Increased scale-free dynamics in salience network in adult high-functioning autism
Autism spectrum disorder (ASD) is clinically characterized by extremely slow and inflexible behavior. The neuronal mechanisms of these symptoms remain unclear though. Using fMRI, we investigate the resting state's temporal structure in the frequency domain (scale-free activity as measured with...
Ausführliche Beschreibung
Autor*in: |
Stefano Damiani [verfasserIn] Andrea Scalabrini [verfasserIn] Javier Gomez-Pilar [verfasserIn] Natascia Brondino [verfasserIn] Georg Northoff [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Übergeordnetes Werk: |
In: NeuroImage: Clinical - Elsevier, 2015, 21(2019), Seite - |
---|---|
Übergeordnetes Werk: |
volume:21 ; year:2019 ; pages:- |
Links: |
---|
DOI / URN: |
10.1016/j.nicl.2018.101634 |
---|
Katalog-ID: |
DOAJ06440353X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ06440353X | ||
003 | DE-627 | ||
005 | 20230309035730.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.nicl.2018.101634 |2 doi | |
035 | |a (DE-627)DOAJ06440353X | ||
035 | |a (DE-599)DOAJ718ce1d0174346d08f180b9cfab93e08 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a R858-859.7 | |
050 | 0 | |a RC346-429 | |
100 | 0 | |a Stefano Damiani |e verfasserin |4 aut | |
245 | 1 | 0 | |a Increased scale-free dynamics in salience network in adult high-functioning autism |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Autism spectrum disorder (ASD) is clinically characterized by extremely slow and inflexible behavior. The neuronal mechanisms of these symptoms remain unclear though. Using fMRI, we investigate the resting state's temporal structure in the frequency domain (scale-free activity as measured with Power-Law Exponent, PLE, and Spectral Entropy, SE) and temporal variance (neural variability) in high-functioning, adult ASD comparing them with schizophrenic and neurotypical subjects. We show that ASD is characterized by high PLE in salience network, especially in dorsal anterior cingulate. This increase in PLE was 1) specific for salience network; 2) independent of other measures such as neuronal variability/SD and functional connectivity, which did not show any significant difference; 3) detected in two independent samples of ASD but not in the schizophrenia sample. Among salience network subregions, dorsal anterior cingulate cortex exhibited PLE differences between ASD and neurotypicals in both samples, showing high robustness in ROC curves values. Salience network abnormal temporal structure was confirmed by SE, which was strongly anticorrelated with PLE and thus decreased in ASD. Taken together, our findings show abnormal temporal structure (but normal temporal variance) in resting state salience network in adult high-functioning ASD. The abnormally high PLE indicates a relative predominance of slower over faster frequencies, which may underlie the slow adaptation to unexpected changes and the inflexible behavior observed in autistic individuals. The specificity of abnormal PLE in salience network suggests its potential utility as biomarker in ASD. Keywords: ASD, Schizophrenia, Resting state fMRI, Salience network, Power-law exponent, Spectral entropy | ||
653 | 0 | |a Computer applications to medicine. Medical informatics | |
653 | 0 | |a Neurology. Diseases of the nervous system | |
700 | 0 | |a Andrea Scalabrini |e verfasserin |4 aut | |
700 | 0 | |a Javier Gomez-Pilar |e verfasserin |4 aut | |
700 | 0 | |a Natascia Brondino |e verfasserin |4 aut | |
700 | 0 | |a Georg Northoff |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t NeuroImage: Clinical |d Elsevier, 2015 |g 21(2019), Seite - |w (DE-627)735358869 |w (DE-600)2701571-3 |x 22131582 |7 nnns |
773 | 1 | 8 | |g volume:21 |g year:2019 |g pages:- |
856 | 4 | 0 | |u https://doi.org/10.1016/j.nicl.2018.101634 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/718ce1d0174346d08f180b9cfab93e08 |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S2213158218303826 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2213-1582 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2086 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 21 |j 2019 |h - |
author_variant |
s d sd a s as j g p jgp n b nb g n gn |
---|---|
matchkey_str |
article:22131582:2019----::nraesaereyaisnaineewriaut |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
R |
publishDate |
2019 |
allfields |
10.1016/j.nicl.2018.101634 doi (DE-627)DOAJ06440353X (DE-599)DOAJ718ce1d0174346d08f180b9cfab93e08 DE-627 ger DE-627 rakwb eng R858-859.7 RC346-429 Stefano Damiani verfasserin aut Increased scale-free dynamics in salience network in adult high-functioning autism 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Autism spectrum disorder (ASD) is clinically characterized by extremely slow and inflexible behavior. The neuronal mechanisms of these symptoms remain unclear though. Using fMRI, we investigate the resting state's temporal structure in the frequency domain (scale-free activity as measured with Power-Law Exponent, PLE, and Spectral Entropy, SE) and temporal variance (neural variability) in high-functioning, adult ASD comparing them with schizophrenic and neurotypical subjects. We show that ASD is characterized by high PLE in salience network, especially in dorsal anterior cingulate. This increase in PLE was 1) specific for salience network; 2) independent of other measures such as neuronal variability/SD and functional connectivity, which did not show any significant difference; 3) detected in two independent samples of ASD but not in the schizophrenia sample. Among salience network subregions, dorsal anterior cingulate cortex exhibited PLE differences between ASD and neurotypicals in both samples, showing high robustness in ROC curves values. Salience network abnormal temporal structure was confirmed by SE, which was strongly anticorrelated with PLE and thus decreased in ASD. Taken together, our findings show abnormal temporal structure (but normal temporal variance) in resting state salience network in adult high-functioning ASD. The abnormally high PLE indicates a relative predominance of slower over faster frequencies, which may underlie the slow adaptation to unexpected changes and the inflexible behavior observed in autistic individuals. The specificity of abnormal PLE in salience network suggests its potential utility as biomarker in ASD. Keywords: ASD, Schizophrenia, Resting state fMRI, Salience network, Power-law exponent, Spectral entropy Computer applications to medicine. Medical informatics Neurology. Diseases of the nervous system Andrea Scalabrini verfasserin aut Javier Gomez-Pilar verfasserin aut Natascia Brondino verfasserin aut Georg Northoff verfasserin aut In NeuroImage: Clinical Elsevier, 2015 21(2019), Seite - (DE-627)735358869 (DE-600)2701571-3 22131582 nnns volume:21 year:2019 pages:- https://doi.org/10.1016/j.nicl.2018.101634 kostenfrei https://doaj.org/article/718ce1d0174346d08f180b9cfab93e08 kostenfrei http://www.sciencedirect.com/science/article/pii/S2213158218303826 kostenfrei https://doaj.org/toc/2213-1582 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 21 2019 - |
spelling |
10.1016/j.nicl.2018.101634 doi (DE-627)DOAJ06440353X (DE-599)DOAJ718ce1d0174346d08f180b9cfab93e08 DE-627 ger DE-627 rakwb eng R858-859.7 RC346-429 Stefano Damiani verfasserin aut Increased scale-free dynamics in salience network in adult high-functioning autism 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Autism spectrum disorder (ASD) is clinically characterized by extremely slow and inflexible behavior. The neuronal mechanisms of these symptoms remain unclear though. Using fMRI, we investigate the resting state's temporal structure in the frequency domain (scale-free activity as measured with Power-Law Exponent, PLE, and Spectral Entropy, SE) and temporal variance (neural variability) in high-functioning, adult ASD comparing them with schizophrenic and neurotypical subjects. We show that ASD is characterized by high PLE in salience network, especially in dorsal anterior cingulate. This increase in PLE was 1) specific for salience network; 2) independent of other measures such as neuronal variability/SD and functional connectivity, which did not show any significant difference; 3) detected in two independent samples of ASD but not in the schizophrenia sample. Among salience network subregions, dorsal anterior cingulate cortex exhibited PLE differences between ASD and neurotypicals in both samples, showing high robustness in ROC curves values. Salience network abnormal temporal structure was confirmed by SE, which was strongly anticorrelated with PLE and thus decreased in ASD. Taken together, our findings show abnormal temporal structure (but normal temporal variance) in resting state salience network in adult high-functioning ASD. The abnormally high PLE indicates a relative predominance of slower over faster frequencies, which may underlie the slow adaptation to unexpected changes and the inflexible behavior observed in autistic individuals. The specificity of abnormal PLE in salience network suggests its potential utility as biomarker in ASD. Keywords: ASD, Schizophrenia, Resting state fMRI, Salience network, Power-law exponent, Spectral entropy Computer applications to medicine. Medical informatics Neurology. Diseases of the nervous system Andrea Scalabrini verfasserin aut Javier Gomez-Pilar verfasserin aut Natascia Brondino verfasserin aut Georg Northoff verfasserin aut In NeuroImage: Clinical Elsevier, 2015 21(2019), Seite - (DE-627)735358869 (DE-600)2701571-3 22131582 nnns volume:21 year:2019 pages:- https://doi.org/10.1016/j.nicl.2018.101634 kostenfrei https://doaj.org/article/718ce1d0174346d08f180b9cfab93e08 kostenfrei http://www.sciencedirect.com/science/article/pii/S2213158218303826 kostenfrei https://doaj.org/toc/2213-1582 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 21 2019 - |
allfields_unstemmed |
10.1016/j.nicl.2018.101634 doi (DE-627)DOAJ06440353X (DE-599)DOAJ718ce1d0174346d08f180b9cfab93e08 DE-627 ger DE-627 rakwb eng R858-859.7 RC346-429 Stefano Damiani verfasserin aut Increased scale-free dynamics in salience network in adult high-functioning autism 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Autism spectrum disorder (ASD) is clinically characterized by extremely slow and inflexible behavior. The neuronal mechanisms of these symptoms remain unclear though. Using fMRI, we investigate the resting state's temporal structure in the frequency domain (scale-free activity as measured with Power-Law Exponent, PLE, and Spectral Entropy, SE) and temporal variance (neural variability) in high-functioning, adult ASD comparing them with schizophrenic and neurotypical subjects. We show that ASD is characterized by high PLE in salience network, especially in dorsal anterior cingulate. This increase in PLE was 1) specific for salience network; 2) independent of other measures such as neuronal variability/SD and functional connectivity, which did not show any significant difference; 3) detected in two independent samples of ASD but not in the schizophrenia sample. Among salience network subregions, dorsal anterior cingulate cortex exhibited PLE differences between ASD and neurotypicals in both samples, showing high robustness in ROC curves values. Salience network abnormal temporal structure was confirmed by SE, which was strongly anticorrelated with PLE and thus decreased in ASD. Taken together, our findings show abnormal temporal structure (but normal temporal variance) in resting state salience network in adult high-functioning ASD. The abnormally high PLE indicates a relative predominance of slower over faster frequencies, which may underlie the slow adaptation to unexpected changes and the inflexible behavior observed in autistic individuals. The specificity of abnormal PLE in salience network suggests its potential utility as biomarker in ASD. Keywords: ASD, Schizophrenia, Resting state fMRI, Salience network, Power-law exponent, Spectral entropy Computer applications to medicine. Medical informatics Neurology. Diseases of the nervous system Andrea Scalabrini verfasserin aut Javier Gomez-Pilar verfasserin aut Natascia Brondino verfasserin aut Georg Northoff verfasserin aut In NeuroImage: Clinical Elsevier, 2015 21(2019), Seite - (DE-627)735358869 (DE-600)2701571-3 22131582 nnns volume:21 year:2019 pages:- https://doi.org/10.1016/j.nicl.2018.101634 kostenfrei https://doaj.org/article/718ce1d0174346d08f180b9cfab93e08 kostenfrei http://www.sciencedirect.com/science/article/pii/S2213158218303826 kostenfrei https://doaj.org/toc/2213-1582 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 21 2019 - |
allfieldsGer |
10.1016/j.nicl.2018.101634 doi (DE-627)DOAJ06440353X (DE-599)DOAJ718ce1d0174346d08f180b9cfab93e08 DE-627 ger DE-627 rakwb eng R858-859.7 RC346-429 Stefano Damiani verfasserin aut Increased scale-free dynamics in salience network in adult high-functioning autism 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Autism spectrum disorder (ASD) is clinically characterized by extremely slow and inflexible behavior. The neuronal mechanisms of these symptoms remain unclear though. Using fMRI, we investigate the resting state's temporal structure in the frequency domain (scale-free activity as measured with Power-Law Exponent, PLE, and Spectral Entropy, SE) and temporal variance (neural variability) in high-functioning, adult ASD comparing them with schizophrenic and neurotypical subjects. We show that ASD is characterized by high PLE in salience network, especially in dorsal anterior cingulate. This increase in PLE was 1) specific for salience network; 2) independent of other measures such as neuronal variability/SD and functional connectivity, which did not show any significant difference; 3) detected in two independent samples of ASD but not in the schizophrenia sample. Among salience network subregions, dorsal anterior cingulate cortex exhibited PLE differences between ASD and neurotypicals in both samples, showing high robustness in ROC curves values. Salience network abnormal temporal structure was confirmed by SE, which was strongly anticorrelated with PLE and thus decreased in ASD. Taken together, our findings show abnormal temporal structure (but normal temporal variance) in resting state salience network in adult high-functioning ASD. The abnormally high PLE indicates a relative predominance of slower over faster frequencies, which may underlie the slow adaptation to unexpected changes and the inflexible behavior observed in autistic individuals. The specificity of abnormal PLE in salience network suggests its potential utility as biomarker in ASD. Keywords: ASD, Schizophrenia, Resting state fMRI, Salience network, Power-law exponent, Spectral entropy Computer applications to medicine. Medical informatics Neurology. Diseases of the nervous system Andrea Scalabrini verfasserin aut Javier Gomez-Pilar verfasserin aut Natascia Brondino verfasserin aut Georg Northoff verfasserin aut In NeuroImage: Clinical Elsevier, 2015 21(2019), Seite - (DE-627)735358869 (DE-600)2701571-3 22131582 nnns volume:21 year:2019 pages:- https://doi.org/10.1016/j.nicl.2018.101634 kostenfrei https://doaj.org/article/718ce1d0174346d08f180b9cfab93e08 kostenfrei http://www.sciencedirect.com/science/article/pii/S2213158218303826 kostenfrei https://doaj.org/toc/2213-1582 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 21 2019 - |
allfieldsSound |
10.1016/j.nicl.2018.101634 doi (DE-627)DOAJ06440353X (DE-599)DOAJ718ce1d0174346d08f180b9cfab93e08 DE-627 ger DE-627 rakwb eng R858-859.7 RC346-429 Stefano Damiani verfasserin aut Increased scale-free dynamics in salience network in adult high-functioning autism 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Autism spectrum disorder (ASD) is clinically characterized by extremely slow and inflexible behavior. The neuronal mechanisms of these symptoms remain unclear though. Using fMRI, we investigate the resting state's temporal structure in the frequency domain (scale-free activity as measured with Power-Law Exponent, PLE, and Spectral Entropy, SE) and temporal variance (neural variability) in high-functioning, adult ASD comparing them with schizophrenic and neurotypical subjects. We show that ASD is characterized by high PLE in salience network, especially in dorsal anterior cingulate. This increase in PLE was 1) specific for salience network; 2) independent of other measures such as neuronal variability/SD and functional connectivity, which did not show any significant difference; 3) detected in two independent samples of ASD but not in the schizophrenia sample. Among salience network subregions, dorsal anterior cingulate cortex exhibited PLE differences between ASD and neurotypicals in both samples, showing high robustness in ROC curves values. Salience network abnormal temporal structure was confirmed by SE, which was strongly anticorrelated with PLE and thus decreased in ASD. Taken together, our findings show abnormal temporal structure (but normal temporal variance) in resting state salience network in adult high-functioning ASD. The abnormally high PLE indicates a relative predominance of slower over faster frequencies, which may underlie the slow adaptation to unexpected changes and the inflexible behavior observed in autistic individuals. The specificity of abnormal PLE in salience network suggests its potential utility as biomarker in ASD. Keywords: ASD, Schizophrenia, Resting state fMRI, Salience network, Power-law exponent, Spectral entropy Computer applications to medicine. Medical informatics Neurology. Diseases of the nervous system Andrea Scalabrini verfasserin aut Javier Gomez-Pilar verfasserin aut Natascia Brondino verfasserin aut Georg Northoff verfasserin aut In NeuroImage: Clinical Elsevier, 2015 21(2019), Seite - (DE-627)735358869 (DE-600)2701571-3 22131582 nnns volume:21 year:2019 pages:- https://doi.org/10.1016/j.nicl.2018.101634 kostenfrei https://doaj.org/article/718ce1d0174346d08f180b9cfab93e08 kostenfrei http://www.sciencedirect.com/science/article/pii/S2213158218303826 kostenfrei https://doaj.org/toc/2213-1582 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 21 2019 - |
language |
English |
source |
In NeuroImage: Clinical 21(2019), Seite - volume:21 year:2019 pages:- |
sourceStr |
In NeuroImage: Clinical 21(2019), Seite - volume:21 year:2019 pages:- |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Computer applications to medicine. Medical informatics Neurology. Diseases of the nervous system |
isfreeaccess_bool |
true |
container_title |
NeuroImage: Clinical |
authorswithroles_txt_mv |
Stefano Damiani @@aut@@ Andrea Scalabrini @@aut@@ Javier Gomez-Pilar @@aut@@ Natascia Brondino @@aut@@ Georg Northoff @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
735358869 |
id |
DOAJ06440353X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ06440353X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309035730.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.nicl.2018.101634</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ06440353X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ718ce1d0174346d08f180b9cfab93e08</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R858-859.7</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC346-429</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Stefano Damiani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Increased scale-free dynamics in salience network in adult high-functioning autism</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Autism spectrum disorder (ASD) is clinically characterized by extremely slow and inflexible behavior. The neuronal mechanisms of these symptoms remain unclear though. Using fMRI, we investigate the resting state's temporal structure in the frequency domain (scale-free activity as measured with Power-Law Exponent, PLE, and Spectral Entropy, SE) and temporal variance (neural variability) in high-functioning, adult ASD comparing them with schizophrenic and neurotypical subjects. We show that ASD is characterized by high PLE in salience network, especially in dorsal anterior cingulate. This increase in PLE was 1) specific for salience network; 2) independent of other measures such as neuronal variability/SD and functional connectivity, which did not show any significant difference; 3) detected in two independent samples of ASD but not in the schizophrenia sample. Among salience network subregions, dorsal anterior cingulate cortex exhibited PLE differences between ASD and neurotypicals in both samples, showing high robustness in ROC curves values. Salience network abnormal temporal structure was confirmed by SE, which was strongly anticorrelated with PLE and thus decreased in ASD. Taken together, our findings show abnormal temporal structure (but normal temporal variance) in resting state salience network in adult high-functioning ASD. The abnormally high PLE indicates a relative predominance of slower over faster frequencies, which may underlie the slow adaptation to unexpected changes and the inflexible behavior observed in autistic individuals. The specificity of abnormal PLE in salience network suggests its potential utility as biomarker in ASD. Keywords: ASD, Schizophrenia, Resting state fMRI, Salience network, Power-law exponent, Spectral entropy</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Computer applications to medicine. Medical informatics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neurology. Diseases of the nervous system</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andrea Scalabrini</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Javier Gomez-Pilar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Natascia Brondino</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Georg Northoff</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">NeuroImage: Clinical</subfield><subfield code="d">Elsevier, 2015</subfield><subfield code="g">21(2019), Seite -</subfield><subfield code="w">(DE-627)735358869</subfield><subfield code="w">(DE-600)2701571-3</subfield><subfield code="x">22131582</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.nicl.2018.101634</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/718ce1d0174346d08f180b9cfab93e08</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2213158218303826</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2213-1582</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">2019</subfield><subfield code="h">-</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Stefano Damiani |
spellingShingle |
Stefano Damiani misc R858-859.7 misc RC346-429 misc Computer applications to medicine. Medical informatics misc Neurology. Diseases of the nervous system Increased scale-free dynamics in salience network in adult high-functioning autism |
authorStr |
Stefano Damiani |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)735358869 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
R858-859 |
illustrated |
Not Illustrated |
issn |
22131582 |
topic_title |
R858-859.7 RC346-429 Increased scale-free dynamics in salience network in adult high-functioning autism |
topic |
misc R858-859.7 misc RC346-429 misc Computer applications to medicine. Medical informatics misc Neurology. Diseases of the nervous system |
topic_unstemmed |
misc R858-859.7 misc RC346-429 misc Computer applications to medicine. Medical informatics misc Neurology. Diseases of the nervous system |
topic_browse |
misc R858-859.7 misc RC346-429 misc Computer applications to medicine. Medical informatics misc Neurology. Diseases of the nervous system |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
NeuroImage: Clinical |
hierarchy_parent_id |
735358869 |
hierarchy_top_title |
NeuroImage: Clinical |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)735358869 (DE-600)2701571-3 |
title |
Increased scale-free dynamics in salience network in adult high-functioning autism |
ctrlnum |
(DE-627)DOAJ06440353X (DE-599)DOAJ718ce1d0174346d08f180b9cfab93e08 |
title_full |
Increased scale-free dynamics in salience network in adult high-functioning autism |
author_sort |
Stefano Damiani |
journal |
NeuroImage: Clinical |
journalStr |
NeuroImage: Clinical |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
author_browse |
Stefano Damiani Andrea Scalabrini Javier Gomez-Pilar Natascia Brondino Georg Northoff |
container_volume |
21 |
class |
R858-859.7 RC346-429 |
format_se |
Elektronische Aufsätze |
author-letter |
Stefano Damiani |
doi_str_mv |
10.1016/j.nicl.2018.101634 |
author2-role |
verfasserin |
title_sort |
increased scale-free dynamics in salience network in adult high-functioning autism |
callnumber |
R858-859.7 |
title_auth |
Increased scale-free dynamics in salience network in adult high-functioning autism |
abstract |
Autism spectrum disorder (ASD) is clinically characterized by extremely slow and inflexible behavior. The neuronal mechanisms of these symptoms remain unclear though. Using fMRI, we investigate the resting state's temporal structure in the frequency domain (scale-free activity as measured with Power-Law Exponent, PLE, and Spectral Entropy, SE) and temporal variance (neural variability) in high-functioning, adult ASD comparing them with schizophrenic and neurotypical subjects. We show that ASD is characterized by high PLE in salience network, especially in dorsal anterior cingulate. This increase in PLE was 1) specific for salience network; 2) independent of other measures such as neuronal variability/SD and functional connectivity, which did not show any significant difference; 3) detected in two independent samples of ASD but not in the schizophrenia sample. Among salience network subregions, dorsal anterior cingulate cortex exhibited PLE differences between ASD and neurotypicals in both samples, showing high robustness in ROC curves values. Salience network abnormal temporal structure was confirmed by SE, which was strongly anticorrelated with PLE and thus decreased in ASD. Taken together, our findings show abnormal temporal structure (but normal temporal variance) in resting state salience network in adult high-functioning ASD. The abnormally high PLE indicates a relative predominance of slower over faster frequencies, which may underlie the slow adaptation to unexpected changes and the inflexible behavior observed in autistic individuals. The specificity of abnormal PLE in salience network suggests its potential utility as biomarker in ASD. Keywords: ASD, Schizophrenia, Resting state fMRI, Salience network, Power-law exponent, Spectral entropy |
abstractGer |
Autism spectrum disorder (ASD) is clinically characterized by extremely slow and inflexible behavior. The neuronal mechanisms of these symptoms remain unclear though. Using fMRI, we investigate the resting state's temporal structure in the frequency domain (scale-free activity as measured with Power-Law Exponent, PLE, and Spectral Entropy, SE) and temporal variance (neural variability) in high-functioning, adult ASD comparing them with schizophrenic and neurotypical subjects. We show that ASD is characterized by high PLE in salience network, especially in dorsal anterior cingulate. This increase in PLE was 1) specific for salience network; 2) independent of other measures such as neuronal variability/SD and functional connectivity, which did not show any significant difference; 3) detected in two independent samples of ASD but not in the schizophrenia sample. Among salience network subregions, dorsal anterior cingulate cortex exhibited PLE differences between ASD and neurotypicals in both samples, showing high robustness in ROC curves values. Salience network abnormal temporal structure was confirmed by SE, which was strongly anticorrelated with PLE and thus decreased in ASD. Taken together, our findings show abnormal temporal structure (but normal temporal variance) in resting state salience network in adult high-functioning ASD. The abnormally high PLE indicates a relative predominance of slower over faster frequencies, which may underlie the slow adaptation to unexpected changes and the inflexible behavior observed in autistic individuals. The specificity of abnormal PLE in salience network suggests its potential utility as biomarker in ASD. Keywords: ASD, Schizophrenia, Resting state fMRI, Salience network, Power-law exponent, Spectral entropy |
abstract_unstemmed |
Autism spectrum disorder (ASD) is clinically characterized by extremely slow and inflexible behavior. The neuronal mechanisms of these symptoms remain unclear though. Using fMRI, we investigate the resting state's temporal structure in the frequency domain (scale-free activity as measured with Power-Law Exponent, PLE, and Spectral Entropy, SE) and temporal variance (neural variability) in high-functioning, adult ASD comparing them with schizophrenic and neurotypical subjects. We show that ASD is characterized by high PLE in salience network, especially in dorsal anterior cingulate. This increase in PLE was 1) specific for salience network; 2) independent of other measures such as neuronal variability/SD and functional connectivity, which did not show any significant difference; 3) detected in two independent samples of ASD but not in the schizophrenia sample. Among salience network subregions, dorsal anterior cingulate cortex exhibited PLE differences between ASD and neurotypicals in both samples, showing high robustness in ROC curves values. Salience network abnormal temporal structure was confirmed by SE, which was strongly anticorrelated with PLE and thus decreased in ASD. Taken together, our findings show abnormal temporal structure (but normal temporal variance) in resting state salience network in adult high-functioning ASD. The abnormally high PLE indicates a relative predominance of slower over faster frequencies, which may underlie the slow adaptation to unexpected changes and the inflexible behavior observed in autistic individuals. The specificity of abnormal PLE in salience network suggests its potential utility as biomarker in ASD. Keywords: ASD, Schizophrenia, Resting state fMRI, Salience network, Power-law exponent, Spectral entropy |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Increased scale-free dynamics in salience network in adult high-functioning autism |
url |
https://doi.org/10.1016/j.nicl.2018.101634 https://doaj.org/article/718ce1d0174346d08f180b9cfab93e08 http://www.sciencedirect.com/science/article/pii/S2213158218303826 https://doaj.org/toc/2213-1582 |
remote_bool |
true |
author2 |
Andrea Scalabrini Javier Gomez-Pilar Natascia Brondino Georg Northoff |
author2Str |
Andrea Scalabrini Javier Gomez-Pilar Natascia Brondino Georg Northoff |
ppnlink |
735358869 |
callnumber-subject |
R - General Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.nicl.2018.101634 |
callnumber-a |
R858-859.7 |
up_date |
2024-07-03T22:43:14.007Z |
_version_ |
1803599577362726912 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ06440353X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309035730.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.nicl.2018.101634</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ06440353X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ718ce1d0174346d08f180b9cfab93e08</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R858-859.7</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC346-429</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Stefano Damiani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Increased scale-free dynamics in salience network in adult high-functioning autism</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Autism spectrum disorder (ASD) is clinically characterized by extremely slow and inflexible behavior. The neuronal mechanisms of these symptoms remain unclear though. Using fMRI, we investigate the resting state's temporal structure in the frequency domain (scale-free activity as measured with Power-Law Exponent, PLE, and Spectral Entropy, SE) and temporal variance (neural variability) in high-functioning, adult ASD comparing them with schizophrenic and neurotypical subjects. We show that ASD is characterized by high PLE in salience network, especially in dorsal anterior cingulate. This increase in PLE was 1) specific for salience network; 2) independent of other measures such as neuronal variability/SD and functional connectivity, which did not show any significant difference; 3) detected in two independent samples of ASD but not in the schizophrenia sample. Among salience network subregions, dorsal anterior cingulate cortex exhibited PLE differences between ASD and neurotypicals in both samples, showing high robustness in ROC curves values. Salience network abnormal temporal structure was confirmed by SE, which was strongly anticorrelated with PLE and thus decreased in ASD. Taken together, our findings show abnormal temporal structure (but normal temporal variance) in resting state salience network in adult high-functioning ASD. The abnormally high PLE indicates a relative predominance of slower over faster frequencies, which may underlie the slow adaptation to unexpected changes and the inflexible behavior observed in autistic individuals. The specificity of abnormal PLE in salience network suggests its potential utility as biomarker in ASD. Keywords: ASD, Schizophrenia, Resting state fMRI, Salience network, Power-law exponent, Spectral entropy</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Computer applications to medicine. Medical informatics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neurology. Diseases of the nervous system</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andrea Scalabrini</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Javier Gomez-Pilar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Natascia Brondino</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Georg Northoff</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">NeuroImage: Clinical</subfield><subfield code="d">Elsevier, 2015</subfield><subfield code="g">21(2019), Seite -</subfield><subfield code="w">(DE-627)735358869</subfield><subfield code="w">(DE-600)2701571-3</subfield><subfield code="x">22131582</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.nicl.2018.101634</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/718ce1d0174346d08f180b9cfab93e08</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2213158218303826</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2213-1582</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">2019</subfield><subfield code="h">-</subfield></datafield></record></collection>
|
score |
7.4011717 |