A hierarchical mathematical model of the earthquake shelter location-allocation problem solved using an interleaved MPSO–GA
Earthquake disaster management involves determining locations in which to construct shelters and how to allocate the affected population to them. A multi-objective, hierarchical mathematical model, allied with an interleaved modified particle swarm optimization algorithm and genetic algorithm (MPSO–...
Ausführliche Beschreibung
Autor*in: |
Xiujuan Zhao [verfasserIn] Graham Coates [verfasserIn] Wei Xu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Geomatics, Natural Hazards & Risk - Taylor & Francis Group, 2016, 10(2019), 1, Seite 1712-1737 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2019 ; number:1 ; pages:1712-1737 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.1080/19475705.2019.1609605 |
---|
Katalog-ID: |
DOAJ064291367 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ064291367 | ||
003 | DE-627 | ||
005 | 20230309035224.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1080/19475705.2019.1609605 |2 doi | |
035 | |a (DE-627)DOAJ064291367 | ||
035 | |a (DE-599)DOAJ9ca42affdb244414ae7f75a9b90a1e3f | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TD1-1066 | |
050 | 0 | |a GE1-350 | |
100 | 0 | |a Xiujuan Zhao |e verfasserin |4 aut | |
245 | 1 | 2 | |a A hierarchical mathematical model of the earthquake shelter location-allocation problem solved using an interleaved MPSO–GA |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Earthquake disaster management involves determining locations in which to construct shelters and how to allocate the affected population to them. A multi-objective, hierarchical mathematical model, allied with an interleaved modified particle swarm optimization algorithm and genetic algorithm (MPSO–GA), have been developed to solve the earthquake shelter location-allocation problem. From a set of candidate shelter locations, the model first determines which of these should act as emergency shelters and then which should be used as long-term shelters, while simultaneously optimizing the allocation of a population to them. Damage caused to evacuation routes is considered in addition to the number of evacuees and shelter capacity. In terms of the model’s emergency and long-term shelter stages, the objectives are to minimize (i) total weighted evacuation time, and (ii) total shelter area used. An interleaved MPSO–GA applied to the model yielded better results than achieved using MPSO or GA in isolation. For a case study with an earthquake affecting the area of Jinzhan within Beijing’s Chaoyang district in China, results generated present government with a range of solution options. Thus, based on government preferences, choices can be made regarding the locations in which to construct shelters and how to allocate the population to them. | ||
650 | 4 | |a optimization | |
650 | 4 | |a earthquake shelter location-allocation | |
650 | 4 | |a interleaved mpso–ga | |
653 | 0 | |a Environmental technology. Sanitary engineering | |
653 | 0 | |a Environmental sciences | |
653 | 0 | |a Risk in industry. Risk management | |
653 | 0 | |a HD61 | |
700 | 0 | |a Graham Coates |e verfasserin |4 aut | |
700 | 0 | |a Wei Xu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Geomatics, Natural Hazards & Risk |d Taylor & Francis Group, 2016 |g 10(2019), 1, Seite 1712-1737 |w (DE-627)626457491 |w (DE-600)2553648-5 |x 19475713 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2019 |g number:1 |g pages:1712-1737 |
856 | 4 | 0 | |u https://doi.org/10.1080/19475705.2019.1609605 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/9ca42affdb244414ae7f75a9b90a1e3f |z kostenfrei |
856 | 4 | 0 | |u http://dx.doi.org/10.1080/19475705.2019.1609605 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1947-5705 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1947-5713 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2019 |e 1 |h 1712-1737 |
author_variant |
x z xz g c gc w x wx |
---|---|
matchkey_str |
article:19475713:2019----::heaciamteaiamdlfherhuksetroainloainrbes |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
TD |
publishDate |
2019 |
allfields |
10.1080/19475705.2019.1609605 doi (DE-627)DOAJ064291367 (DE-599)DOAJ9ca42affdb244414ae7f75a9b90a1e3f DE-627 ger DE-627 rakwb eng TD1-1066 GE1-350 Xiujuan Zhao verfasserin aut A hierarchical mathematical model of the earthquake shelter location-allocation problem solved using an interleaved MPSO–GA 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Earthquake disaster management involves determining locations in which to construct shelters and how to allocate the affected population to them. A multi-objective, hierarchical mathematical model, allied with an interleaved modified particle swarm optimization algorithm and genetic algorithm (MPSO–GA), have been developed to solve the earthquake shelter location-allocation problem. From a set of candidate shelter locations, the model first determines which of these should act as emergency shelters and then which should be used as long-term shelters, while simultaneously optimizing the allocation of a population to them. Damage caused to evacuation routes is considered in addition to the number of evacuees and shelter capacity. In terms of the model’s emergency and long-term shelter stages, the objectives are to minimize (i) total weighted evacuation time, and (ii) total shelter area used. An interleaved MPSO–GA applied to the model yielded better results than achieved using MPSO or GA in isolation. For a case study with an earthquake affecting the area of Jinzhan within Beijing’s Chaoyang district in China, results generated present government with a range of solution options. Thus, based on government preferences, choices can be made regarding the locations in which to construct shelters and how to allocate the population to them. optimization earthquake shelter location-allocation interleaved mpso–ga Environmental technology. Sanitary engineering Environmental sciences Risk in industry. Risk management HD61 Graham Coates verfasserin aut Wei Xu verfasserin aut In Geomatics, Natural Hazards & Risk Taylor & Francis Group, 2016 10(2019), 1, Seite 1712-1737 (DE-627)626457491 (DE-600)2553648-5 19475713 nnns volume:10 year:2019 number:1 pages:1712-1737 https://doi.org/10.1080/19475705.2019.1609605 kostenfrei https://doaj.org/article/9ca42affdb244414ae7f75a9b90a1e3f kostenfrei http://dx.doi.org/10.1080/19475705.2019.1609605 kostenfrei https://doaj.org/toc/1947-5705 Journal toc kostenfrei https://doaj.org/toc/1947-5713 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2019 1 1712-1737 |
spelling |
10.1080/19475705.2019.1609605 doi (DE-627)DOAJ064291367 (DE-599)DOAJ9ca42affdb244414ae7f75a9b90a1e3f DE-627 ger DE-627 rakwb eng TD1-1066 GE1-350 Xiujuan Zhao verfasserin aut A hierarchical mathematical model of the earthquake shelter location-allocation problem solved using an interleaved MPSO–GA 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Earthquake disaster management involves determining locations in which to construct shelters and how to allocate the affected population to them. A multi-objective, hierarchical mathematical model, allied with an interleaved modified particle swarm optimization algorithm and genetic algorithm (MPSO–GA), have been developed to solve the earthquake shelter location-allocation problem. From a set of candidate shelter locations, the model first determines which of these should act as emergency shelters and then which should be used as long-term shelters, while simultaneously optimizing the allocation of a population to them. Damage caused to evacuation routes is considered in addition to the number of evacuees and shelter capacity. In terms of the model’s emergency and long-term shelter stages, the objectives are to minimize (i) total weighted evacuation time, and (ii) total shelter area used. An interleaved MPSO–GA applied to the model yielded better results than achieved using MPSO or GA in isolation. For a case study with an earthquake affecting the area of Jinzhan within Beijing’s Chaoyang district in China, results generated present government with a range of solution options. Thus, based on government preferences, choices can be made regarding the locations in which to construct shelters and how to allocate the population to them. optimization earthquake shelter location-allocation interleaved mpso–ga Environmental technology. Sanitary engineering Environmental sciences Risk in industry. Risk management HD61 Graham Coates verfasserin aut Wei Xu verfasserin aut In Geomatics, Natural Hazards & Risk Taylor & Francis Group, 2016 10(2019), 1, Seite 1712-1737 (DE-627)626457491 (DE-600)2553648-5 19475713 nnns volume:10 year:2019 number:1 pages:1712-1737 https://doi.org/10.1080/19475705.2019.1609605 kostenfrei https://doaj.org/article/9ca42affdb244414ae7f75a9b90a1e3f kostenfrei http://dx.doi.org/10.1080/19475705.2019.1609605 kostenfrei https://doaj.org/toc/1947-5705 Journal toc kostenfrei https://doaj.org/toc/1947-5713 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2019 1 1712-1737 |
allfields_unstemmed |
10.1080/19475705.2019.1609605 doi (DE-627)DOAJ064291367 (DE-599)DOAJ9ca42affdb244414ae7f75a9b90a1e3f DE-627 ger DE-627 rakwb eng TD1-1066 GE1-350 Xiujuan Zhao verfasserin aut A hierarchical mathematical model of the earthquake shelter location-allocation problem solved using an interleaved MPSO–GA 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Earthquake disaster management involves determining locations in which to construct shelters and how to allocate the affected population to them. A multi-objective, hierarchical mathematical model, allied with an interleaved modified particle swarm optimization algorithm and genetic algorithm (MPSO–GA), have been developed to solve the earthquake shelter location-allocation problem. From a set of candidate shelter locations, the model first determines which of these should act as emergency shelters and then which should be used as long-term shelters, while simultaneously optimizing the allocation of a population to them. Damage caused to evacuation routes is considered in addition to the number of evacuees and shelter capacity. In terms of the model’s emergency and long-term shelter stages, the objectives are to minimize (i) total weighted evacuation time, and (ii) total shelter area used. An interleaved MPSO–GA applied to the model yielded better results than achieved using MPSO or GA in isolation. For a case study with an earthquake affecting the area of Jinzhan within Beijing’s Chaoyang district in China, results generated present government with a range of solution options. Thus, based on government preferences, choices can be made regarding the locations in which to construct shelters and how to allocate the population to them. optimization earthquake shelter location-allocation interleaved mpso–ga Environmental technology. Sanitary engineering Environmental sciences Risk in industry. Risk management HD61 Graham Coates verfasserin aut Wei Xu verfasserin aut In Geomatics, Natural Hazards & Risk Taylor & Francis Group, 2016 10(2019), 1, Seite 1712-1737 (DE-627)626457491 (DE-600)2553648-5 19475713 nnns volume:10 year:2019 number:1 pages:1712-1737 https://doi.org/10.1080/19475705.2019.1609605 kostenfrei https://doaj.org/article/9ca42affdb244414ae7f75a9b90a1e3f kostenfrei http://dx.doi.org/10.1080/19475705.2019.1609605 kostenfrei https://doaj.org/toc/1947-5705 Journal toc kostenfrei https://doaj.org/toc/1947-5713 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2019 1 1712-1737 |
allfieldsGer |
10.1080/19475705.2019.1609605 doi (DE-627)DOAJ064291367 (DE-599)DOAJ9ca42affdb244414ae7f75a9b90a1e3f DE-627 ger DE-627 rakwb eng TD1-1066 GE1-350 Xiujuan Zhao verfasserin aut A hierarchical mathematical model of the earthquake shelter location-allocation problem solved using an interleaved MPSO–GA 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Earthquake disaster management involves determining locations in which to construct shelters and how to allocate the affected population to them. A multi-objective, hierarchical mathematical model, allied with an interleaved modified particle swarm optimization algorithm and genetic algorithm (MPSO–GA), have been developed to solve the earthquake shelter location-allocation problem. From a set of candidate shelter locations, the model first determines which of these should act as emergency shelters and then which should be used as long-term shelters, while simultaneously optimizing the allocation of a population to them. Damage caused to evacuation routes is considered in addition to the number of evacuees and shelter capacity. In terms of the model’s emergency and long-term shelter stages, the objectives are to minimize (i) total weighted evacuation time, and (ii) total shelter area used. An interleaved MPSO–GA applied to the model yielded better results than achieved using MPSO or GA in isolation. For a case study with an earthquake affecting the area of Jinzhan within Beijing’s Chaoyang district in China, results generated present government with a range of solution options. Thus, based on government preferences, choices can be made regarding the locations in which to construct shelters and how to allocate the population to them. optimization earthquake shelter location-allocation interleaved mpso–ga Environmental technology. Sanitary engineering Environmental sciences Risk in industry. Risk management HD61 Graham Coates verfasserin aut Wei Xu verfasserin aut In Geomatics, Natural Hazards & Risk Taylor & Francis Group, 2016 10(2019), 1, Seite 1712-1737 (DE-627)626457491 (DE-600)2553648-5 19475713 nnns volume:10 year:2019 number:1 pages:1712-1737 https://doi.org/10.1080/19475705.2019.1609605 kostenfrei https://doaj.org/article/9ca42affdb244414ae7f75a9b90a1e3f kostenfrei http://dx.doi.org/10.1080/19475705.2019.1609605 kostenfrei https://doaj.org/toc/1947-5705 Journal toc kostenfrei https://doaj.org/toc/1947-5713 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2019 1 1712-1737 |
allfieldsSound |
10.1080/19475705.2019.1609605 doi (DE-627)DOAJ064291367 (DE-599)DOAJ9ca42affdb244414ae7f75a9b90a1e3f DE-627 ger DE-627 rakwb eng TD1-1066 GE1-350 Xiujuan Zhao verfasserin aut A hierarchical mathematical model of the earthquake shelter location-allocation problem solved using an interleaved MPSO–GA 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Earthquake disaster management involves determining locations in which to construct shelters and how to allocate the affected population to them. A multi-objective, hierarchical mathematical model, allied with an interleaved modified particle swarm optimization algorithm and genetic algorithm (MPSO–GA), have been developed to solve the earthquake shelter location-allocation problem. From a set of candidate shelter locations, the model first determines which of these should act as emergency shelters and then which should be used as long-term shelters, while simultaneously optimizing the allocation of a population to them. Damage caused to evacuation routes is considered in addition to the number of evacuees and shelter capacity. In terms of the model’s emergency and long-term shelter stages, the objectives are to minimize (i) total weighted evacuation time, and (ii) total shelter area used. An interleaved MPSO–GA applied to the model yielded better results than achieved using MPSO or GA in isolation. For a case study with an earthquake affecting the area of Jinzhan within Beijing’s Chaoyang district in China, results generated present government with a range of solution options. Thus, based on government preferences, choices can be made regarding the locations in which to construct shelters and how to allocate the population to them. optimization earthquake shelter location-allocation interleaved mpso–ga Environmental technology. Sanitary engineering Environmental sciences Risk in industry. Risk management HD61 Graham Coates verfasserin aut Wei Xu verfasserin aut In Geomatics, Natural Hazards & Risk Taylor & Francis Group, 2016 10(2019), 1, Seite 1712-1737 (DE-627)626457491 (DE-600)2553648-5 19475713 nnns volume:10 year:2019 number:1 pages:1712-1737 https://doi.org/10.1080/19475705.2019.1609605 kostenfrei https://doaj.org/article/9ca42affdb244414ae7f75a9b90a1e3f kostenfrei http://dx.doi.org/10.1080/19475705.2019.1609605 kostenfrei https://doaj.org/toc/1947-5705 Journal toc kostenfrei https://doaj.org/toc/1947-5713 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2019 1 1712-1737 |
language |
English |
source |
In Geomatics, Natural Hazards & Risk 10(2019), 1, Seite 1712-1737 volume:10 year:2019 number:1 pages:1712-1737 |
sourceStr |
In Geomatics, Natural Hazards & Risk 10(2019), 1, Seite 1712-1737 volume:10 year:2019 number:1 pages:1712-1737 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
optimization earthquake shelter location-allocation interleaved mpso–ga Environmental technology. Sanitary engineering Environmental sciences Risk in industry. Risk management HD61 |
isfreeaccess_bool |
true |
container_title |
Geomatics, Natural Hazards & Risk |
authorswithroles_txt_mv |
Xiujuan Zhao @@aut@@ Graham Coates @@aut@@ Wei Xu @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
626457491 |
id |
DOAJ064291367 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ064291367</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309035224.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/19475705.2019.1609605</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ064291367</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ9ca42affdb244414ae7f75a9b90a1e3f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD1-1066</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xiujuan Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A hierarchical mathematical model of the earthquake shelter location-allocation problem solved using an interleaved MPSO–GA</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Earthquake disaster management involves determining locations in which to construct shelters and how to allocate the affected population to them. A multi-objective, hierarchical mathematical model, allied with an interleaved modified particle swarm optimization algorithm and genetic algorithm (MPSO–GA), have been developed to solve the earthquake shelter location-allocation problem. From a set of candidate shelter locations, the model first determines which of these should act as emergency shelters and then which should be used as long-term shelters, while simultaneously optimizing the allocation of a population to them. Damage caused to evacuation routes is considered in addition to the number of evacuees and shelter capacity. In terms of the model’s emergency and long-term shelter stages, the objectives are to minimize (i) total weighted evacuation time, and (ii) total shelter area used. An interleaved MPSO–GA applied to the model yielded better results than achieved using MPSO or GA in isolation. For a case study with an earthquake affecting the area of Jinzhan within Beijing’s Chaoyang district in China, results generated present government with a range of solution options. Thus, based on government preferences, choices can be made regarding the locations in which to construct shelters and how to allocate the population to them.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">earthquake shelter location-allocation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">interleaved mpso–ga</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental technology. Sanitary engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Risk in industry. Risk management</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">HD61</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Graham Coates</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wei Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Geomatics, Natural Hazards & Risk</subfield><subfield code="d">Taylor & Francis Group, 2016</subfield><subfield code="g">10(2019), 1, Seite 1712-1737</subfield><subfield code="w">(DE-627)626457491</subfield><subfield code="w">(DE-600)2553648-5</subfield><subfield code="x">19475713</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:1712-1737</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1080/19475705.2019.1609605</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/9ca42affdb244414ae7f75a9b90a1e3f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1080/19475705.2019.1609605</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1947-5705</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1947-5713</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="h">1712-1737</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Xiujuan Zhao |
spellingShingle |
Xiujuan Zhao misc TD1-1066 misc GE1-350 misc optimization misc earthquake shelter location-allocation misc interleaved mpso–ga misc Environmental technology. Sanitary engineering misc Environmental sciences misc Risk in industry. Risk management misc HD61 A hierarchical mathematical model of the earthquake shelter location-allocation problem solved using an interleaved MPSO–GA |
authorStr |
Xiujuan Zhao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)626457491 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TD1-1066 |
illustrated |
Not Illustrated |
issn |
19475713 |
topic_title |
TD1-1066 GE1-350 A hierarchical mathematical model of the earthquake shelter location-allocation problem solved using an interleaved MPSO–GA optimization earthquake shelter location-allocation interleaved mpso–ga |
topic |
misc TD1-1066 misc GE1-350 misc optimization misc earthquake shelter location-allocation misc interleaved mpso–ga misc Environmental technology. Sanitary engineering misc Environmental sciences misc Risk in industry. Risk management misc HD61 |
topic_unstemmed |
misc TD1-1066 misc GE1-350 misc optimization misc earthquake shelter location-allocation misc interleaved mpso–ga misc Environmental technology. Sanitary engineering misc Environmental sciences misc Risk in industry. Risk management misc HD61 |
topic_browse |
misc TD1-1066 misc GE1-350 misc optimization misc earthquake shelter location-allocation misc interleaved mpso–ga misc Environmental technology. Sanitary engineering misc Environmental sciences misc Risk in industry. Risk management misc HD61 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Geomatics, Natural Hazards & Risk |
hierarchy_parent_id |
626457491 |
hierarchy_top_title |
Geomatics, Natural Hazards & Risk |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)626457491 (DE-600)2553648-5 |
title |
A hierarchical mathematical model of the earthquake shelter location-allocation problem solved using an interleaved MPSO–GA |
ctrlnum |
(DE-627)DOAJ064291367 (DE-599)DOAJ9ca42affdb244414ae7f75a9b90a1e3f |
title_full |
A hierarchical mathematical model of the earthquake shelter location-allocation problem solved using an interleaved MPSO–GA |
author_sort |
Xiujuan Zhao |
journal |
Geomatics, Natural Hazards & Risk |
journalStr |
Geomatics, Natural Hazards & Risk |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
1712 |
author_browse |
Xiujuan Zhao Graham Coates Wei Xu |
container_volume |
10 |
class |
TD1-1066 GE1-350 |
format_se |
Elektronische Aufsätze |
author-letter |
Xiujuan Zhao |
doi_str_mv |
10.1080/19475705.2019.1609605 |
author2-role |
verfasserin |
title_sort |
hierarchical mathematical model of the earthquake shelter location-allocation problem solved using an interleaved mpso–ga |
callnumber |
TD1-1066 |
title_auth |
A hierarchical mathematical model of the earthquake shelter location-allocation problem solved using an interleaved MPSO–GA |
abstract |
Earthquake disaster management involves determining locations in which to construct shelters and how to allocate the affected population to them. A multi-objective, hierarchical mathematical model, allied with an interleaved modified particle swarm optimization algorithm and genetic algorithm (MPSO–GA), have been developed to solve the earthquake shelter location-allocation problem. From a set of candidate shelter locations, the model first determines which of these should act as emergency shelters and then which should be used as long-term shelters, while simultaneously optimizing the allocation of a population to them. Damage caused to evacuation routes is considered in addition to the number of evacuees and shelter capacity. In terms of the model’s emergency and long-term shelter stages, the objectives are to minimize (i) total weighted evacuation time, and (ii) total shelter area used. An interleaved MPSO–GA applied to the model yielded better results than achieved using MPSO or GA in isolation. For a case study with an earthquake affecting the area of Jinzhan within Beijing’s Chaoyang district in China, results generated present government with a range of solution options. Thus, based on government preferences, choices can be made regarding the locations in which to construct shelters and how to allocate the population to them. |
abstractGer |
Earthquake disaster management involves determining locations in which to construct shelters and how to allocate the affected population to them. A multi-objective, hierarchical mathematical model, allied with an interleaved modified particle swarm optimization algorithm and genetic algorithm (MPSO–GA), have been developed to solve the earthquake shelter location-allocation problem. From a set of candidate shelter locations, the model first determines which of these should act as emergency shelters and then which should be used as long-term shelters, while simultaneously optimizing the allocation of a population to them. Damage caused to evacuation routes is considered in addition to the number of evacuees and shelter capacity. In terms of the model’s emergency and long-term shelter stages, the objectives are to minimize (i) total weighted evacuation time, and (ii) total shelter area used. An interleaved MPSO–GA applied to the model yielded better results than achieved using MPSO or GA in isolation. For a case study with an earthquake affecting the area of Jinzhan within Beijing’s Chaoyang district in China, results generated present government with a range of solution options. Thus, based on government preferences, choices can be made regarding the locations in which to construct shelters and how to allocate the population to them. |
abstract_unstemmed |
Earthquake disaster management involves determining locations in which to construct shelters and how to allocate the affected population to them. A multi-objective, hierarchical mathematical model, allied with an interleaved modified particle swarm optimization algorithm and genetic algorithm (MPSO–GA), have been developed to solve the earthquake shelter location-allocation problem. From a set of candidate shelter locations, the model first determines which of these should act as emergency shelters and then which should be used as long-term shelters, while simultaneously optimizing the allocation of a population to them. Damage caused to evacuation routes is considered in addition to the number of evacuees and shelter capacity. In terms of the model’s emergency and long-term shelter stages, the objectives are to minimize (i) total weighted evacuation time, and (ii) total shelter area used. An interleaved MPSO–GA applied to the model yielded better results than achieved using MPSO or GA in isolation. For a case study with an earthquake affecting the area of Jinzhan within Beijing’s Chaoyang district in China, results generated present government with a range of solution options. Thus, based on government preferences, choices can be made regarding the locations in which to construct shelters and how to allocate the population to them. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
A hierarchical mathematical model of the earthquake shelter location-allocation problem solved using an interleaved MPSO–GA |
url |
https://doi.org/10.1080/19475705.2019.1609605 https://doaj.org/article/9ca42affdb244414ae7f75a9b90a1e3f http://dx.doi.org/10.1080/19475705.2019.1609605 https://doaj.org/toc/1947-5705 https://doaj.org/toc/1947-5713 |
remote_bool |
true |
author2 |
Graham Coates Wei Xu |
author2Str |
Graham Coates Wei Xu |
ppnlink |
626457491 |
callnumber-subject |
TD - Environmental Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1080/19475705.2019.1609605 |
callnumber-a |
TD1-1066 |
up_date |
2024-07-03T22:09:35.292Z |
_version_ |
1803597460584529920 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ064291367</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309035224.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/19475705.2019.1609605</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ064291367</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ9ca42affdb244414ae7f75a9b90a1e3f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD1-1066</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xiujuan Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A hierarchical mathematical model of the earthquake shelter location-allocation problem solved using an interleaved MPSO–GA</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Earthquake disaster management involves determining locations in which to construct shelters and how to allocate the affected population to them. A multi-objective, hierarchical mathematical model, allied with an interleaved modified particle swarm optimization algorithm and genetic algorithm (MPSO–GA), have been developed to solve the earthquake shelter location-allocation problem. From a set of candidate shelter locations, the model first determines which of these should act as emergency shelters and then which should be used as long-term shelters, while simultaneously optimizing the allocation of a population to them. Damage caused to evacuation routes is considered in addition to the number of evacuees and shelter capacity. In terms of the model’s emergency and long-term shelter stages, the objectives are to minimize (i) total weighted evacuation time, and (ii) total shelter area used. An interleaved MPSO–GA applied to the model yielded better results than achieved using MPSO or GA in isolation. For a case study with an earthquake affecting the area of Jinzhan within Beijing’s Chaoyang district in China, results generated present government with a range of solution options. Thus, based on government preferences, choices can be made regarding the locations in which to construct shelters and how to allocate the population to them.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">earthquake shelter location-allocation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">interleaved mpso–ga</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental technology. Sanitary engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Risk in industry. Risk management</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">HD61</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Graham Coates</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wei Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Geomatics, Natural Hazards & Risk</subfield><subfield code="d">Taylor & Francis Group, 2016</subfield><subfield code="g">10(2019), 1, Seite 1712-1737</subfield><subfield code="w">(DE-627)626457491</subfield><subfield code="w">(DE-600)2553648-5</subfield><subfield code="x">19475713</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:1712-1737</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1080/19475705.2019.1609605</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/9ca42affdb244414ae7f75a9b90a1e3f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1080/19475705.2019.1609605</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1947-5705</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1947-5713</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="h">1712-1737</subfield></datafield></record></collection>
|
score |
7.4026117 |