Modeling river water quality parameters using modified adaptive neuro fuzzy inference system
Water quality is always one of the most important factors in human health. Artificial intelligence models are respected methods for modeling water quality. The evolutionary algorithm (EA) is a new technique for improving the performance of artificial intelligence models such as the adaptive neuro fu...
Ausführliche Beschreibung
Autor*in: |
Armin Azad [verfasserIn] Hojat Karami [verfasserIn] Saeed Farzin [verfasserIn] Sayed-Farhad Mousavi [verfasserIn] Ozgur Kisi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Übergeordnetes Werk: |
In: Water Science and Engineering - Elsevier, 2015, 12(2019), 1, Seite 45-54 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2019 ; number:1 ; pages:45-54 |
Links: |
---|
DOI / URN: |
10.1016/j.wse.2018.11.001 |
---|
Katalog-ID: |
DOAJ063792133 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ063792133 | ||
003 | DE-627 | ||
005 | 20230503010757.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.wse.2018.11.001 |2 doi | |
035 | |a (DE-627)DOAJ063792133 | ||
035 | |a (DE-599)DOAJ9b4f8f830d094e35a98c3b47bd3f7c1d | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TC401-506 | |
100 | 0 | |a Armin Azad |e verfasserin |4 aut | |
245 | 1 | 0 | |a Modeling river water quality parameters using modified adaptive neuro fuzzy inference system |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Water quality is always one of the most important factors in human health. Artificial intelligence models are respected methods for modeling water quality. The evolutionary algorithm (EA) is a new technique for improving the performance of artificial intelligence models such as the adaptive neuro fuzzy inference system (ANFIS) and artificial neural networks (ANN). Attempts have been made to make the models more suitable and accurate with the replacement of other training methods that do not suffer from some shortcomings, including a tendency to being trapped in local optima or voluminous computations. This study investigated the applicability of ANFIS with particle swarm optimization (PSO) and ant colony optimization for continuous domains (ACOR) in estimating water quality parameters at three stations along the Zayandehrood River, in Iran. The ANFIS-PSO and ANFIS-ACOR methods were also compared with the classic ANFIS method, which uses least squares and gradient descent as training algorithms. The estimated water quality parameters in this study were electrical conductivity (EC), total dissolved solids (TDS), the sodium adsorption ratio (SAR), carbonate hardness (CH), and total hardness (TH). Correlation analysis was performed using SPSS software to determine the optimal inputs to the models. The analysis showed that ANFIS-PSO was the better model compared with ANFIS-ACOR. It is noteworthy that EA models can improve ANFIS' performance at all three stations for different water quality parameters. Keywords: Water quality parameters, ANFIS, Evolutionary algorithm, Particle swarm optimization, Ant colony optimization for continuous domains | ||
653 | 0 | |a River, lake, and water-supply engineering (General) | |
700 | 0 | |a Hojat Karami |e verfasserin |4 aut | |
700 | 0 | |a Saeed Farzin |e verfasserin |4 aut | |
700 | 0 | |a Sayed-Farhad Mousavi |e verfasserin |4 aut | |
700 | 0 | |a Ozgur Kisi |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Water Science and Engineering |d Elsevier, 2015 |g 12(2019), 1, Seite 45-54 |w (DE-627)827029608 |w (DE-600)2823458-3 |x 24058106 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2019 |g number:1 |g pages:45-54 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.wse.2018.11.001 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/9b4f8f830d094e35a98c3b47bd3f7c1d |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S1674237019300262 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1674-2370 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_121 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_374 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_647 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2036 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_2817 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4346 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4392 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
912 | |a GBV_ILN_4753 | ||
951 | |a AR | ||
952 | |d 12 |j 2019 |e 1 |h 45-54 |
author_variant |
a a aa h k hk s f sf s f m sfm o k ok |
---|---|
matchkey_str |
article:24058106:2019----::oeigiewtrultprmtruigoiiddpieer |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
TC |
publishDate |
2019 |
allfields |
10.1016/j.wse.2018.11.001 doi (DE-627)DOAJ063792133 (DE-599)DOAJ9b4f8f830d094e35a98c3b47bd3f7c1d DE-627 ger DE-627 rakwb eng TC401-506 Armin Azad verfasserin aut Modeling river water quality parameters using modified adaptive neuro fuzzy inference system 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Water quality is always one of the most important factors in human health. Artificial intelligence models are respected methods for modeling water quality. The evolutionary algorithm (EA) is a new technique for improving the performance of artificial intelligence models such as the adaptive neuro fuzzy inference system (ANFIS) and artificial neural networks (ANN). Attempts have been made to make the models more suitable and accurate with the replacement of other training methods that do not suffer from some shortcomings, including a tendency to being trapped in local optima or voluminous computations. This study investigated the applicability of ANFIS with particle swarm optimization (PSO) and ant colony optimization for continuous domains (ACOR) in estimating water quality parameters at three stations along the Zayandehrood River, in Iran. The ANFIS-PSO and ANFIS-ACOR methods were also compared with the classic ANFIS method, which uses least squares and gradient descent as training algorithms. The estimated water quality parameters in this study were electrical conductivity (EC), total dissolved solids (TDS), the sodium adsorption ratio (SAR), carbonate hardness (CH), and total hardness (TH). Correlation analysis was performed using SPSS software to determine the optimal inputs to the models. The analysis showed that ANFIS-PSO was the better model compared with ANFIS-ACOR. It is noteworthy that EA models can improve ANFIS' performance at all three stations for different water quality parameters. Keywords: Water quality parameters, ANFIS, Evolutionary algorithm, Particle swarm optimization, Ant colony optimization for continuous domains River, lake, and water-supply engineering (General) Hojat Karami verfasserin aut Saeed Farzin verfasserin aut Sayed-Farhad Mousavi verfasserin aut Ozgur Kisi verfasserin aut In Water Science and Engineering Elsevier, 2015 12(2019), 1, Seite 45-54 (DE-627)827029608 (DE-600)2823458-3 24058106 nnns volume:12 year:2019 number:1 pages:45-54 https://doi.org/10.1016/j.wse.2018.11.001 kostenfrei https://doaj.org/article/9b4f8f830d094e35a98c3b47bd3f7c1d kostenfrei http://www.sciencedirect.com/science/article/pii/S1674237019300262 kostenfrei https://doaj.org/toc/1674-2370 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_121 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_647 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2036 GBV_ILN_2037 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2119 GBV_ILN_2129 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_2817 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4346 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4393 GBV_ILN_4700 GBV_ILN_4753 AR 12 2019 1 45-54 |
spelling |
10.1016/j.wse.2018.11.001 doi (DE-627)DOAJ063792133 (DE-599)DOAJ9b4f8f830d094e35a98c3b47bd3f7c1d DE-627 ger DE-627 rakwb eng TC401-506 Armin Azad verfasserin aut Modeling river water quality parameters using modified adaptive neuro fuzzy inference system 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Water quality is always one of the most important factors in human health. Artificial intelligence models are respected methods for modeling water quality. The evolutionary algorithm (EA) is a new technique for improving the performance of artificial intelligence models such as the adaptive neuro fuzzy inference system (ANFIS) and artificial neural networks (ANN). Attempts have been made to make the models more suitable and accurate with the replacement of other training methods that do not suffer from some shortcomings, including a tendency to being trapped in local optima or voluminous computations. This study investigated the applicability of ANFIS with particle swarm optimization (PSO) and ant colony optimization for continuous domains (ACOR) in estimating water quality parameters at three stations along the Zayandehrood River, in Iran. The ANFIS-PSO and ANFIS-ACOR methods were also compared with the classic ANFIS method, which uses least squares and gradient descent as training algorithms. The estimated water quality parameters in this study were electrical conductivity (EC), total dissolved solids (TDS), the sodium adsorption ratio (SAR), carbonate hardness (CH), and total hardness (TH). Correlation analysis was performed using SPSS software to determine the optimal inputs to the models. The analysis showed that ANFIS-PSO was the better model compared with ANFIS-ACOR. It is noteworthy that EA models can improve ANFIS' performance at all three stations for different water quality parameters. Keywords: Water quality parameters, ANFIS, Evolutionary algorithm, Particle swarm optimization, Ant colony optimization for continuous domains River, lake, and water-supply engineering (General) Hojat Karami verfasserin aut Saeed Farzin verfasserin aut Sayed-Farhad Mousavi verfasserin aut Ozgur Kisi verfasserin aut In Water Science and Engineering Elsevier, 2015 12(2019), 1, Seite 45-54 (DE-627)827029608 (DE-600)2823458-3 24058106 nnns volume:12 year:2019 number:1 pages:45-54 https://doi.org/10.1016/j.wse.2018.11.001 kostenfrei https://doaj.org/article/9b4f8f830d094e35a98c3b47bd3f7c1d kostenfrei http://www.sciencedirect.com/science/article/pii/S1674237019300262 kostenfrei https://doaj.org/toc/1674-2370 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_121 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_647 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2036 GBV_ILN_2037 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2119 GBV_ILN_2129 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_2817 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4346 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4393 GBV_ILN_4700 GBV_ILN_4753 AR 12 2019 1 45-54 |
allfields_unstemmed |
10.1016/j.wse.2018.11.001 doi (DE-627)DOAJ063792133 (DE-599)DOAJ9b4f8f830d094e35a98c3b47bd3f7c1d DE-627 ger DE-627 rakwb eng TC401-506 Armin Azad verfasserin aut Modeling river water quality parameters using modified adaptive neuro fuzzy inference system 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Water quality is always one of the most important factors in human health. Artificial intelligence models are respected methods for modeling water quality. The evolutionary algorithm (EA) is a new technique for improving the performance of artificial intelligence models such as the adaptive neuro fuzzy inference system (ANFIS) and artificial neural networks (ANN). Attempts have been made to make the models more suitable and accurate with the replacement of other training methods that do not suffer from some shortcomings, including a tendency to being trapped in local optima or voluminous computations. This study investigated the applicability of ANFIS with particle swarm optimization (PSO) and ant colony optimization for continuous domains (ACOR) in estimating water quality parameters at three stations along the Zayandehrood River, in Iran. The ANFIS-PSO and ANFIS-ACOR methods were also compared with the classic ANFIS method, which uses least squares and gradient descent as training algorithms. The estimated water quality parameters in this study were electrical conductivity (EC), total dissolved solids (TDS), the sodium adsorption ratio (SAR), carbonate hardness (CH), and total hardness (TH). Correlation analysis was performed using SPSS software to determine the optimal inputs to the models. The analysis showed that ANFIS-PSO was the better model compared with ANFIS-ACOR. It is noteworthy that EA models can improve ANFIS' performance at all three stations for different water quality parameters. Keywords: Water quality parameters, ANFIS, Evolutionary algorithm, Particle swarm optimization, Ant colony optimization for continuous domains River, lake, and water-supply engineering (General) Hojat Karami verfasserin aut Saeed Farzin verfasserin aut Sayed-Farhad Mousavi verfasserin aut Ozgur Kisi verfasserin aut In Water Science and Engineering Elsevier, 2015 12(2019), 1, Seite 45-54 (DE-627)827029608 (DE-600)2823458-3 24058106 nnns volume:12 year:2019 number:1 pages:45-54 https://doi.org/10.1016/j.wse.2018.11.001 kostenfrei https://doaj.org/article/9b4f8f830d094e35a98c3b47bd3f7c1d kostenfrei http://www.sciencedirect.com/science/article/pii/S1674237019300262 kostenfrei https://doaj.org/toc/1674-2370 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_121 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_647 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2036 GBV_ILN_2037 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2119 GBV_ILN_2129 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_2817 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4346 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4393 GBV_ILN_4700 GBV_ILN_4753 AR 12 2019 1 45-54 |
allfieldsGer |
10.1016/j.wse.2018.11.001 doi (DE-627)DOAJ063792133 (DE-599)DOAJ9b4f8f830d094e35a98c3b47bd3f7c1d DE-627 ger DE-627 rakwb eng TC401-506 Armin Azad verfasserin aut Modeling river water quality parameters using modified adaptive neuro fuzzy inference system 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Water quality is always one of the most important factors in human health. Artificial intelligence models are respected methods for modeling water quality. The evolutionary algorithm (EA) is a new technique for improving the performance of artificial intelligence models such as the adaptive neuro fuzzy inference system (ANFIS) and artificial neural networks (ANN). Attempts have been made to make the models more suitable and accurate with the replacement of other training methods that do not suffer from some shortcomings, including a tendency to being trapped in local optima or voluminous computations. This study investigated the applicability of ANFIS with particle swarm optimization (PSO) and ant colony optimization for continuous domains (ACOR) in estimating water quality parameters at three stations along the Zayandehrood River, in Iran. The ANFIS-PSO and ANFIS-ACOR methods were also compared with the classic ANFIS method, which uses least squares and gradient descent as training algorithms. The estimated water quality parameters in this study were electrical conductivity (EC), total dissolved solids (TDS), the sodium adsorption ratio (SAR), carbonate hardness (CH), and total hardness (TH). Correlation analysis was performed using SPSS software to determine the optimal inputs to the models. The analysis showed that ANFIS-PSO was the better model compared with ANFIS-ACOR. It is noteworthy that EA models can improve ANFIS' performance at all three stations for different water quality parameters. Keywords: Water quality parameters, ANFIS, Evolutionary algorithm, Particle swarm optimization, Ant colony optimization for continuous domains River, lake, and water-supply engineering (General) Hojat Karami verfasserin aut Saeed Farzin verfasserin aut Sayed-Farhad Mousavi verfasserin aut Ozgur Kisi verfasserin aut In Water Science and Engineering Elsevier, 2015 12(2019), 1, Seite 45-54 (DE-627)827029608 (DE-600)2823458-3 24058106 nnns volume:12 year:2019 number:1 pages:45-54 https://doi.org/10.1016/j.wse.2018.11.001 kostenfrei https://doaj.org/article/9b4f8f830d094e35a98c3b47bd3f7c1d kostenfrei http://www.sciencedirect.com/science/article/pii/S1674237019300262 kostenfrei https://doaj.org/toc/1674-2370 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_121 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_647 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2036 GBV_ILN_2037 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2119 GBV_ILN_2129 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_2817 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4346 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4393 GBV_ILN_4700 GBV_ILN_4753 AR 12 2019 1 45-54 |
allfieldsSound |
10.1016/j.wse.2018.11.001 doi (DE-627)DOAJ063792133 (DE-599)DOAJ9b4f8f830d094e35a98c3b47bd3f7c1d DE-627 ger DE-627 rakwb eng TC401-506 Armin Azad verfasserin aut Modeling river water quality parameters using modified adaptive neuro fuzzy inference system 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Water quality is always one of the most important factors in human health. Artificial intelligence models are respected methods for modeling water quality. The evolutionary algorithm (EA) is a new technique for improving the performance of artificial intelligence models such as the adaptive neuro fuzzy inference system (ANFIS) and artificial neural networks (ANN). Attempts have been made to make the models more suitable and accurate with the replacement of other training methods that do not suffer from some shortcomings, including a tendency to being trapped in local optima or voluminous computations. This study investigated the applicability of ANFIS with particle swarm optimization (PSO) and ant colony optimization for continuous domains (ACOR) in estimating water quality parameters at three stations along the Zayandehrood River, in Iran. The ANFIS-PSO and ANFIS-ACOR methods were also compared with the classic ANFIS method, which uses least squares and gradient descent as training algorithms. The estimated water quality parameters in this study were electrical conductivity (EC), total dissolved solids (TDS), the sodium adsorption ratio (SAR), carbonate hardness (CH), and total hardness (TH). Correlation analysis was performed using SPSS software to determine the optimal inputs to the models. The analysis showed that ANFIS-PSO was the better model compared with ANFIS-ACOR. It is noteworthy that EA models can improve ANFIS' performance at all three stations for different water quality parameters. Keywords: Water quality parameters, ANFIS, Evolutionary algorithm, Particle swarm optimization, Ant colony optimization for continuous domains River, lake, and water-supply engineering (General) Hojat Karami verfasserin aut Saeed Farzin verfasserin aut Sayed-Farhad Mousavi verfasserin aut Ozgur Kisi verfasserin aut In Water Science and Engineering Elsevier, 2015 12(2019), 1, Seite 45-54 (DE-627)827029608 (DE-600)2823458-3 24058106 nnns volume:12 year:2019 number:1 pages:45-54 https://doi.org/10.1016/j.wse.2018.11.001 kostenfrei https://doaj.org/article/9b4f8f830d094e35a98c3b47bd3f7c1d kostenfrei http://www.sciencedirect.com/science/article/pii/S1674237019300262 kostenfrei https://doaj.org/toc/1674-2370 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_121 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_647 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2036 GBV_ILN_2037 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2119 GBV_ILN_2129 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_2817 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4346 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4393 GBV_ILN_4700 GBV_ILN_4753 AR 12 2019 1 45-54 |
language |
English |
source |
In Water Science and Engineering 12(2019), 1, Seite 45-54 volume:12 year:2019 number:1 pages:45-54 |
sourceStr |
In Water Science and Engineering 12(2019), 1, Seite 45-54 volume:12 year:2019 number:1 pages:45-54 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
River, lake, and water-supply engineering (General) |
isfreeaccess_bool |
true |
container_title |
Water Science and Engineering |
authorswithroles_txt_mv |
Armin Azad @@aut@@ Hojat Karami @@aut@@ Saeed Farzin @@aut@@ Sayed-Farhad Mousavi @@aut@@ Ozgur Kisi @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
827029608 |
id |
DOAJ063792133 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ063792133</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503010757.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.wse.2018.11.001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ063792133</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ9b4f8f830d094e35a98c3b47bd3f7c1d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TC401-506</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Armin Azad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modeling river water quality parameters using modified adaptive neuro fuzzy inference system</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Water quality is always one of the most important factors in human health. Artificial intelligence models are respected methods for modeling water quality. The evolutionary algorithm (EA) is a new technique for improving the performance of artificial intelligence models such as the adaptive neuro fuzzy inference system (ANFIS) and artificial neural networks (ANN). Attempts have been made to make the models more suitable and accurate with the replacement of other training methods that do not suffer from some shortcomings, including a tendency to being trapped in local optima or voluminous computations. This study investigated the applicability of ANFIS with particle swarm optimization (PSO) and ant colony optimization for continuous domains (ACOR) in estimating water quality parameters at three stations along the Zayandehrood River, in Iran. The ANFIS-PSO and ANFIS-ACOR methods were also compared with the classic ANFIS method, which uses least squares and gradient descent as training algorithms. The estimated water quality parameters in this study were electrical conductivity (EC), total dissolved solids (TDS), the sodium adsorption ratio (SAR), carbonate hardness (CH), and total hardness (TH). Correlation analysis was performed using SPSS software to determine the optimal inputs to the models. The analysis showed that ANFIS-PSO was the better model compared with ANFIS-ACOR. It is noteworthy that EA models can improve ANFIS' performance at all three stations for different water quality parameters. Keywords: Water quality parameters, ANFIS, Evolutionary algorithm, Particle swarm optimization, Ant colony optimization for continuous domains</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">River, lake, and water-supply engineering (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hojat Karami</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Saeed Farzin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sayed-Farhad Mousavi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ozgur Kisi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Water Science and Engineering</subfield><subfield code="d">Elsevier, 2015</subfield><subfield code="g">12(2019), 1, Seite 45-54</subfield><subfield code="w">(DE-627)827029608</subfield><subfield code="w">(DE-600)2823458-3</subfield><subfield code="x">24058106</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:45-54</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.wse.2018.11.001</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/9b4f8f830d094e35a98c3b47bd3f7c1d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S1674237019300262</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1674-2370</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_121</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_374</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2817</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4346</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4753</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="h">45-54</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Armin Azad |
spellingShingle |
Armin Azad misc TC401-506 misc River, lake, and water-supply engineering (General) Modeling river water quality parameters using modified adaptive neuro fuzzy inference system |
authorStr |
Armin Azad |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)827029608 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TC401-506 |
illustrated |
Not Illustrated |
issn |
24058106 |
topic_title |
TC401-506 Modeling river water quality parameters using modified adaptive neuro fuzzy inference system |
topic |
misc TC401-506 misc River, lake, and water-supply engineering (General) |
topic_unstemmed |
misc TC401-506 misc River, lake, and water-supply engineering (General) |
topic_browse |
misc TC401-506 misc River, lake, and water-supply engineering (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Water Science and Engineering |
hierarchy_parent_id |
827029608 |
hierarchy_top_title |
Water Science and Engineering |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)827029608 (DE-600)2823458-3 |
title |
Modeling river water quality parameters using modified adaptive neuro fuzzy inference system |
ctrlnum |
(DE-627)DOAJ063792133 (DE-599)DOAJ9b4f8f830d094e35a98c3b47bd3f7c1d |
title_full |
Modeling river water quality parameters using modified adaptive neuro fuzzy inference system |
author_sort |
Armin Azad |
journal |
Water Science and Engineering |
journalStr |
Water Science and Engineering |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
45 |
author_browse |
Armin Azad Hojat Karami Saeed Farzin Sayed-Farhad Mousavi Ozgur Kisi |
container_volume |
12 |
class |
TC401-506 |
format_se |
Elektronische Aufsätze |
author-letter |
Armin Azad |
doi_str_mv |
10.1016/j.wse.2018.11.001 |
author2-role |
verfasserin |
title_sort |
modeling river water quality parameters using modified adaptive neuro fuzzy inference system |
callnumber |
TC401-506 |
title_auth |
Modeling river water quality parameters using modified adaptive neuro fuzzy inference system |
abstract |
Water quality is always one of the most important factors in human health. Artificial intelligence models are respected methods for modeling water quality. The evolutionary algorithm (EA) is a new technique for improving the performance of artificial intelligence models such as the adaptive neuro fuzzy inference system (ANFIS) and artificial neural networks (ANN). Attempts have been made to make the models more suitable and accurate with the replacement of other training methods that do not suffer from some shortcomings, including a tendency to being trapped in local optima or voluminous computations. This study investigated the applicability of ANFIS with particle swarm optimization (PSO) and ant colony optimization for continuous domains (ACOR) in estimating water quality parameters at three stations along the Zayandehrood River, in Iran. The ANFIS-PSO and ANFIS-ACOR methods were also compared with the classic ANFIS method, which uses least squares and gradient descent as training algorithms. The estimated water quality parameters in this study were electrical conductivity (EC), total dissolved solids (TDS), the sodium adsorption ratio (SAR), carbonate hardness (CH), and total hardness (TH). Correlation analysis was performed using SPSS software to determine the optimal inputs to the models. The analysis showed that ANFIS-PSO was the better model compared with ANFIS-ACOR. It is noteworthy that EA models can improve ANFIS' performance at all three stations for different water quality parameters. Keywords: Water quality parameters, ANFIS, Evolutionary algorithm, Particle swarm optimization, Ant colony optimization for continuous domains |
abstractGer |
Water quality is always one of the most important factors in human health. Artificial intelligence models are respected methods for modeling water quality. The evolutionary algorithm (EA) is a new technique for improving the performance of artificial intelligence models such as the adaptive neuro fuzzy inference system (ANFIS) and artificial neural networks (ANN). Attempts have been made to make the models more suitable and accurate with the replacement of other training methods that do not suffer from some shortcomings, including a tendency to being trapped in local optima or voluminous computations. This study investigated the applicability of ANFIS with particle swarm optimization (PSO) and ant colony optimization for continuous domains (ACOR) in estimating water quality parameters at three stations along the Zayandehrood River, in Iran. The ANFIS-PSO and ANFIS-ACOR methods were also compared with the classic ANFIS method, which uses least squares and gradient descent as training algorithms. The estimated water quality parameters in this study were electrical conductivity (EC), total dissolved solids (TDS), the sodium adsorption ratio (SAR), carbonate hardness (CH), and total hardness (TH). Correlation analysis was performed using SPSS software to determine the optimal inputs to the models. The analysis showed that ANFIS-PSO was the better model compared with ANFIS-ACOR. It is noteworthy that EA models can improve ANFIS' performance at all three stations for different water quality parameters. Keywords: Water quality parameters, ANFIS, Evolutionary algorithm, Particle swarm optimization, Ant colony optimization for continuous domains |
abstract_unstemmed |
Water quality is always one of the most important factors in human health. Artificial intelligence models are respected methods for modeling water quality. The evolutionary algorithm (EA) is a new technique for improving the performance of artificial intelligence models such as the adaptive neuro fuzzy inference system (ANFIS) and artificial neural networks (ANN). Attempts have been made to make the models more suitable and accurate with the replacement of other training methods that do not suffer from some shortcomings, including a tendency to being trapped in local optima or voluminous computations. This study investigated the applicability of ANFIS with particle swarm optimization (PSO) and ant colony optimization for continuous domains (ACOR) in estimating water quality parameters at three stations along the Zayandehrood River, in Iran. The ANFIS-PSO and ANFIS-ACOR methods were also compared with the classic ANFIS method, which uses least squares and gradient descent as training algorithms. The estimated water quality parameters in this study were electrical conductivity (EC), total dissolved solids (TDS), the sodium adsorption ratio (SAR), carbonate hardness (CH), and total hardness (TH). Correlation analysis was performed using SPSS software to determine the optimal inputs to the models. The analysis showed that ANFIS-PSO was the better model compared with ANFIS-ACOR. It is noteworthy that EA models can improve ANFIS' performance at all three stations for different water quality parameters. Keywords: Water quality parameters, ANFIS, Evolutionary algorithm, Particle swarm optimization, Ant colony optimization for continuous domains |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_121 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_647 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2036 GBV_ILN_2037 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2119 GBV_ILN_2129 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_2817 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4346 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4393 GBV_ILN_4700 GBV_ILN_4753 |
container_issue |
1 |
title_short |
Modeling river water quality parameters using modified adaptive neuro fuzzy inference system |
url |
https://doi.org/10.1016/j.wse.2018.11.001 https://doaj.org/article/9b4f8f830d094e35a98c3b47bd3f7c1d http://www.sciencedirect.com/science/article/pii/S1674237019300262 https://doaj.org/toc/1674-2370 |
remote_bool |
true |
author2 |
Hojat Karami Saeed Farzin Sayed-Farhad Mousavi Ozgur Kisi |
author2Str |
Hojat Karami Saeed Farzin Sayed-Farhad Mousavi Ozgur Kisi |
ppnlink |
827029608 |
callnumber-subject |
TC - Hydraulic and Ocean Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.wse.2018.11.001 |
callnumber-a |
TC401-506 |
up_date |
2024-07-03T19:34:55.578Z |
_version_ |
1803587730099142656 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ063792133</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503010757.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.wse.2018.11.001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ063792133</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ9b4f8f830d094e35a98c3b47bd3f7c1d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TC401-506</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Armin Azad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modeling river water quality parameters using modified adaptive neuro fuzzy inference system</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Water quality is always one of the most important factors in human health. Artificial intelligence models are respected methods for modeling water quality. The evolutionary algorithm (EA) is a new technique for improving the performance of artificial intelligence models such as the adaptive neuro fuzzy inference system (ANFIS) and artificial neural networks (ANN). Attempts have been made to make the models more suitable and accurate with the replacement of other training methods that do not suffer from some shortcomings, including a tendency to being trapped in local optima or voluminous computations. This study investigated the applicability of ANFIS with particle swarm optimization (PSO) and ant colony optimization for continuous domains (ACOR) in estimating water quality parameters at three stations along the Zayandehrood River, in Iran. The ANFIS-PSO and ANFIS-ACOR methods were also compared with the classic ANFIS method, which uses least squares and gradient descent as training algorithms. The estimated water quality parameters in this study were electrical conductivity (EC), total dissolved solids (TDS), the sodium adsorption ratio (SAR), carbonate hardness (CH), and total hardness (TH). Correlation analysis was performed using SPSS software to determine the optimal inputs to the models. The analysis showed that ANFIS-PSO was the better model compared with ANFIS-ACOR. It is noteworthy that EA models can improve ANFIS' performance at all three stations for different water quality parameters. Keywords: Water quality parameters, ANFIS, Evolutionary algorithm, Particle swarm optimization, Ant colony optimization for continuous domains</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">River, lake, and water-supply engineering (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hojat Karami</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Saeed Farzin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sayed-Farhad Mousavi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ozgur Kisi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Water Science and Engineering</subfield><subfield code="d">Elsevier, 2015</subfield><subfield code="g">12(2019), 1, Seite 45-54</subfield><subfield code="w">(DE-627)827029608</subfield><subfield code="w">(DE-600)2823458-3</subfield><subfield code="x">24058106</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:45-54</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.wse.2018.11.001</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/9b4f8f830d094e35a98c3b47bd3f7c1d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S1674237019300262</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1674-2370</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_121</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_374</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2817</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4346</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4753</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="h">45-54</subfield></datafield></record></collection>
|
score |
7.4028378 |