Anomalous Heat Transport in Nanolaminate Metal/Oxide Multilayer Coatings: Plasmon and Phonon Excitations
In this work, the anomalous reduction in the thermal conduction observed for nanolaminate metal-dielectric multilayers has been extended to the case of oxides. For this purpose, Ag/Al<sub<2</sub<O<sub<3</sub< coatings were produced with different layer thicknesses (from 1 to...
Ausführliche Beschreibung
Autor*in: |
Anatoly Kovalev [verfasserIn] Dmitry Wainstein [verfasserIn] Vladimir Vakhrushev [verfasserIn] Raul Gago [verfasserIn] Jose Luis Endrino [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Coatings - MDPI AG, 2012, 10(2020), 3, p 260 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2020 ; number:3, p 260 |
Links: |
---|
DOI / URN: |
10.3390/coatings10030260 |
---|
Katalog-ID: |
DOAJ064323714 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ064323714 | ||
003 | DE-627 | ||
005 | 20230309035344.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/coatings10030260 |2 doi | |
035 | |a (DE-627)DOAJ064323714 | ||
035 | |a (DE-599)DOAJ207eb88ec8c2455e9ee2b282551f80e4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1-2040 | |
100 | 0 | |a Anatoly Kovalev |e verfasserin |4 aut | |
245 | 1 | 0 | |a Anomalous Heat Transport in Nanolaminate Metal/Oxide Multilayer Coatings: Plasmon and Phonon Excitations |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In this work, the anomalous reduction in the thermal conduction observed for nanolaminate metal-dielectric multilayers has been extended to the case of oxides. For this purpose, Ag/Al<sub<2</sub<O<sub<3</sub< coatings were produced with different layer thicknesses (from 1 to 5 nm for Ag and 8 to 40 nm for Al<sub<2</sub<O<sub<3</sub<) and numbers of stacks. It was found that the thermal conduction is significantly lower in such metal−oxide nanolaminates compared to the bulk oxide. Such anomalous behaviour is explained by the influence of plasmon and phonon propagation confinement in nanolayers and at the interfaces. To this end, the characteristics of the different types of acoustic and optical phonon waves propagating in the multilayer coating have been studied. In particular, the electronic structures of the different layers and their influences on the plasmon resonance are investigated as a function of the multilayer design. The plasmon-polariton mechanism of energy transfer through oxide−metal and metal−oxide interfaces is discussed. | ||
650 | 4 | |a multilayer al<sub<2</sub<o<sub<3</sub</ag heterostructures | |
650 | 4 | |a physical vapour deposition (pvd) | |
650 | 4 | |a thermal conductivity | |
650 | 4 | |a interface | |
650 | 4 | |a size effect | |
650 | 4 | |a plasmon | |
650 | 4 | |a phonon propagation | |
650 | 4 | |a confinement | |
650 | 4 | |a high resolution electron energy loss spectroscopy (hreels) | |
653 | 0 | |a Engineering (General). Civil engineering (General) | |
700 | 0 | |a Dmitry Wainstein |e verfasserin |4 aut | |
700 | 0 | |a Vladimir Vakhrushev |e verfasserin |4 aut | |
700 | 0 | |a Raul Gago |e verfasserin |4 aut | |
700 | 0 | |a Jose Luis Endrino |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Coatings |d MDPI AG, 2012 |g 10(2020), 3, p 260 |w (DE-627)718627636 |w (DE-600)2662314-6 |x 20796412 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2020 |g number:3, p 260 |
856 | 4 | 0 | |u https://doi.org/10.3390/coatings10030260 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/207eb88ec8c2455e9ee2b282551f80e4 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2079-6412/10/3/260 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2079-6412 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2020 |e 3, p 260 |
author_variant |
a k ak d w dw v v vv r g rg j l e jle |
---|---|
matchkey_str |
article:20796412:2020----::nmluhatasotnaoaiaeeaoieutlyrotnsl |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
TA |
publishDate |
2020 |
allfields |
10.3390/coatings10030260 doi (DE-627)DOAJ064323714 (DE-599)DOAJ207eb88ec8c2455e9ee2b282551f80e4 DE-627 ger DE-627 rakwb eng TA1-2040 Anatoly Kovalev verfasserin aut Anomalous Heat Transport in Nanolaminate Metal/Oxide Multilayer Coatings: Plasmon and Phonon Excitations 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this work, the anomalous reduction in the thermal conduction observed for nanolaminate metal-dielectric multilayers has been extended to the case of oxides. For this purpose, Ag/Al<sub<2</sub<O<sub<3</sub< coatings were produced with different layer thicknesses (from 1 to 5 nm for Ag and 8 to 40 nm for Al<sub<2</sub<O<sub<3</sub<) and numbers of stacks. It was found that the thermal conduction is significantly lower in such metal−oxide nanolaminates compared to the bulk oxide. Such anomalous behaviour is explained by the influence of plasmon and phonon propagation confinement in nanolayers and at the interfaces. To this end, the characteristics of the different types of acoustic and optical phonon waves propagating in the multilayer coating have been studied. In particular, the electronic structures of the different layers and their influences on the plasmon resonance are investigated as a function of the multilayer design. The plasmon-polariton mechanism of energy transfer through oxide−metal and metal−oxide interfaces is discussed. multilayer al<sub<2</sub<o<sub<3</sub</ag heterostructures physical vapour deposition (pvd) thermal conductivity interface size effect plasmon phonon propagation confinement high resolution electron energy loss spectroscopy (hreels) Engineering (General). Civil engineering (General) Dmitry Wainstein verfasserin aut Vladimir Vakhrushev verfasserin aut Raul Gago verfasserin aut Jose Luis Endrino verfasserin aut In Coatings MDPI AG, 2012 10(2020), 3, p 260 (DE-627)718627636 (DE-600)2662314-6 20796412 nnns volume:10 year:2020 number:3, p 260 https://doi.org/10.3390/coatings10030260 kostenfrei https://doaj.org/article/207eb88ec8c2455e9ee2b282551f80e4 kostenfrei https://www.mdpi.com/2079-6412/10/3/260 kostenfrei https://doaj.org/toc/2079-6412 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 3, p 260 |
spelling |
10.3390/coatings10030260 doi (DE-627)DOAJ064323714 (DE-599)DOAJ207eb88ec8c2455e9ee2b282551f80e4 DE-627 ger DE-627 rakwb eng TA1-2040 Anatoly Kovalev verfasserin aut Anomalous Heat Transport in Nanolaminate Metal/Oxide Multilayer Coatings: Plasmon and Phonon Excitations 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this work, the anomalous reduction in the thermal conduction observed for nanolaminate metal-dielectric multilayers has been extended to the case of oxides. For this purpose, Ag/Al<sub<2</sub<O<sub<3</sub< coatings were produced with different layer thicknesses (from 1 to 5 nm for Ag and 8 to 40 nm for Al<sub<2</sub<O<sub<3</sub<) and numbers of stacks. It was found that the thermal conduction is significantly lower in such metal−oxide nanolaminates compared to the bulk oxide. Such anomalous behaviour is explained by the influence of plasmon and phonon propagation confinement in nanolayers and at the interfaces. To this end, the characteristics of the different types of acoustic and optical phonon waves propagating in the multilayer coating have been studied. In particular, the electronic structures of the different layers and their influences on the plasmon resonance are investigated as a function of the multilayer design. The plasmon-polariton mechanism of energy transfer through oxide−metal and metal−oxide interfaces is discussed. multilayer al<sub<2</sub<o<sub<3</sub</ag heterostructures physical vapour deposition (pvd) thermal conductivity interface size effect plasmon phonon propagation confinement high resolution electron energy loss spectroscopy (hreels) Engineering (General). Civil engineering (General) Dmitry Wainstein verfasserin aut Vladimir Vakhrushev verfasserin aut Raul Gago verfasserin aut Jose Luis Endrino verfasserin aut In Coatings MDPI AG, 2012 10(2020), 3, p 260 (DE-627)718627636 (DE-600)2662314-6 20796412 nnns volume:10 year:2020 number:3, p 260 https://doi.org/10.3390/coatings10030260 kostenfrei https://doaj.org/article/207eb88ec8c2455e9ee2b282551f80e4 kostenfrei https://www.mdpi.com/2079-6412/10/3/260 kostenfrei https://doaj.org/toc/2079-6412 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 3, p 260 |
allfields_unstemmed |
10.3390/coatings10030260 doi (DE-627)DOAJ064323714 (DE-599)DOAJ207eb88ec8c2455e9ee2b282551f80e4 DE-627 ger DE-627 rakwb eng TA1-2040 Anatoly Kovalev verfasserin aut Anomalous Heat Transport in Nanolaminate Metal/Oxide Multilayer Coatings: Plasmon and Phonon Excitations 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this work, the anomalous reduction in the thermal conduction observed for nanolaminate metal-dielectric multilayers has been extended to the case of oxides. For this purpose, Ag/Al<sub<2</sub<O<sub<3</sub< coatings were produced with different layer thicknesses (from 1 to 5 nm for Ag and 8 to 40 nm for Al<sub<2</sub<O<sub<3</sub<) and numbers of stacks. It was found that the thermal conduction is significantly lower in such metal−oxide nanolaminates compared to the bulk oxide. Such anomalous behaviour is explained by the influence of plasmon and phonon propagation confinement in nanolayers and at the interfaces. To this end, the characteristics of the different types of acoustic and optical phonon waves propagating in the multilayer coating have been studied. In particular, the electronic structures of the different layers and their influences on the plasmon resonance are investigated as a function of the multilayer design. The plasmon-polariton mechanism of energy transfer through oxide−metal and metal−oxide interfaces is discussed. multilayer al<sub<2</sub<o<sub<3</sub</ag heterostructures physical vapour deposition (pvd) thermal conductivity interface size effect plasmon phonon propagation confinement high resolution electron energy loss spectroscopy (hreels) Engineering (General). Civil engineering (General) Dmitry Wainstein verfasserin aut Vladimir Vakhrushev verfasserin aut Raul Gago verfasserin aut Jose Luis Endrino verfasserin aut In Coatings MDPI AG, 2012 10(2020), 3, p 260 (DE-627)718627636 (DE-600)2662314-6 20796412 nnns volume:10 year:2020 number:3, p 260 https://doi.org/10.3390/coatings10030260 kostenfrei https://doaj.org/article/207eb88ec8c2455e9ee2b282551f80e4 kostenfrei https://www.mdpi.com/2079-6412/10/3/260 kostenfrei https://doaj.org/toc/2079-6412 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 3, p 260 |
allfieldsGer |
10.3390/coatings10030260 doi (DE-627)DOAJ064323714 (DE-599)DOAJ207eb88ec8c2455e9ee2b282551f80e4 DE-627 ger DE-627 rakwb eng TA1-2040 Anatoly Kovalev verfasserin aut Anomalous Heat Transport in Nanolaminate Metal/Oxide Multilayer Coatings: Plasmon and Phonon Excitations 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this work, the anomalous reduction in the thermal conduction observed for nanolaminate metal-dielectric multilayers has been extended to the case of oxides. For this purpose, Ag/Al<sub<2</sub<O<sub<3</sub< coatings were produced with different layer thicknesses (from 1 to 5 nm for Ag and 8 to 40 nm for Al<sub<2</sub<O<sub<3</sub<) and numbers of stacks. It was found that the thermal conduction is significantly lower in such metal−oxide nanolaminates compared to the bulk oxide. Such anomalous behaviour is explained by the influence of plasmon and phonon propagation confinement in nanolayers and at the interfaces. To this end, the characteristics of the different types of acoustic and optical phonon waves propagating in the multilayer coating have been studied. In particular, the electronic structures of the different layers and their influences on the plasmon resonance are investigated as a function of the multilayer design. The plasmon-polariton mechanism of energy transfer through oxide−metal and metal−oxide interfaces is discussed. multilayer al<sub<2</sub<o<sub<3</sub</ag heterostructures physical vapour deposition (pvd) thermal conductivity interface size effect plasmon phonon propagation confinement high resolution electron energy loss spectroscopy (hreels) Engineering (General). Civil engineering (General) Dmitry Wainstein verfasserin aut Vladimir Vakhrushev verfasserin aut Raul Gago verfasserin aut Jose Luis Endrino verfasserin aut In Coatings MDPI AG, 2012 10(2020), 3, p 260 (DE-627)718627636 (DE-600)2662314-6 20796412 nnns volume:10 year:2020 number:3, p 260 https://doi.org/10.3390/coatings10030260 kostenfrei https://doaj.org/article/207eb88ec8c2455e9ee2b282551f80e4 kostenfrei https://www.mdpi.com/2079-6412/10/3/260 kostenfrei https://doaj.org/toc/2079-6412 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 3, p 260 |
allfieldsSound |
10.3390/coatings10030260 doi (DE-627)DOAJ064323714 (DE-599)DOAJ207eb88ec8c2455e9ee2b282551f80e4 DE-627 ger DE-627 rakwb eng TA1-2040 Anatoly Kovalev verfasserin aut Anomalous Heat Transport in Nanolaminate Metal/Oxide Multilayer Coatings: Plasmon and Phonon Excitations 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this work, the anomalous reduction in the thermal conduction observed for nanolaminate metal-dielectric multilayers has been extended to the case of oxides. For this purpose, Ag/Al<sub<2</sub<O<sub<3</sub< coatings were produced with different layer thicknesses (from 1 to 5 nm for Ag and 8 to 40 nm for Al<sub<2</sub<O<sub<3</sub<) and numbers of stacks. It was found that the thermal conduction is significantly lower in such metal−oxide nanolaminates compared to the bulk oxide. Such anomalous behaviour is explained by the influence of plasmon and phonon propagation confinement in nanolayers and at the interfaces. To this end, the characteristics of the different types of acoustic and optical phonon waves propagating in the multilayer coating have been studied. In particular, the electronic structures of the different layers and their influences on the plasmon resonance are investigated as a function of the multilayer design. The plasmon-polariton mechanism of energy transfer through oxide−metal and metal−oxide interfaces is discussed. multilayer al<sub<2</sub<o<sub<3</sub</ag heterostructures physical vapour deposition (pvd) thermal conductivity interface size effect plasmon phonon propagation confinement high resolution electron energy loss spectroscopy (hreels) Engineering (General). Civil engineering (General) Dmitry Wainstein verfasserin aut Vladimir Vakhrushev verfasserin aut Raul Gago verfasserin aut Jose Luis Endrino verfasserin aut In Coatings MDPI AG, 2012 10(2020), 3, p 260 (DE-627)718627636 (DE-600)2662314-6 20796412 nnns volume:10 year:2020 number:3, p 260 https://doi.org/10.3390/coatings10030260 kostenfrei https://doaj.org/article/207eb88ec8c2455e9ee2b282551f80e4 kostenfrei https://www.mdpi.com/2079-6412/10/3/260 kostenfrei https://doaj.org/toc/2079-6412 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 3, p 260 |
language |
English |
source |
In Coatings 10(2020), 3, p 260 volume:10 year:2020 number:3, p 260 |
sourceStr |
In Coatings 10(2020), 3, p 260 volume:10 year:2020 number:3, p 260 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
multilayer al<sub<2</sub<o<sub<3</sub</ag heterostructures physical vapour deposition (pvd) thermal conductivity interface size effect plasmon phonon propagation confinement high resolution electron energy loss spectroscopy (hreels) Engineering (General). Civil engineering (General) |
isfreeaccess_bool |
true |
container_title |
Coatings |
authorswithroles_txt_mv |
Anatoly Kovalev @@aut@@ Dmitry Wainstein @@aut@@ Vladimir Vakhrushev @@aut@@ Raul Gago @@aut@@ Jose Luis Endrino @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
718627636 |
id |
DOAJ064323714 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ064323714</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309035344.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/coatings10030260</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ064323714</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ207eb88ec8c2455e9ee2b282551f80e4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Anatoly Kovalev</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Anomalous Heat Transport in Nanolaminate Metal/Oxide Multilayer Coatings: Plasmon and Phonon Excitations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this work, the anomalous reduction in the thermal conduction observed for nanolaminate metal-dielectric multilayers has been extended to the case of oxides. For this purpose, Ag/Al<sub<2</sub<O<sub<3</sub< coatings were produced with different layer thicknesses (from 1 to 5 nm for Ag and 8 to 40 nm for Al<sub<2</sub<O<sub<3</sub<) and numbers of stacks. It was found that the thermal conduction is significantly lower in such metal−oxide nanolaminates compared to the bulk oxide. Such anomalous behaviour is explained by the influence of plasmon and phonon propagation confinement in nanolayers and at the interfaces. To this end, the characteristics of the different types of acoustic and optical phonon waves propagating in the multilayer coating have been studied. In particular, the electronic structures of the different layers and their influences on the plasmon resonance are investigated as a function of the multilayer design. The plasmon-polariton mechanism of energy transfer through oxide−metal and metal−oxide interfaces is discussed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multilayer al<sub<2</sub<o<sub<3</sub</ag heterostructures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">physical vapour deposition (pvd)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">thermal conductivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">interface</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">size effect</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plasmon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phonon propagation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">confinement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">high resolution electron energy loss spectroscopy (hreels)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dmitry Wainstein</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vladimir Vakhrushev</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Raul Gago</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jose Luis Endrino</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Coatings</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">10(2020), 3, p 260</subfield><subfield code="w">(DE-627)718627636</subfield><subfield code="w">(DE-600)2662314-6</subfield><subfield code="x">20796412</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:3, p 260</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/coatings10030260</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/207eb88ec8c2455e9ee2b282551f80e4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-6412/10/3/260</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-6412</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2020</subfield><subfield code="e">3, p 260</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Anatoly Kovalev |
spellingShingle |
Anatoly Kovalev misc TA1-2040 misc multilayer al<sub<2</sub<o<sub<3</sub</ag heterostructures misc physical vapour deposition (pvd) misc thermal conductivity misc interface misc size effect misc plasmon misc phonon propagation misc confinement misc high resolution electron energy loss spectroscopy (hreels) misc Engineering (General). Civil engineering (General) Anomalous Heat Transport in Nanolaminate Metal/Oxide Multilayer Coatings: Plasmon and Phonon Excitations |
authorStr |
Anatoly Kovalev |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718627636 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1-2040 |
illustrated |
Not Illustrated |
issn |
20796412 |
topic_title |
TA1-2040 Anomalous Heat Transport in Nanolaminate Metal/Oxide Multilayer Coatings: Plasmon and Phonon Excitations multilayer al<sub<2</sub<o<sub<3</sub</ag heterostructures physical vapour deposition (pvd) thermal conductivity interface size effect plasmon phonon propagation confinement high resolution electron energy loss spectroscopy (hreels) |
topic |
misc TA1-2040 misc multilayer al<sub<2</sub<o<sub<3</sub</ag heterostructures misc physical vapour deposition (pvd) misc thermal conductivity misc interface misc size effect misc plasmon misc phonon propagation misc confinement misc high resolution electron energy loss spectroscopy (hreels) misc Engineering (General). Civil engineering (General) |
topic_unstemmed |
misc TA1-2040 misc multilayer al<sub<2</sub<o<sub<3</sub</ag heterostructures misc physical vapour deposition (pvd) misc thermal conductivity misc interface misc size effect misc plasmon misc phonon propagation misc confinement misc high resolution electron energy loss spectroscopy (hreels) misc Engineering (General). Civil engineering (General) |
topic_browse |
misc TA1-2040 misc multilayer al<sub<2</sub<o<sub<3</sub</ag heterostructures misc physical vapour deposition (pvd) misc thermal conductivity misc interface misc size effect misc plasmon misc phonon propagation misc confinement misc high resolution electron energy loss spectroscopy (hreels) misc Engineering (General). Civil engineering (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Coatings |
hierarchy_parent_id |
718627636 |
hierarchy_top_title |
Coatings |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718627636 (DE-600)2662314-6 |
title |
Anomalous Heat Transport in Nanolaminate Metal/Oxide Multilayer Coatings: Plasmon and Phonon Excitations |
ctrlnum |
(DE-627)DOAJ064323714 (DE-599)DOAJ207eb88ec8c2455e9ee2b282551f80e4 |
title_full |
Anomalous Heat Transport in Nanolaminate Metal/Oxide Multilayer Coatings: Plasmon and Phonon Excitations |
author_sort |
Anatoly Kovalev |
journal |
Coatings |
journalStr |
Coatings |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Anatoly Kovalev Dmitry Wainstein Vladimir Vakhrushev Raul Gago Jose Luis Endrino |
container_volume |
10 |
class |
TA1-2040 |
format_se |
Elektronische Aufsätze |
author-letter |
Anatoly Kovalev |
doi_str_mv |
10.3390/coatings10030260 |
author2-role |
verfasserin |
title_sort |
anomalous heat transport in nanolaminate metal/oxide multilayer coatings: plasmon and phonon excitations |
callnumber |
TA1-2040 |
title_auth |
Anomalous Heat Transport in Nanolaminate Metal/Oxide Multilayer Coatings: Plasmon and Phonon Excitations |
abstract |
In this work, the anomalous reduction in the thermal conduction observed for nanolaminate metal-dielectric multilayers has been extended to the case of oxides. For this purpose, Ag/Al<sub<2</sub<O<sub<3</sub< coatings were produced with different layer thicknesses (from 1 to 5 nm for Ag and 8 to 40 nm for Al<sub<2</sub<O<sub<3</sub<) and numbers of stacks. It was found that the thermal conduction is significantly lower in such metal−oxide nanolaminates compared to the bulk oxide. Such anomalous behaviour is explained by the influence of plasmon and phonon propagation confinement in nanolayers and at the interfaces. To this end, the characteristics of the different types of acoustic and optical phonon waves propagating in the multilayer coating have been studied. In particular, the electronic structures of the different layers and their influences on the plasmon resonance are investigated as a function of the multilayer design. The plasmon-polariton mechanism of energy transfer through oxide−metal and metal−oxide interfaces is discussed. |
abstractGer |
In this work, the anomalous reduction in the thermal conduction observed for nanolaminate metal-dielectric multilayers has been extended to the case of oxides. For this purpose, Ag/Al<sub<2</sub<O<sub<3</sub< coatings were produced with different layer thicknesses (from 1 to 5 nm for Ag and 8 to 40 nm for Al<sub<2</sub<O<sub<3</sub<) and numbers of stacks. It was found that the thermal conduction is significantly lower in such metal−oxide nanolaminates compared to the bulk oxide. Such anomalous behaviour is explained by the influence of plasmon and phonon propagation confinement in nanolayers and at the interfaces. To this end, the characteristics of the different types of acoustic and optical phonon waves propagating in the multilayer coating have been studied. In particular, the electronic structures of the different layers and their influences on the plasmon resonance are investigated as a function of the multilayer design. The plasmon-polariton mechanism of energy transfer through oxide−metal and metal−oxide interfaces is discussed. |
abstract_unstemmed |
In this work, the anomalous reduction in the thermal conduction observed for nanolaminate metal-dielectric multilayers has been extended to the case of oxides. For this purpose, Ag/Al<sub<2</sub<O<sub<3</sub< coatings were produced with different layer thicknesses (from 1 to 5 nm for Ag and 8 to 40 nm for Al<sub<2</sub<O<sub<3</sub<) and numbers of stacks. It was found that the thermal conduction is significantly lower in such metal−oxide nanolaminates compared to the bulk oxide. Such anomalous behaviour is explained by the influence of plasmon and phonon propagation confinement in nanolayers and at the interfaces. To this end, the characteristics of the different types of acoustic and optical phonon waves propagating in the multilayer coating have been studied. In particular, the electronic structures of the different layers and their influences on the plasmon resonance are investigated as a function of the multilayer design. The plasmon-polariton mechanism of energy transfer through oxide−metal and metal−oxide interfaces is discussed. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3, p 260 |
title_short |
Anomalous Heat Transport in Nanolaminate Metal/Oxide Multilayer Coatings: Plasmon and Phonon Excitations |
url |
https://doi.org/10.3390/coatings10030260 https://doaj.org/article/207eb88ec8c2455e9ee2b282551f80e4 https://www.mdpi.com/2079-6412/10/3/260 https://doaj.org/toc/2079-6412 |
remote_bool |
true |
author2 |
Dmitry Wainstein Vladimir Vakhrushev Raul Gago Jose Luis Endrino |
author2Str |
Dmitry Wainstein Vladimir Vakhrushev Raul Gago Jose Luis Endrino |
ppnlink |
718627636 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/coatings10030260 |
callnumber-a |
TA1-2040 |
up_date |
2024-07-03T22:19:15.769Z |
_version_ |
1803598069256683520 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ064323714</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309035344.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/coatings10030260</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ064323714</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ207eb88ec8c2455e9ee2b282551f80e4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Anatoly Kovalev</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Anomalous Heat Transport in Nanolaminate Metal/Oxide Multilayer Coatings: Plasmon and Phonon Excitations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this work, the anomalous reduction in the thermal conduction observed for nanolaminate metal-dielectric multilayers has been extended to the case of oxides. For this purpose, Ag/Al<sub<2</sub<O<sub<3</sub< coatings were produced with different layer thicknesses (from 1 to 5 nm for Ag and 8 to 40 nm for Al<sub<2</sub<O<sub<3</sub<) and numbers of stacks. It was found that the thermal conduction is significantly lower in such metal−oxide nanolaminates compared to the bulk oxide. Such anomalous behaviour is explained by the influence of plasmon and phonon propagation confinement in nanolayers and at the interfaces. To this end, the characteristics of the different types of acoustic and optical phonon waves propagating in the multilayer coating have been studied. In particular, the electronic structures of the different layers and their influences on the plasmon resonance are investigated as a function of the multilayer design. The plasmon-polariton mechanism of energy transfer through oxide−metal and metal−oxide interfaces is discussed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multilayer al<sub<2</sub<o<sub<3</sub</ag heterostructures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">physical vapour deposition (pvd)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">thermal conductivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">interface</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">size effect</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plasmon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phonon propagation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">confinement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">high resolution electron energy loss spectroscopy (hreels)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dmitry Wainstein</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vladimir Vakhrushev</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Raul Gago</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jose Luis Endrino</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Coatings</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">10(2020), 3, p 260</subfield><subfield code="w">(DE-627)718627636</subfield><subfield code="w">(DE-600)2662314-6</subfield><subfield code="x">20796412</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:3, p 260</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/coatings10030260</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/207eb88ec8c2455e9ee2b282551f80e4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-6412/10/3/260</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-6412</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2020</subfield><subfield code="e">3, p 260</subfield></datafield></record></collection>
|
score |
7.4010057 |