPNN), and support vector machine (SVM), were utilized. The vegetation index combinations determined by the single CA algorithm were also used to construct detection models. Compared with the detection models based on the vegetation index combination obtained using the single CA algorithm, the overall accuracy of the four detection models based on the optimal vegetation index combination based on CA combined with RF algorithms increased by 16.1% (XGBoost), 9.7% (RF), 8.1% (SVM), and 8.1% (BPNN). Among the eight models, the XGBoost detection model based on the optimal vegetation index combination using CA combined with RF algorithms, CA-RF-XGBoost, achieved the highest overall accuracy of 87.1% and the highest kappa coefficient of 0.798. Our results indicate that the RF combined with XGBoost can improve the detection accuracy of early and mid-term winter wheat stripe rust effectively at canopy scale.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wheat stripe rust</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hyperspectral</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">early and mid-term</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">vegetation index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">random forest</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">extreme gradient boosting</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Agriculture (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yong Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wenjiang Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yingying Dong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huiqin Ma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kang Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Anting Guo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Agriculture</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">12(2022), 1, p 74</subfield><subfield code="w">(DE-627)686948173</subfield><subfield code="w">(DE-600)2651678-0</subfield><subfield code="x">20770472</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1, p 74</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/agriculture12010074</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4c0b1ee7594d469889e56c9d7a79a0b5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2077-0472/12/1/74</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2077-0472</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">1, p 74</subfield></datafield></record></collection>
|
callnumber-first |
S - Agriculture |
author |
Linsheng Huang |
spellingShingle |
Linsheng Huang misc S1-972 misc wheat stripe rust misc hyperspectral misc early and mid-term misc vegetation index misc random forest misc extreme gradient boosting misc Agriculture (General) Combining Random Forest and XGBoost Methods in Detecting Early and Mid-Term Winter Wheat Stripe Rust Using Canopy Level Hyperspectral Measurements |
authorStr |
Linsheng Huang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)686948173 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
S1-972 |
illustrated |
Not Illustrated |
issn |
20770472 |
topic_title |
S1-972 Combining Random Forest and XGBoost Methods in Detecting Early and Mid-Term Winter Wheat Stripe Rust Using Canopy Level Hyperspectral Measurements wheat stripe rust hyperspectral early and mid-term vegetation index random forest extreme gradient boosting |
topic |
misc S1-972 misc wheat stripe rust misc hyperspectral misc early and mid-term misc vegetation index misc random forest misc extreme gradient boosting misc Agriculture (General) |
topic_unstemmed |
misc S1-972 misc wheat stripe rust misc hyperspectral misc early and mid-term misc vegetation index misc random forest misc extreme gradient boosting misc Agriculture (General) |
topic_browse |
misc S1-972 misc wheat stripe rust misc hyperspectral misc early and mid-term misc vegetation index misc random forest misc extreme gradient boosting misc Agriculture (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Agriculture |
hierarchy_parent_id |
686948173 |
hierarchy_top_title |
Agriculture |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)686948173 (DE-600)2651678-0 |
title |
Combining Random Forest and XGBoost Methods in Detecting Early and Mid-Term Winter Wheat Stripe Rust Using Canopy Level Hyperspectral Measurements |
ctrlnum |
(DE-627)DOAJ063491699 (DE-599)DOAJ4c0b1ee7594d469889e56c9d7a79a0b5 |
title_full |
Combining Random Forest and XGBoost Methods in Detecting Early and Mid-Term Winter Wheat Stripe Rust Using Canopy Level Hyperspectral Measurements |
author_sort |
Linsheng Huang |
journal |
Agriculture |
journalStr |
Agriculture |
callnumber-first-code |
S |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Linsheng Huang Yong Liu Wenjiang Huang Yingying Dong Huiqin Ma Kang Wu Anting Guo |
container_volume |
12 |
class |
S1-972 |
format_se |
Elektronische Aufsätze |
author-letter |
Linsheng Huang |
doi_str_mv |
10.3390/agriculture12010074 |
author2-role |
verfasserin |
title_sort |
combining random forest and xgboost methods in detecting early and mid-term winter wheat stripe rust using canopy level hyperspectral measurements |
callnumber |
S1-972 |
title_auth |
Combining Random Forest and XGBoost Methods in Detecting Early and Mid-Term Winter Wheat Stripe Rust Using Canopy Level Hyperspectral Measurements |
abstract |
Appropriate modeling methods and feature selection algorithms must be selected to improve the accuracy of early and mid-term remote sensing detection of wheat stripe rust. In the current study, we explored the effectiveness of the random forest (RF) algorithm combined with the extreme gradient boosting (XGboost) method for early and mid-term wheat stripe rust detection based on the vegetation indices extracted from canopy level hyperspectral measurements. Initially, 21 vegetation indices that were related to the early and mid-term winter wheat stripe rust were calculated on the basis of canopy level hyperspectral reflectance. Subsequently, the optimal vegetation index combination for disease detection was determined using correlation analysis (CA) combined with RF algorithms. Then, the disease severity detection model of early and mid-term winter wheat stripe rust was constructed using XGBoost method based on the optimal vegetation index combination. For the evaluation and comparison of the initial results, three commonly used classification methods, namely, RF, backpropagation neural network (BPNN), and support vector machine (SVM), were utilized. The vegetation index combinations determined by the single CA algorithm were also used to construct detection models. Compared with the detection models based on the vegetation index combination obtained using the single CA algorithm, the overall accuracy of the four detection models based on the optimal vegetation index combination based on CA combined with RF algorithms increased by 16.1% (XGBoost), 9.7% (RF), 8.1% (SVM), and 8.1% (BPNN). Among the eight models, the XGBoost detection model based on the optimal vegetation index combination using CA combined with RF algorithms, CA-RF-XGBoost, achieved the highest overall accuracy of 87.1% and the highest kappa coefficient of 0.798. Our results indicate that the RF combined with XGBoost can improve the detection accuracy of early and mid-term winter wheat stripe rust effectively at canopy scale. |
abstractGer |
Appropriate modeling methods and feature selection algorithms must be selected to improve the accuracy of early and mid-term remote sensing detection of wheat stripe rust. In the current study, we explored the effectiveness of the random forest (RF) algorithm combined with the extreme gradient boosting (XGboost) method for early and mid-term wheat stripe rust detection based on the vegetation indices extracted from canopy level hyperspectral measurements. Initially, 21 vegetation indices that were related to the early and mid-term winter wheat stripe rust were calculated on the basis of canopy level hyperspectral reflectance. Subsequently, the optimal vegetation index combination for disease detection was determined using correlation analysis (CA) combined with RF algorithms. Then, the disease severity detection model of early and mid-term winter wheat stripe rust was constructed using XGBoost method based on the optimal vegetation index combination. For the evaluation and comparison of the initial results, three commonly used classification methods, namely, RF, backpropagation neural network (BPNN), and support vector machine (SVM), were utilized. The vegetation index combinations determined by the single CA algorithm were also used to construct detection models. Compared with the detection models based on the vegetation index combination obtained using the single CA algorithm, the overall accuracy of the four detection models based on the optimal vegetation index combination based on CA combined with RF algorithms increased by 16.1% (XGBoost), 9.7% (RF), 8.1% (SVM), and 8.1% (BPNN). Among the eight models, the XGBoost detection model based on the optimal vegetation index combination using CA combined with RF algorithms, CA-RF-XGBoost, achieved the highest overall accuracy of 87.1% and the highest kappa coefficient of 0.798. Our results indicate that the RF combined with XGBoost can improve the detection accuracy of early and mid-term winter wheat stripe rust effectively at canopy scale. |
abstract_unstemmed |
Appropriate modeling methods and feature selection algorithms must be selected to improve the accuracy of early and mid-term remote sensing detection of wheat stripe rust. In the current study, we explored the effectiveness of the random forest (RF) algorithm combined with the extreme gradient boosting (XGboost) method for early and mid-term wheat stripe rust detection based on the vegetation indices extracted from canopy level hyperspectral measurements. Initially, 21 vegetation indices that were related to the early and mid-term winter wheat stripe rust were calculated on the basis of canopy level hyperspectral reflectance. Subsequently, the optimal vegetation index combination for disease detection was determined using correlation analysis (CA) combined with RF algorithms. Then, the disease severity detection model of early and mid-term winter wheat stripe rust was constructed using XGBoost method based on the optimal vegetation index combination. For the evaluation and comparison of the initial results, three commonly used classification methods, namely, RF, backpropagation neural network (BPNN), and support vector machine (SVM), were utilized. The vegetation index combinations determined by the single CA algorithm were also used to construct detection models. Compared with the detection models based on the vegetation index combination obtained using the single CA algorithm, the overall accuracy of the four detection models based on the optimal vegetation index combination based on CA combined with RF algorithms increased by 16.1% (XGBoost), 9.7% (RF), 8.1% (SVM), and 8.1% (BPNN). Among the eight models, the XGBoost detection model based on the optimal vegetation index combination using CA combined with RF algorithms, CA-RF-XGBoost, achieved the highest overall accuracy of 87.1% and the highest kappa coefficient of 0.798. Our results indicate that the RF combined with XGBoost can improve the detection accuracy of early and mid-term winter wheat stripe rust effectively at canopy scale. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1, p 74 |
title_short |
Combining Random Forest and XGBoost Methods in Detecting Early and Mid-Term Winter Wheat Stripe Rust Using Canopy Level Hyperspectral Measurements |
url |
https://doi.org/10.3390/agriculture12010074 https://doaj.org/article/4c0b1ee7594d469889e56c9d7a79a0b5 https://www.mdpi.com/2077-0472/12/1/74 https://doaj.org/toc/2077-0472 |
remote_bool |
true |
author2 |
Yong Liu Wenjiang Huang Yingying Dong Huiqin Ma Kang Wu Anting Guo |
author2Str |
Yong Liu Wenjiang Huang Yingying Dong Huiqin Ma Kang Wu Anting Guo |
ppnlink |
686948173 |
callnumber-subject |
S - General Agriculture |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/agriculture12010074 |
callnumber-a |
S1-972 |
up_date |
2024-07-03T18:00:07.855Z |
_version_ |
1803581766087213056 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ063491699</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414215351.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/agriculture12010074</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ063491699</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4c0b1ee7594d469889e56c9d7a79a0b5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">S1-972</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Linsheng Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Combining Random Forest and XGBoost Methods in Detecting Early and Mid-Term Winter Wheat Stripe Rust Using Canopy Level Hyperspectral Measurements</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Appropriate modeling methods and feature selection algorithms must be selected to improve the accuracy of early and mid-term remote sensing detection of wheat stripe rust. In the current study, we explored the effectiveness of the random forest (RF) algorithm combined with the extreme gradient boosting (XGboost) method for early and mid-term wheat stripe rust detection based on the vegetation indices extracted from canopy level hyperspectral measurements. Initially, 21 vegetation indices that were related to the early and mid-term winter wheat stripe rust were calculated on the basis of canopy level hyperspectral reflectance. Subsequently, the optimal vegetation index combination for disease detection was determined using correlation analysis (CA) combined with RF algorithms. Then, the disease severity detection model of early and mid-term winter wheat stripe rust was constructed using XGBoost method based on the optimal vegetation index combination. For the evaluation and comparison of the initial results, three commonly used classification methods, namely, RF, backpropagation neural network (BPNN), and support vector machine (SVM), were utilized. The vegetation index combinations determined by the single CA algorithm were also used to construct detection models. Compared with the detection models based on the vegetation index combination obtained using the single CA algorithm, the overall accuracy of the four detection models based on the optimal vegetation index combination based on CA combined with RF algorithms increased by 16.1% (XGBoost), 9.7% (RF), 8.1% (SVM), and 8.1% (BPNN). Among the eight models, the XGBoost detection model based on the optimal vegetation index combination using CA combined with RF algorithms, CA-RF-XGBoost, achieved the highest overall accuracy of 87.1% and the highest kappa coefficient of 0.798. Our results indicate that the RF combined with XGBoost can improve the detection accuracy of early and mid-term winter wheat stripe rust effectively at canopy scale.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wheat stripe rust</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hyperspectral</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">early and mid-term</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">vegetation index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">random forest</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">extreme gradient boosting</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Agriculture (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yong Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wenjiang Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yingying Dong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huiqin Ma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kang Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Anting Guo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Agriculture</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">12(2022), 1, p 74</subfield><subfield code="w">(DE-627)686948173</subfield><subfield code="w">(DE-600)2651678-0</subfield><subfield code="x">20770472</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1, p 74</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/agriculture12010074</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4c0b1ee7594d469889e56c9d7a79a0b5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2077-0472/12/1/74</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2077-0472</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">1, p 74</subfield></datafield></record></collection>
|
score |
7.401658 |