Evaluation of continuous constant current and continuous pulsed current in sweat induction for cystic fibrosis diagnosis
Abstract Background The sweat test (ST) is the gold standard for the diagnosis of cystic fibrosis (CF). However, little is known about sweat induction using different types of currents and waves. In this context, our objective was to develop a device to induce sweat and compare the use of continuous...
Ausführliche Beschreibung
Autor*in: |
Carla Cristina Souza Gomez [verfasserIn] Fernando Augusto Lima Marson [verfasserIn] Maria Fátima Servidoni [verfasserIn] Antônio Fernando Ribeiro [verfasserIn] Maria Ângela Gonçalves Oliveira Ribeiro [verfasserIn] Veruska Acioli Lopes Gama [verfasserIn] Eduardo Tavares Costa [verfasserIn] José Dirceu Ribeiro [verfasserIn] Francisco Ubaldo Vieira Junior [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: BMC Pulmonary Medicine - BMC, 2003, 18(2018), 1, Seite 16 |
---|---|
Übergeordnetes Werk: |
volume:18 ; year:2018 ; number:1 ; pages:16 |
Links: |
---|
DOI / URN: |
10.1186/s12890-018-0696-3 |
---|
Katalog-ID: |
DOAJ063832216 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ063832216 | ||
003 | DE-627 | ||
005 | 20230501171858.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12890-018-0696-3 |2 doi | |
035 | |a (DE-627)DOAJ063832216 | ||
035 | |a (DE-599)DOAJ3315d37f07cf4809855d7c6697b46006 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a RC705-779 | |
100 | 0 | |a Carla Cristina Souza Gomez |e verfasserin |4 aut | |
245 | 1 | 0 | |a Evaluation of continuous constant current and continuous pulsed current in sweat induction for cystic fibrosis diagnosis |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Background The sweat test (ST) is the gold standard for the diagnosis of cystic fibrosis (CF). However, little is known about sweat induction using different types of currents and waves. In this context, our objective was to develop a device to induce sweat and compare the use of continuous constant current (CCC) and continuous pulsed current (CPC) in individuals with CF and healthy controls. Methods A prospective cross-sectional study with experimental intervention. The variables of gender, ethnicity, age, and body mass index (BMI) were considered. The method of Gibson and Cooke was used, and the following markers were evaluated: sweat weight, electrical impedance, sufficient sweat amount, and CF diagnosis. Triangular (TPC) or sinusoidal (SPC) pulsed current was applied to the right arm, and CCC was applied to the left arm. Results The study analyzed 260 individuals, 141/213 (54.2%) were female participants, 135/260 (51.9%) were Caucasians. The distribution of individuals by concentration of chloride at the ST was: (CF) 26/260 (10%); (borderlines) 109/260 (41.9%); (healthy) 97/260 (37.3%); (insufficient weight in sweat) 28/260 (10.8%). No association was observed between the sufficient sweat amount to perform the ST when we compared the currents. However, the SPC showed a higher amount of sweat weight. Using Bland and Altman plot considering the agreement between the sweat chloride values achieved from CPC [SPC and TPC] and CCC, there was no proportional bias and mean values are unrelated and only explain less than 8% of the variation. Moreover, TPC presented higher electrical impedance when compared with SPC and CCC. SPC presented lower electrical impedance and higher sweat weight than CCC. Male participants presented lower electrical impedance and higher sweat weight with CCC and TPC, and higher sweat weight with SPC. Conclusions The evaluated currents are safe and able to induce and produce sweat in sufficient quantities for the ST. SPC presented lower electrical impedance when compared with other currents. The use of SPC is recommended to induce sweat in patients with sweat problems. Finally, ethnicity, gender, age and BMI did not influence sweat induction at the ST, and no side effect was observed in our study. | ||
650 | 4 | |a Continuous constant current | |
650 | 4 | |a Continuous pulsed current | |
650 | 4 | |a Sweat test | |
650 | 4 | |a Sinusoidal pulsed current | |
650 | 4 | |a Triangular pulsed current | |
653 | 0 | |a Diseases of the respiratory system | |
700 | 0 | |a Fernando Augusto Lima Marson |e verfasserin |4 aut | |
700 | 0 | |a Maria Fátima Servidoni |e verfasserin |4 aut | |
700 | 0 | |a Antônio Fernando Ribeiro |e verfasserin |4 aut | |
700 | 0 | |a Maria Ângela Gonçalves Oliveira Ribeiro |e verfasserin |4 aut | |
700 | 0 | |a Veruska Acioli Lopes Gama |e verfasserin |4 aut | |
700 | 0 | |a Eduardo Tavares Costa |e verfasserin |4 aut | |
700 | 0 | |a José Dirceu Ribeiro |e verfasserin |4 aut | |
700 | 0 | |a Francisco Ubaldo Vieira Junior |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t BMC Pulmonary Medicine |d BMC, 2003 |g 18(2018), 1, Seite 16 |w (DE-627)335489125 |w (DE-600)2059871-3 |x 14712466 |7 nnns |
773 | 1 | 8 | |g volume:18 |g year:2018 |g number:1 |g pages:16 |
856 | 4 | 0 | |u https://doi.org/10.1186/s12890-018-0696-3 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/3315d37f07cf4809855d7c6697b46006 |z kostenfrei |
856 | 4 | 0 | |u http://link.springer.com/article/10.1186/s12890-018-0696-3 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1471-2466 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 18 |j 2018 |e 1 |h 16 |
author_variant |
c c s g ccsg f a l m falm m f s mfs a f r afr m â g o r mâgor v a l g valg e t c etc j d r jdr f u v j fuvj |
---|---|
matchkey_str |
article:14712466:2018----::vlainfotnososaturnadotnosusdurnisetnuto |
hierarchy_sort_str |
2018 |
callnumber-subject-code |
RC |
publishDate |
2018 |
allfields |
10.1186/s12890-018-0696-3 doi (DE-627)DOAJ063832216 (DE-599)DOAJ3315d37f07cf4809855d7c6697b46006 DE-627 ger DE-627 rakwb eng RC705-779 Carla Cristina Souza Gomez verfasserin aut Evaluation of continuous constant current and continuous pulsed current in sweat induction for cystic fibrosis diagnosis 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background The sweat test (ST) is the gold standard for the diagnosis of cystic fibrosis (CF). However, little is known about sweat induction using different types of currents and waves. In this context, our objective was to develop a device to induce sweat and compare the use of continuous constant current (CCC) and continuous pulsed current (CPC) in individuals with CF and healthy controls. Methods A prospective cross-sectional study with experimental intervention. The variables of gender, ethnicity, age, and body mass index (BMI) were considered. The method of Gibson and Cooke was used, and the following markers were evaluated: sweat weight, electrical impedance, sufficient sweat amount, and CF diagnosis. Triangular (TPC) or sinusoidal (SPC) pulsed current was applied to the right arm, and CCC was applied to the left arm. Results The study analyzed 260 individuals, 141/213 (54.2%) were female participants, 135/260 (51.9%) were Caucasians. The distribution of individuals by concentration of chloride at the ST was: (CF) 26/260 (10%); (borderlines) 109/260 (41.9%); (healthy) 97/260 (37.3%); (insufficient weight in sweat) 28/260 (10.8%). No association was observed between the sufficient sweat amount to perform the ST when we compared the currents. However, the SPC showed a higher amount of sweat weight. Using Bland and Altman plot considering the agreement between the sweat chloride values achieved from CPC [SPC and TPC] and CCC, there was no proportional bias and mean values are unrelated and only explain less than 8% of the variation. Moreover, TPC presented higher electrical impedance when compared with SPC and CCC. SPC presented lower electrical impedance and higher sweat weight than CCC. Male participants presented lower electrical impedance and higher sweat weight with CCC and TPC, and higher sweat weight with SPC. Conclusions The evaluated currents are safe and able to induce and produce sweat in sufficient quantities for the ST. SPC presented lower electrical impedance when compared with other currents. The use of SPC is recommended to induce sweat in patients with sweat problems. Finally, ethnicity, gender, age and BMI did not influence sweat induction at the ST, and no side effect was observed in our study. Continuous constant current Continuous pulsed current Sweat test Sinusoidal pulsed current Triangular pulsed current Diseases of the respiratory system Fernando Augusto Lima Marson verfasserin aut Maria Fátima Servidoni verfasserin aut Antônio Fernando Ribeiro verfasserin aut Maria Ângela Gonçalves Oliveira Ribeiro verfasserin aut Veruska Acioli Lopes Gama verfasserin aut Eduardo Tavares Costa verfasserin aut José Dirceu Ribeiro verfasserin aut Francisco Ubaldo Vieira Junior verfasserin aut In BMC Pulmonary Medicine BMC, 2003 18(2018), 1, Seite 16 (DE-627)335489125 (DE-600)2059871-3 14712466 nnns volume:18 year:2018 number:1 pages:16 https://doi.org/10.1186/s12890-018-0696-3 kostenfrei https://doaj.org/article/3315d37f07cf4809855d7c6697b46006 kostenfrei http://link.springer.com/article/10.1186/s12890-018-0696-3 kostenfrei https://doaj.org/toc/1471-2466 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2018 1 16 |
spelling |
10.1186/s12890-018-0696-3 doi (DE-627)DOAJ063832216 (DE-599)DOAJ3315d37f07cf4809855d7c6697b46006 DE-627 ger DE-627 rakwb eng RC705-779 Carla Cristina Souza Gomez verfasserin aut Evaluation of continuous constant current and continuous pulsed current in sweat induction for cystic fibrosis diagnosis 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background The sweat test (ST) is the gold standard for the diagnosis of cystic fibrosis (CF). However, little is known about sweat induction using different types of currents and waves. In this context, our objective was to develop a device to induce sweat and compare the use of continuous constant current (CCC) and continuous pulsed current (CPC) in individuals with CF and healthy controls. Methods A prospective cross-sectional study with experimental intervention. The variables of gender, ethnicity, age, and body mass index (BMI) were considered. The method of Gibson and Cooke was used, and the following markers were evaluated: sweat weight, electrical impedance, sufficient sweat amount, and CF diagnosis. Triangular (TPC) or sinusoidal (SPC) pulsed current was applied to the right arm, and CCC was applied to the left arm. Results The study analyzed 260 individuals, 141/213 (54.2%) were female participants, 135/260 (51.9%) were Caucasians. The distribution of individuals by concentration of chloride at the ST was: (CF) 26/260 (10%); (borderlines) 109/260 (41.9%); (healthy) 97/260 (37.3%); (insufficient weight in sweat) 28/260 (10.8%). No association was observed between the sufficient sweat amount to perform the ST when we compared the currents. However, the SPC showed a higher amount of sweat weight. Using Bland and Altman plot considering the agreement between the sweat chloride values achieved from CPC [SPC and TPC] and CCC, there was no proportional bias and mean values are unrelated and only explain less than 8% of the variation. Moreover, TPC presented higher electrical impedance when compared with SPC and CCC. SPC presented lower electrical impedance and higher sweat weight than CCC. Male participants presented lower electrical impedance and higher sweat weight with CCC and TPC, and higher sweat weight with SPC. Conclusions The evaluated currents are safe and able to induce and produce sweat in sufficient quantities for the ST. SPC presented lower electrical impedance when compared with other currents. The use of SPC is recommended to induce sweat in patients with sweat problems. Finally, ethnicity, gender, age and BMI did not influence sweat induction at the ST, and no side effect was observed in our study. Continuous constant current Continuous pulsed current Sweat test Sinusoidal pulsed current Triangular pulsed current Diseases of the respiratory system Fernando Augusto Lima Marson verfasserin aut Maria Fátima Servidoni verfasserin aut Antônio Fernando Ribeiro verfasserin aut Maria Ângela Gonçalves Oliveira Ribeiro verfasserin aut Veruska Acioli Lopes Gama verfasserin aut Eduardo Tavares Costa verfasserin aut José Dirceu Ribeiro verfasserin aut Francisco Ubaldo Vieira Junior verfasserin aut In BMC Pulmonary Medicine BMC, 2003 18(2018), 1, Seite 16 (DE-627)335489125 (DE-600)2059871-3 14712466 nnns volume:18 year:2018 number:1 pages:16 https://doi.org/10.1186/s12890-018-0696-3 kostenfrei https://doaj.org/article/3315d37f07cf4809855d7c6697b46006 kostenfrei http://link.springer.com/article/10.1186/s12890-018-0696-3 kostenfrei https://doaj.org/toc/1471-2466 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2018 1 16 |
allfields_unstemmed |
10.1186/s12890-018-0696-3 doi (DE-627)DOAJ063832216 (DE-599)DOAJ3315d37f07cf4809855d7c6697b46006 DE-627 ger DE-627 rakwb eng RC705-779 Carla Cristina Souza Gomez verfasserin aut Evaluation of continuous constant current and continuous pulsed current in sweat induction for cystic fibrosis diagnosis 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background The sweat test (ST) is the gold standard for the diagnosis of cystic fibrosis (CF). However, little is known about sweat induction using different types of currents and waves. In this context, our objective was to develop a device to induce sweat and compare the use of continuous constant current (CCC) and continuous pulsed current (CPC) in individuals with CF and healthy controls. Methods A prospective cross-sectional study with experimental intervention. The variables of gender, ethnicity, age, and body mass index (BMI) were considered. The method of Gibson and Cooke was used, and the following markers were evaluated: sweat weight, electrical impedance, sufficient sweat amount, and CF diagnosis. Triangular (TPC) or sinusoidal (SPC) pulsed current was applied to the right arm, and CCC was applied to the left arm. Results The study analyzed 260 individuals, 141/213 (54.2%) were female participants, 135/260 (51.9%) were Caucasians. The distribution of individuals by concentration of chloride at the ST was: (CF) 26/260 (10%); (borderlines) 109/260 (41.9%); (healthy) 97/260 (37.3%); (insufficient weight in sweat) 28/260 (10.8%). No association was observed between the sufficient sweat amount to perform the ST when we compared the currents. However, the SPC showed a higher amount of sweat weight. Using Bland and Altman plot considering the agreement between the sweat chloride values achieved from CPC [SPC and TPC] and CCC, there was no proportional bias and mean values are unrelated and only explain less than 8% of the variation. Moreover, TPC presented higher electrical impedance when compared with SPC and CCC. SPC presented lower electrical impedance and higher sweat weight than CCC. Male participants presented lower electrical impedance and higher sweat weight with CCC and TPC, and higher sweat weight with SPC. Conclusions The evaluated currents are safe and able to induce and produce sweat in sufficient quantities for the ST. SPC presented lower electrical impedance when compared with other currents. The use of SPC is recommended to induce sweat in patients with sweat problems. Finally, ethnicity, gender, age and BMI did not influence sweat induction at the ST, and no side effect was observed in our study. Continuous constant current Continuous pulsed current Sweat test Sinusoidal pulsed current Triangular pulsed current Diseases of the respiratory system Fernando Augusto Lima Marson verfasserin aut Maria Fátima Servidoni verfasserin aut Antônio Fernando Ribeiro verfasserin aut Maria Ângela Gonçalves Oliveira Ribeiro verfasserin aut Veruska Acioli Lopes Gama verfasserin aut Eduardo Tavares Costa verfasserin aut José Dirceu Ribeiro verfasserin aut Francisco Ubaldo Vieira Junior verfasserin aut In BMC Pulmonary Medicine BMC, 2003 18(2018), 1, Seite 16 (DE-627)335489125 (DE-600)2059871-3 14712466 nnns volume:18 year:2018 number:1 pages:16 https://doi.org/10.1186/s12890-018-0696-3 kostenfrei https://doaj.org/article/3315d37f07cf4809855d7c6697b46006 kostenfrei http://link.springer.com/article/10.1186/s12890-018-0696-3 kostenfrei https://doaj.org/toc/1471-2466 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2018 1 16 |
allfieldsGer |
10.1186/s12890-018-0696-3 doi (DE-627)DOAJ063832216 (DE-599)DOAJ3315d37f07cf4809855d7c6697b46006 DE-627 ger DE-627 rakwb eng RC705-779 Carla Cristina Souza Gomez verfasserin aut Evaluation of continuous constant current and continuous pulsed current in sweat induction for cystic fibrosis diagnosis 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background The sweat test (ST) is the gold standard for the diagnosis of cystic fibrosis (CF). However, little is known about sweat induction using different types of currents and waves. In this context, our objective was to develop a device to induce sweat and compare the use of continuous constant current (CCC) and continuous pulsed current (CPC) in individuals with CF and healthy controls. Methods A prospective cross-sectional study with experimental intervention. The variables of gender, ethnicity, age, and body mass index (BMI) were considered. The method of Gibson and Cooke was used, and the following markers were evaluated: sweat weight, electrical impedance, sufficient sweat amount, and CF diagnosis. Triangular (TPC) or sinusoidal (SPC) pulsed current was applied to the right arm, and CCC was applied to the left arm. Results The study analyzed 260 individuals, 141/213 (54.2%) were female participants, 135/260 (51.9%) were Caucasians. The distribution of individuals by concentration of chloride at the ST was: (CF) 26/260 (10%); (borderlines) 109/260 (41.9%); (healthy) 97/260 (37.3%); (insufficient weight in sweat) 28/260 (10.8%). No association was observed between the sufficient sweat amount to perform the ST when we compared the currents. However, the SPC showed a higher amount of sweat weight. Using Bland and Altman plot considering the agreement between the sweat chloride values achieved from CPC [SPC and TPC] and CCC, there was no proportional bias and mean values are unrelated and only explain less than 8% of the variation. Moreover, TPC presented higher electrical impedance when compared with SPC and CCC. SPC presented lower electrical impedance and higher sweat weight than CCC. Male participants presented lower electrical impedance and higher sweat weight with CCC and TPC, and higher sweat weight with SPC. Conclusions The evaluated currents are safe and able to induce and produce sweat in sufficient quantities for the ST. SPC presented lower electrical impedance when compared with other currents. The use of SPC is recommended to induce sweat in patients with sweat problems. Finally, ethnicity, gender, age and BMI did not influence sweat induction at the ST, and no side effect was observed in our study. Continuous constant current Continuous pulsed current Sweat test Sinusoidal pulsed current Triangular pulsed current Diseases of the respiratory system Fernando Augusto Lima Marson verfasserin aut Maria Fátima Servidoni verfasserin aut Antônio Fernando Ribeiro verfasserin aut Maria Ângela Gonçalves Oliveira Ribeiro verfasserin aut Veruska Acioli Lopes Gama verfasserin aut Eduardo Tavares Costa verfasserin aut José Dirceu Ribeiro verfasserin aut Francisco Ubaldo Vieira Junior verfasserin aut In BMC Pulmonary Medicine BMC, 2003 18(2018), 1, Seite 16 (DE-627)335489125 (DE-600)2059871-3 14712466 nnns volume:18 year:2018 number:1 pages:16 https://doi.org/10.1186/s12890-018-0696-3 kostenfrei https://doaj.org/article/3315d37f07cf4809855d7c6697b46006 kostenfrei http://link.springer.com/article/10.1186/s12890-018-0696-3 kostenfrei https://doaj.org/toc/1471-2466 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2018 1 16 |
allfieldsSound |
10.1186/s12890-018-0696-3 doi (DE-627)DOAJ063832216 (DE-599)DOAJ3315d37f07cf4809855d7c6697b46006 DE-627 ger DE-627 rakwb eng RC705-779 Carla Cristina Souza Gomez verfasserin aut Evaluation of continuous constant current and continuous pulsed current in sweat induction for cystic fibrosis diagnosis 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background The sweat test (ST) is the gold standard for the diagnosis of cystic fibrosis (CF). However, little is known about sweat induction using different types of currents and waves. In this context, our objective was to develop a device to induce sweat and compare the use of continuous constant current (CCC) and continuous pulsed current (CPC) in individuals with CF and healthy controls. Methods A prospective cross-sectional study with experimental intervention. The variables of gender, ethnicity, age, and body mass index (BMI) were considered. The method of Gibson and Cooke was used, and the following markers were evaluated: sweat weight, electrical impedance, sufficient sweat amount, and CF diagnosis. Triangular (TPC) or sinusoidal (SPC) pulsed current was applied to the right arm, and CCC was applied to the left arm. Results The study analyzed 260 individuals, 141/213 (54.2%) were female participants, 135/260 (51.9%) were Caucasians. The distribution of individuals by concentration of chloride at the ST was: (CF) 26/260 (10%); (borderlines) 109/260 (41.9%); (healthy) 97/260 (37.3%); (insufficient weight in sweat) 28/260 (10.8%). No association was observed between the sufficient sweat amount to perform the ST when we compared the currents. However, the SPC showed a higher amount of sweat weight. Using Bland and Altman plot considering the agreement between the sweat chloride values achieved from CPC [SPC and TPC] and CCC, there was no proportional bias and mean values are unrelated and only explain less than 8% of the variation. Moreover, TPC presented higher electrical impedance when compared with SPC and CCC. SPC presented lower electrical impedance and higher sweat weight than CCC. Male participants presented lower electrical impedance and higher sweat weight with CCC and TPC, and higher sweat weight with SPC. Conclusions The evaluated currents are safe and able to induce and produce sweat in sufficient quantities for the ST. SPC presented lower electrical impedance when compared with other currents. The use of SPC is recommended to induce sweat in patients with sweat problems. Finally, ethnicity, gender, age and BMI did not influence sweat induction at the ST, and no side effect was observed in our study. Continuous constant current Continuous pulsed current Sweat test Sinusoidal pulsed current Triangular pulsed current Diseases of the respiratory system Fernando Augusto Lima Marson verfasserin aut Maria Fátima Servidoni verfasserin aut Antônio Fernando Ribeiro verfasserin aut Maria Ângela Gonçalves Oliveira Ribeiro verfasserin aut Veruska Acioli Lopes Gama verfasserin aut Eduardo Tavares Costa verfasserin aut José Dirceu Ribeiro verfasserin aut Francisco Ubaldo Vieira Junior verfasserin aut In BMC Pulmonary Medicine BMC, 2003 18(2018), 1, Seite 16 (DE-627)335489125 (DE-600)2059871-3 14712466 nnns volume:18 year:2018 number:1 pages:16 https://doi.org/10.1186/s12890-018-0696-3 kostenfrei https://doaj.org/article/3315d37f07cf4809855d7c6697b46006 kostenfrei http://link.springer.com/article/10.1186/s12890-018-0696-3 kostenfrei https://doaj.org/toc/1471-2466 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2018 1 16 |
language |
English |
source |
In BMC Pulmonary Medicine 18(2018), 1, Seite 16 volume:18 year:2018 number:1 pages:16 |
sourceStr |
In BMC Pulmonary Medicine 18(2018), 1, Seite 16 volume:18 year:2018 number:1 pages:16 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Continuous constant current Continuous pulsed current Sweat test Sinusoidal pulsed current Triangular pulsed current Diseases of the respiratory system |
isfreeaccess_bool |
true |
container_title |
BMC Pulmonary Medicine |
authorswithroles_txt_mv |
Carla Cristina Souza Gomez @@aut@@ Fernando Augusto Lima Marson @@aut@@ Maria Fátima Servidoni @@aut@@ Antônio Fernando Ribeiro @@aut@@ Maria Ângela Gonçalves Oliveira Ribeiro @@aut@@ Veruska Acioli Lopes Gama @@aut@@ Eduardo Tavares Costa @@aut@@ José Dirceu Ribeiro @@aut@@ Francisco Ubaldo Vieira Junior @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
335489125 |
id |
DOAJ063832216 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ063832216</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230501171858.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12890-018-0696-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ063832216</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3315d37f07cf4809855d7c6697b46006</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC705-779</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Carla Cristina Souza Gomez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evaluation of continuous constant current and continuous pulsed current in sweat induction for cystic fibrosis diagnosis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Background The sweat test (ST) is the gold standard for the diagnosis of cystic fibrosis (CF). However, little is known about sweat induction using different types of currents and waves. In this context, our objective was to develop a device to induce sweat and compare the use of continuous constant current (CCC) and continuous pulsed current (CPC) in individuals with CF and healthy controls. Methods A prospective cross-sectional study with experimental intervention. The variables of gender, ethnicity, age, and body mass index (BMI) were considered. The method of Gibson and Cooke was used, and the following markers were evaluated: sweat weight, electrical impedance, sufficient sweat amount, and CF diagnosis. Triangular (TPC) or sinusoidal (SPC) pulsed current was applied to the right arm, and CCC was applied to the left arm. Results The study analyzed 260 individuals, 141/213 (54.2%) were female participants, 135/260 (51.9%) were Caucasians. The distribution of individuals by concentration of chloride at the ST was: (CF) 26/260 (10%); (borderlines) 109/260 (41.9%); (healthy) 97/260 (37.3%); (insufficient weight in sweat) 28/260 (10.8%). No association was observed between the sufficient sweat amount to perform the ST when we compared the currents. However, the SPC showed a higher amount of sweat weight. Using Bland and Altman plot considering the agreement between the sweat chloride values achieved from CPC [SPC and TPC] and CCC, there was no proportional bias and mean values are unrelated and only explain less than 8% of the variation. Moreover, TPC presented higher electrical impedance when compared with SPC and CCC. SPC presented lower electrical impedance and higher sweat weight than CCC. Male participants presented lower electrical impedance and higher sweat weight with CCC and TPC, and higher sweat weight with SPC. Conclusions The evaluated currents are safe and able to induce and produce sweat in sufficient quantities for the ST. SPC presented lower electrical impedance when compared with other currents. The use of SPC is recommended to induce sweat in patients with sweat problems. Finally, ethnicity, gender, age and BMI did not influence sweat induction at the ST, and no side effect was observed in our study.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuous constant current</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuous pulsed current</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sweat test</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sinusoidal pulsed current</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Triangular pulsed current</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Diseases of the respiratory system</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fernando Augusto Lima Marson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Maria Fátima Servidoni</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Antônio Fernando Ribeiro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Maria Ângela Gonçalves Oliveira Ribeiro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Veruska Acioli Lopes Gama</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Eduardo Tavares Costa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">José Dirceu Ribeiro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Francisco Ubaldo Vieira Junior</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">BMC Pulmonary Medicine</subfield><subfield code="d">BMC, 2003</subfield><subfield code="g">18(2018), 1, Seite 16</subfield><subfield code="w">(DE-627)335489125</subfield><subfield code="w">(DE-600)2059871-3</subfield><subfield code="x">14712466</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:18</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:16</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s12890-018-0696-3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3315d37f07cf4809855d7c6697b46006</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://link.springer.com/article/10.1186/s12890-018-0696-3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1471-2466</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">18</subfield><subfield code="j">2018</subfield><subfield code="e">1</subfield><subfield code="h">16</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Carla Cristina Souza Gomez |
spellingShingle |
Carla Cristina Souza Gomez misc RC705-779 misc Continuous constant current misc Continuous pulsed current misc Sweat test misc Sinusoidal pulsed current misc Triangular pulsed current misc Diseases of the respiratory system Evaluation of continuous constant current and continuous pulsed current in sweat induction for cystic fibrosis diagnosis |
authorStr |
Carla Cristina Souza Gomez |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)335489125 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
RC705-779 |
illustrated |
Not Illustrated |
issn |
14712466 |
topic_title |
RC705-779 Evaluation of continuous constant current and continuous pulsed current in sweat induction for cystic fibrosis diagnosis Continuous constant current Continuous pulsed current Sweat test Sinusoidal pulsed current Triangular pulsed current |
topic |
misc RC705-779 misc Continuous constant current misc Continuous pulsed current misc Sweat test misc Sinusoidal pulsed current misc Triangular pulsed current misc Diseases of the respiratory system |
topic_unstemmed |
misc RC705-779 misc Continuous constant current misc Continuous pulsed current misc Sweat test misc Sinusoidal pulsed current misc Triangular pulsed current misc Diseases of the respiratory system |
topic_browse |
misc RC705-779 misc Continuous constant current misc Continuous pulsed current misc Sweat test misc Sinusoidal pulsed current misc Triangular pulsed current misc Diseases of the respiratory system |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC Pulmonary Medicine |
hierarchy_parent_id |
335489125 |
hierarchy_top_title |
BMC Pulmonary Medicine |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)335489125 (DE-600)2059871-3 |
title |
Evaluation of continuous constant current and continuous pulsed current in sweat induction for cystic fibrosis diagnosis |
ctrlnum |
(DE-627)DOAJ063832216 (DE-599)DOAJ3315d37f07cf4809855d7c6697b46006 |
title_full |
Evaluation of continuous constant current and continuous pulsed current in sweat induction for cystic fibrosis diagnosis |
author_sort |
Carla Cristina Souza Gomez |
journal |
BMC Pulmonary Medicine |
journalStr |
BMC Pulmonary Medicine |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
16 |
author_browse |
Carla Cristina Souza Gomez Fernando Augusto Lima Marson Maria Fátima Servidoni Antônio Fernando Ribeiro Maria Ângela Gonçalves Oliveira Ribeiro Veruska Acioli Lopes Gama Eduardo Tavares Costa José Dirceu Ribeiro Francisco Ubaldo Vieira Junior |
container_volume |
18 |
class |
RC705-779 |
format_se |
Elektronische Aufsätze |
author-letter |
Carla Cristina Souza Gomez |
doi_str_mv |
10.1186/s12890-018-0696-3 |
author2-role |
verfasserin |
title_sort |
evaluation of continuous constant current and continuous pulsed current in sweat induction for cystic fibrosis diagnosis |
callnumber |
RC705-779 |
title_auth |
Evaluation of continuous constant current and continuous pulsed current in sweat induction for cystic fibrosis diagnosis |
abstract |
Abstract Background The sweat test (ST) is the gold standard for the diagnosis of cystic fibrosis (CF). However, little is known about sweat induction using different types of currents and waves. In this context, our objective was to develop a device to induce sweat and compare the use of continuous constant current (CCC) and continuous pulsed current (CPC) in individuals with CF and healthy controls. Methods A prospective cross-sectional study with experimental intervention. The variables of gender, ethnicity, age, and body mass index (BMI) were considered. The method of Gibson and Cooke was used, and the following markers were evaluated: sweat weight, electrical impedance, sufficient sweat amount, and CF diagnosis. Triangular (TPC) or sinusoidal (SPC) pulsed current was applied to the right arm, and CCC was applied to the left arm. Results The study analyzed 260 individuals, 141/213 (54.2%) were female participants, 135/260 (51.9%) were Caucasians. The distribution of individuals by concentration of chloride at the ST was: (CF) 26/260 (10%); (borderlines) 109/260 (41.9%); (healthy) 97/260 (37.3%); (insufficient weight in sweat) 28/260 (10.8%). No association was observed between the sufficient sweat amount to perform the ST when we compared the currents. However, the SPC showed a higher amount of sweat weight. Using Bland and Altman plot considering the agreement between the sweat chloride values achieved from CPC [SPC and TPC] and CCC, there was no proportional bias and mean values are unrelated and only explain less than 8% of the variation. Moreover, TPC presented higher electrical impedance when compared with SPC and CCC. SPC presented lower electrical impedance and higher sweat weight than CCC. Male participants presented lower electrical impedance and higher sweat weight with CCC and TPC, and higher sweat weight with SPC. Conclusions The evaluated currents are safe and able to induce and produce sweat in sufficient quantities for the ST. SPC presented lower electrical impedance when compared with other currents. The use of SPC is recommended to induce sweat in patients with sweat problems. Finally, ethnicity, gender, age and BMI did not influence sweat induction at the ST, and no side effect was observed in our study. |
abstractGer |
Abstract Background The sweat test (ST) is the gold standard for the diagnosis of cystic fibrosis (CF). However, little is known about sweat induction using different types of currents and waves. In this context, our objective was to develop a device to induce sweat and compare the use of continuous constant current (CCC) and continuous pulsed current (CPC) in individuals with CF and healthy controls. Methods A prospective cross-sectional study with experimental intervention. The variables of gender, ethnicity, age, and body mass index (BMI) were considered. The method of Gibson and Cooke was used, and the following markers were evaluated: sweat weight, electrical impedance, sufficient sweat amount, and CF diagnosis. Triangular (TPC) or sinusoidal (SPC) pulsed current was applied to the right arm, and CCC was applied to the left arm. Results The study analyzed 260 individuals, 141/213 (54.2%) were female participants, 135/260 (51.9%) were Caucasians. The distribution of individuals by concentration of chloride at the ST was: (CF) 26/260 (10%); (borderlines) 109/260 (41.9%); (healthy) 97/260 (37.3%); (insufficient weight in sweat) 28/260 (10.8%). No association was observed between the sufficient sweat amount to perform the ST when we compared the currents. However, the SPC showed a higher amount of sweat weight. Using Bland and Altman plot considering the agreement between the sweat chloride values achieved from CPC [SPC and TPC] and CCC, there was no proportional bias and mean values are unrelated and only explain less than 8% of the variation. Moreover, TPC presented higher electrical impedance when compared with SPC and CCC. SPC presented lower electrical impedance and higher sweat weight than CCC. Male participants presented lower electrical impedance and higher sweat weight with CCC and TPC, and higher sweat weight with SPC. Conclusions The evaluated currents are safe and able to induce and produce sweat in sufficient quantities for the ST. SPC presented lower electrical impedance when compared with other currents. The use of SPC is recommended to induce sweat in patients with sweat problems. Finally, ethnicity, gender, age and BMI did not influence sweat induction at the ST, and no side effect was observed in our study. |
abstract_unstemmed |
Abstract Background The sweat test (ST) is the gold standard for the diagnosis of cystic fibrosis (CF). However, little is known about sweat induction using different types of currents and waves. In this context, our objective was to develop a device to induce sweat and compare the use of continuous constant current (CCC) and continuous pulsed current (CPC) in individuals with CF and healthy controls. Methods A prospective cross-sectional study with experimental intervention. The variables of gender, ethnicity, age, and body mass index (BMI) were considered. The method of Gibson and Cooke was used, and the following markers were evaluated: sweat weight, electrical impedance, sufficient sweat amount, and CF diagnosis. Triangular (TPC) or sinusoidal (SPC) pulsed current was applied to the right arm, and CCC was applied to the left arm. Results The study analyzed 260 individuals, 141/213 (54.2%) were female participants, 135/260 (51.9%) were Caucasians. The distribution of individuals by concentration of chloride at the ST was: (CF) 26/260 (10%); (borderlines) 109/260 (41.9%); (healthy) 97/260 (37.3%); (insufficient weight in sweat) 28/260 (10.8%). No association was observed between the sufficient sweat amount to perform the ST when we compared the currents. However, the SPC showed a higher amount of sweat weight. Using Bland and Altman plot considering the agreement between the sweat chloride values achieved from CPC [SPC and TPC] and CCC, there was no proportional bias and mean values are unrelated and only explain less than 8% of the variation. Moreover, TPC presented higher electrical impedance when compared with SPC and CCC. SPC presented lower electrical impedance and higher sweat weight than CCC. Male participants presented lower electrical impedance and higher sweat weight with CCC and TPC, and higher sweat weight with SPC. Conclusions The evaluated currents are safe and able to induce and produce sweat in sufficient quantities for the ST. SPC presented lower electrical impedance when compared with other currents. The use of SPC is recommended to induce sweat in patients with sweat problems. Finally, ethnicity, gender, age and BMI did not influence sweat induction at the ST, and no side effect was observed in our study. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Evaluation of continuous constant current and continuous pulsed current in sweat induction for cystic fibrosis diagnosis |
url |
https://doi.org/10.1186/s12890-018-0696-3 https://doaj.org/article/3315d37f07cf4809855d7c6697b46006 http://link.springer.com/article/10.1186/s12890-018-0696-3 https://doaj.org/toc/1471-2466 |
remote_bool |
true |
author2 |
Fernando Augusto Lima Marson Maria Fátima Servidoni Antônio Fernando Ribeiro Maria Ângela Gonçalves Oliveira Ribeiro Veruska Acioli Lopes Gama Eduardo Tavares Costa José Dirceu Ribeiro Francisco Ubaldo Vieira Junior |
author2Str |
Fernando Augusto Lima Marson Maria Fátima Servidoni Antônio Fernando Ribeiro Maria Ângela Gonçalves Oliveira Ribeiro Veruska Acioli Lopes Gama Eduardo Tavares Costa José Dirceu Ribeiro Francisco Ubaldo Vieira Junior |
ppnlink |
335489125 |
callnumber-subject |
RC - Internal Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12890-018-0696-3 |
callnumber-a |
RC705-779 |
up_date |
2024-07-03T19:47:07.915Z |
_version_ |
1803588498009096192 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ063832216</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230501171858.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12890-018-0696-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ063832216</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3315d37f07cf4809855d7c6697b46006</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC705-779</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Carla Cristina Souza Gomez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evaluation of continuous constant current and continuous pulsed current in sweat induction for cystic fibrosis diagnosis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Background The sweat test (ST) is the gold standard for the diagnosis of cystic fibrosis (CF). However, little is known about sweat induction using different types of currents and waves. In this context, our objective was to develop a device to induce sweat and compare the use of continuous constant current (CCC) and continuous pulsed current (CPC) in individuals with CF and healthy controls. Methods A prospective cross-sectional study with experimental intervention. The variables of gender, ethnicity, age, and body mass index (BMI) were considered. The method of Gibson and Cooke was used, and the following markers were evaluated: sweat weight, electrical impedance, sufficient sweat amount, and CF diagnosis. Triangular (TPC) or sinusoidal (SPC) pulsed current was applied to the right arm, and CCC was applied to the left arm. Results The study analyzed 260 individuals, 141/213 (54.2%) were female participants, 135/260 (51.9%) were Caucasians. The distribution of individuals by concentration of chloride at the ST was: (CF) 26/260 (10%); (borderlines) 109/260 (41.9%); (healthy) 97/260 (37.3%); (insufficient weight in sweat) 28/260 (10.8%). No association was observed between the sufficient sweat amount to perform the ST when we compared the currents. However, the SPC showed a higher amount of sweat weight. Using Bland and Altman plot considering the agreement between the sweat chloride values achieved from CPC [SPC and TPC] and CCC, there was no proportional bias and mean values are unrelated and only explain less than 8% of the variation. Moreover, TPC presented higher electrical impedance when compared with SPC and CCC. SPC presented lower electrical impedance and higher sweat weight than CCC. Male participants presented lower electrical impedance and higher sweat weight with CCC and TPC, and higher sweat weight with SPC. Conclusions The evaluated currents are safe and able to induce and produce sweat in sufficient quantities for the ST. SPC presented lower electrical impedance when compared with other currents. The use of SPC is recommended to induce sweat in patients with sweat problems. Finally, ethnicity, gender, age and BMI did not influence sweat induction at the ST, and no side effect was observed in our study.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuous constant current</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuous pulsed current</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sweat test</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sinusoidal pulsed current</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Triangular pulsed current</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Diseases of the respiratory system</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fernando Augusto Lima Marson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Maria Fátima Servidoni</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Antônio Fernando Ribeiro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Maria Ângela Gonçalves Oliveira Ribeiro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Veruska Acioli Lopes Gama</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Eduardo Tavares Costa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">José Dirceu Ribeiro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Francisco Ubaldo Vieira Junior</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">BMC Pulmonary Medicine</subfield><subfield code="d">BMC, 2003</subfield><subfield code="g">18(2018), 1, Seite 16</subfield><subfield code="w">(DE-627)335489125</subfield><subfield code="w">(DE-600)2059871-3</subfield><subfield code="x">14712466</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:18</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:16</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s12890-018-0696-3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3315d37f07cf4809855d7c6697b46006</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://link.springer.com/article/10.1186/s12890-018-0696-3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1471-2466</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">18</subfield><subfield code="j">2018</subfield><subfield code="e">1</subfield><subfield code="h">16</subfield></datafield></record></collection>
|
score |
7.40131 |