Creation of an observation network for assessment of the impact of the pig complex on the groundwater aquifer
Ukraine, as a party to the Association Agreement, in accordance with Directive 2000/60/EC of the European Parliament and of the Council, recognizes water as the most expensive resource on our planet, which must be protected and saved. Every country and every inhabitant of the planet must do everythi...
Ausführliche Beschreibung
Autor*in: |
Viktoriia Serdiuk [verfasserIn] Viktor Maksin [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: EUREKA: Life Sciences - Scientific Route OÜ, 2020, (2021), 5, Seite 35-45 |
---|---|
Übergeordnetes Werk: |
year:2021 ; number:5 ; pages:35-45 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.21303/2504-5695.2021.002062 |
---|
Katalog-ID: |
DOAJ064804003 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ064804003 | ||
003 | DE-627 | ||
005 | 20230309042313.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.21303/2504-5695.2021.002062 |2 doi | |
035 | |a (DE-627)DOAJ064804003 | ||
035 | |a (DE-599)DOAJ8621f401179f4e909c81a221ba747919 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QH501-531 | |
100 | 0 | |a Viktoriia Serdiuk |e verfasserin |4 aut | |
245 | 1 | 0 | |a Creation of an observation network for assessment of the impact of the pig complex on the groundwater aquifer |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Ukraine, as a party to the Association Agreement, in accordance with Directive 2000/60/EC of the European Parliament and of the Council, recognizes water as the most expensive resource on our planet, which must be protected and saved. Every country and every inhabitant of the planet must do everything possible to reduce the thoughtless use of water and stop water pollution. The priority is the identification of water users and "polluters", as well as the detection and prevention of pollution of water resources, which includes the identification of water sampling points around potential sources of pollution. The aim of the research is to determine the impact of pig farms on the qualitative and quantitative characteristics of groundwater using existing water intakes to preserve natural water resources from pollution and depletion. An important point for monitoring in this situation is the use of existing water intakes (bores and wells) without additional construction of observation bores and interference in the environment. To complete the study, it is necessary to create an observation (monitoring) network of selected points and establish the frequency of their study. The observation network should determine the level (static and dynamic) as well as the quality of groundwater, which reflects background concentrations (natural or "conditionally natural"). "Conditionally natural" concentrations may indicate an excess of pollutants, associated with anthropogenic impacts that occurred prior to the activities of a particular entity, in respect of which the study is conducted. Given the changes in the quality characteristics of water, caused by external factors, "conditionally natural" concentrations can be taken as background. The obtained information will allow, depending on the quality and quantity of groundwater (their level) to make management decisions on the management of groundwater resources. Groundwater in rural settlements near enterprises is in most cases the only source of water supply. The laboratory analysis of water samples from selected points in 2020 showed an excess of color, odor at 60 °C, turbidity, total iron in bores and wells. The detected elevations are due to the peculiarity of the geological structure (aquifer of Eocene sediments). The excess in the hydrogen index is almost 10 times from the surface water body, which can be taken as "conditionally natural" (background) with further study of the specific impact of the complex on the environment. The main indicators that may indicate direct contamination of the pig complex, such as nitrates, nitrites, ammonium nitrogen and microbiological studies, do not exceed the normalized values, set for drinking water. In this case, the specific indicators are within normal limits. Petroleum products were not detected in the studied samples | ||
650 | 4 | |a observation network | |
650 | 4 | |a groundwater aquifer | |
650 | 4 | |a groundwater level | |
650 | 4 | |a groundwater quality | |
650 | 4 | |a impact on groundwater | |
653 | 0 | |a Life | |
700 | 0 | |a Viktor Maksin |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t EUREKA: Life Sciences |d Scientific Route OÜ, 2020 |g (2021), 5, Seite 35-45 |w (DE-627)169100880X |x 25045695 |7 nnns |
773 | 1 | 8 | |g year:2021 |g number:5 |g pages:35-45 |
856 | 4 | 0 | |u https://doi.org/10.21303/2504-5695.2021.002062 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/8621f401179f4e909c81a221ba747919 |z kostenfrei |
856 | 4 | 0 | |u http://journal.eu-jr.eu/life/article/view/2062 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2504-5687 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2504-5695 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |j 2021 |e 5 |h 35-45 |
author_variant |
v s vs v m vm |
---|---|
matchkey_str |
article:25045695:2021----::rainfnbevtontokoassmnotematfhpgope |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
QH |
publishDate |
2021 |
allfields |
10.21303/2504-5695.2021.002062 doi (DE-627)DOAJ064804003 (DE-599)DOAJ8621f401179f4e909c81a221ba747919 DE-627 ger DE-627 rakwb eng QH501-531 Viktoriia Serdiuk verfasserin aut Creation of an observation network for assessment of the impact of the pig complex on the groundwater aquifer 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ukraine, as a party to the Association Agreement, in accordance with Directive 2000/60/EC of the European Parliament and of the Council, recognizes water as the most expensive resource on our planet, which must be protected and saved. Every country and every inhabitant of the planet must do everything possible to reduce the thoughtless use of water and stop water pollution. The priority is the identification of water users and "polluters", as well as the detection and prevention of pollution of water resources, which includes the identification of water sampling points around potential sources of pollution. The aim of the research is to determine the impact of pig farms on the qualitative and quantitative characteristics of groundwater using existing water intakes to preserve natural water resources from pollution and depletion. An important point for monitoring in this situation is the use of existing water intakes (bores and wells) without additional construction of observation bores and interference in the environment. To complete the study, it is necessary to create an observation (monitoring) network of selected points and establish the frequency of their study. The observation network should determine the level (static and dynamic) as well as the quality of groundwater, which reflects background concentrations (natural or "conditionally natural"). "Conditionally natural" concentrations may indicate an excess of pollutants, associated with anthropogenic impacts that occurred prior to the activities of a particular entity, in respect of which the study is conducted. Given the changes in the quality characteristics of water, caused by external factors, "conditionally natural" concentrations can be taken as background. The obtained information will allow, depending on the quality and quantity of groundwater (their level) to make management decisions on the management of groundwater resources. Groundwater in rural settlements near enterprises is in most cases the only source of water supply. The laboratory analysis of water samples from selected points in 2020 showed an excess of color, odor at 60 °C, turbidity, total iron in bores and wells. The detected elevations are due to the peculiarity of the geological structure (aquifer of Eocene sediments). The excess in the hydrogen index is almost 10 times from the surface water body, which can be taken as "conditionally natural" (background) with further study of the specific impact of the complex on the environment. The main indicators that may indicate direct contamination of the pig complex, such as nitrates, nitrites, ammonium nitrogen and microbiological studies, do not exceed the normalized values, set for drinking water. In this case, the specific indicators are within normal limits. Petroleum products were not detected in the studied samples observation network groundwater aquifer groundwater level groundwater quality impact on groundwater Life Viktor Maksin verfasserin aut In EUREKA: Life Sciences Scientific Route OÜ, 2020 (2021), 5, Seite 35-45 (DE-627)169100880X 25045695 nnns year:2021 number:5 pages:35-45 https://doi.org/10.21303/2504-5695.2021.002062 kostenfrei https://doaj.org/article/8621f401179f4e909c81a221ba747919 kostenfrei http://journal.eu-jr.eu/life/article/view/2062 kostenfrei https://doaj.org/toc/2504-5687 Journal toc kostenfrei https://doaj.org/toc/2504-5695 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2021 5 35-45 |
spelling |
10.21303/2504-5695.2021.002062 doi (DE-627)DOAJ064804003 (DE-599)DOAJ8621f401179f4e909c81a221ba747919 DE-627 ger DE-627 rakwb eng QH501-531 Viktoriia Serdiuk verfasserin aut Creation of an observation network for assessment of the impact of the pig complex on the groundwater aquifer 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ukraine, as a party to the Association Agreement, in accordance with Directive 2000/60/EC of the European Parliament and of the Council, recognizes water as the most expensive resource on our planet, which must be protected and saved. Every country and every inhabitant of the planet must do everything possible to reduce the thoughtless use of water and stop water pollution. The priority is the identification of water users and "polluters", as well as the detection and prevention of pollution of water resources, which includes the identification of water sampling points around potential sources of pollution. The aim of the research is to determine the impact of pig farms on the qualitative and quantitative characteristics of groundwater using existing water intakes to preserve natural water resources from pollution and depletion. An important point for monitoring in this situation is the use of existing water intakes (bores and wells) without additional construction of observation bores and interference in the environment. To complete the study, it is necessary to create an observation (monitoring) network of selected points and establish the frequency of their study. The observation network should determine the level (static and dynamic) as well as the quality of groundwater, which reflects background concentrations (natural or "conditionally natural"). "Conditionally natural" concentrations may indicate an excess of pollutants, associated with anthropogenic impacts that occurred prior to the activities of a particular entity, in respect of which the study is conducted. Given the changes in the quality characteristics of water, caused by external factors, "conditionally natural" concentrations can be taken as background. The obtained information will allow, depending on the quality and quantity of groundwater (their level) to make management decisions on the management of groundwater resources. Groundwater in rural settlements near enterprises is in most cases the only source of water supply. The laboratory analysis of water samples from selected points in 2020 showed an excess of color, odor at 60 °C, turbidity, total iron in bores and wells. The detected elevations are due to the peculiarity of the geological structure (aquifer of Eocene sediments). The excess in the hydrogen index is almost 10 times from the surface water body, which can be taken as "conditionally natural" (background) with further study of the specific impact of the complex on the environment. The main indicators that may indicate direct contamination of the pig complex, such as nitrates, nitrites, ammonium nitrogen and microbiological studies, do not exceed the normalized values, set for drinking water. In this case, the specific indicators are within normal limits. Petroleum products were not detected in the studied samples observation network groundwater aquifer groundwater level groundwater quality impact on groundwater Life Viktor Maksin verfasserin aut In EUREKA: Life Sciences Scientific Route OÜ, 2020 (2021), 5, Seite 35-45 (DE-627)169100880X 25045695 nnns year:2021 number:5 pages:35-45 https://doi.org/10.21303/2504-5695.2021.002062 kostenfrei https://doaj.org/article/8621f401179f4e909c81a221ba747919 kostenfrei http://journal.eu-jr.eu/life/article/view/2062 kostenfrei https://doaj.org/toc/2504-5687 Journal toc kostenfrei https://doaj.org/toc/2504-5695 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2021 5 35-45 |
allfields_unstemmed |
10.21303/2504-5695.2021.002062 doi (DE-627)DOAJ064804003 (DE-599)DOAJ8621f401179f4e909c81a221ba747919 DE-627 ger DE-627 rakwb eng QH501-531 Viktoriia Serdiuk verfasserin aut Creation of an observation network for assessment of the impact of the pig complex on the groundwater aquifer 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ukraine, as a party to the Association Agreement, in accordance with Directive 2000/60/EC of the European Parliament and of the Council, recognizes water as the most expensive resource on our planet, which must be protected and saved. Every country and every inhabitant of the planet must do everything possible to reduce the thoughtless use of water and stop water pollution. The priority is the identification of water users and "polluters", as well as the detection and prevention of pollution of water resources, which includes the identification of water sampling points around potential sources of pollution. The aim of the research is to determine the impact of pig farms on the qualitative and quantitative characteristics of groundwater using existing water intakes to preserve natural water resources from pollution and depletion. An important point for monitoring in this situation is the use of existing water intakes (bores and wells) without additional construction of observation bores and interference in the environment. To complete the study, it is necessary to create an observation (monitoring) network of selected points and establish the frequency of their study. The observation network should determine the level (static and dynamic) as well as the quality of groundwater, which reflects background concentrations (natural or "conditionally natural"). "Conditionally natural" concentrations may indicate an excess of pollutants, associated with anthropogenic impacts that occurred prior to the activities of a particular entity, in respect of which the study is conducted. Given the changes in the quality characteristics of water, caused by external factors, "conditionally natural" concentrations can be taken as background. The obtained information will allow, depending on the quality and quantity of groundwater (their level) to make management decisions on the management of groundwater resources. Groundwater in rural settlements near enterprises is in most cases the only source of water supply. The laboratory analysis of water samples from selected points in 2020 showed an excess of color, odor at 60 °C, turbidity, total iron in bores and wells. The detected elevations are due to the peculiarity of the geological structure (aquifer of Eocene sediments). The excess in the hydrogen index is almost 10 times from the surface water body, which can be taken as "conditionally natural" (background) with further study of the specific impact of the complex on the environment. The main indicators that may indicate direct contamination of the pig complex, such as nitrates, nitrites, ammonium nitrogen and microbiological studies, do not exceed the normalized values, set for drinking water. In this case, the specific indicators are within normal limits. Petroleum products were not detected in the studied samples observation network groundwater aquifer groundwater level groundwater quality impact on groundwater Life Viktor Maksin verfasserin aut In EUREKA: Life Sciences Scientific Route OÜ, 2020 (2021), 5, Seite 35-45 (DE-627)169100880X 25045695 nnns year:2021 number:5 pages:35-45 https://doi.org/10.21303/2504-5695.2021.002062 kostenfrei https://doaj.org/article/8621f401179f4e909c81a221ba747919 kostenfrei http://journal.eu-jr.eu/life/article/view/2062 kostenfrei https://doaj.org/toc/2504-5687 Journal toc kostenfrei https://doaj.org/toc/2504-5695 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2021 5 35-45 |
allfieldsGer |
10.21303/2504-5695.2021.002062 doi (DE-627)DOAJ064804003 (DE-599)DOAJ8621f401179f4e909c81a221ba747919 DE-627 ger DE-627 rakwb eng QH501-531 Viktoriia Serdiuk verfasserin aut Creation of an observation network for assessment of the impact of the pig complex on the groundwater aquifer 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ukraine, as a party to the Association Agreement, in accordance with Directive 2000/60/EC of the European Parliament and of the Council, recognizes water as the most expensive resource on our planet, which must be protected and saved. Every country and every inhabitant of the planet must do everything possible to reduce the thoughtless use of water and stop water pollution. The priority is the identification of water users and "polluters", as well as the detection and prevention of pollution of water resources, which includes the identification of water sampling points around potential sources of pollution. The aim of the research is to determine the impact of pig farms on the qualitative and quantitative characteristics of groundwater using existing water intakes to preserve natural water resources from pollution and depletion. An important point for monitoring in this situation is the use of existing water intakes (bores and wells) without additional construction of observation bores and interference in the environment. To complete the study, it is necessary to create an observation (monitoring) network of selected points and establish the frequency of their study. The observation network should determine the level (static and dynamic) as well as the quality of groundwater, which reflects background concentrations (natural or "conditionally natural"). "Conditionally natural" concentrations may indicate an excess of pollutants, associated with anthropogenic impacts that occurred prior to the activities of a particular entity, in respect of which the study is conducted. Given the changes in the quality characteristics of water, caused by external factors, "conditionally natural" concentrations can be taken as background. The obtained information will allow, depending on the quality and quantity of groundwater (their level) to make management decisions on the management of groundwater resources. Groundwater in rural settlements near enterprises is in most cases the only source of water supply. The laboratory analysis of water samples from selected points in 2020 showed an excess of color, odor at 60 °C, turbidity, total iron in bores and wells. The detected elevations are due to the peculiarity of the geological structure (aquifer of Eocene sediments). The excess in the hydrogen index is almost 10 times from the surface water body, which can be taken as "conditionally natural" (background) with further study of the specific impact of the complex on the environment. The main indicators that may indicate direct contamination of the pig complex, such as nitrates, nitrites, ammonium nitrogen and microbiological studies, do not exceed the normalized values, set for drinking water. In this case, the specific indicators are within normal limits. Petroleum products were not detected in the studied samples observation network groundwater aquifer groundwater level groundwater quality impact on groundwater Life Viktor Maksin verfasserin aut In EUREKA: Life Sciences Scientific Route OÜ, 2020 (2021), 5, Seite 35-45 (DE-627)169100880X 25045695 nnns year:2021 number:5 pages:35-45 https://doi.org/10.21303/2504-5695.2021.002062 kostenfrei https://doaj.org/article/8621f401179f4e909c81a221ba747919 kostenfrei http://journal.eu-jr.eu/life/article/view/2062 kostenfrei https://doaj.org/toc/2504-5687 Journal toc kostenfrei https://doaj.org/toc/2504-5695 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2021 5 35-45 |
allfieldsSound |
10.21303/2504-5695.2021.002062 doi (DE-627)DOAJ064804003 (DE-599)DOAJ8621f401179f4e909c81a221ba747919 DE-627 ger DE-627 rakwb eng QH501-531 Viktoriia Serdiuk verfasserin aut Creation of an observation network for assessment of the impact of the pig complex on the groundwater aquifer 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ukraine, as a party to the Association Agreement, in accordance with Directive 2000/60/EC of the European Parliament and of the Council, recognizes water as the most expensive resource on our planet, which must be protected and saved. Every country and every inhabitant of the planet must do everything possible to reduce the thoughtless use of water and stop water pollution. The priority is the identification of water users and "polluters", as well as the detection and prevention of pollution of water resources, which includes the identification of water sampling points around potential sources of pollution. The aim of the research is to determine the impact of pig farms on the qualitative and quantitative characteristics of groundwater using existing water intakes to preserve natural water resources from pollution and depletion. An important point for monitoring in this situation is the use of existing water intakes (bores and wells) without additional construction of observation bores and interference in the environment. To complete the study, it is necessary to create an observation (monitoring) network of selected points and establish the frequency of their study. The observation network should determine the level (static and dynamic) as well as the quality of groundwater, which reflects background concentrations (natural or "conditionally natural"). "Conditionally natural" concentrations may indicate an excess of pollutants, associated with anthropogenic impacts that occurred prior to the activities of a particular entity, in respect of which the study is conducted. Given the changes in the quality characteristics of water, caused by external factors, "conditionally natural" concentrations can be taken as background. The obtained information will allow, depending on the quality and quantity of groundwater (their level) to make management decisions on the management of groundwater resources. Groundwater in rural settlements near enterprises is in most cases the only source of water supply. The laboratory analysis of water samples from selected points in 2020 showed an excess of color, odor at 60 °C, turbidity, total iron in bores and wells. The detected elevations are due to the peculiarity of the geological structure (aquifer of Eocene sediments). The excess in the hydrogen index is almost 10 times from the surface water body, which can be taken as "conditionally natural" (background) with further study of the specific impact of the complex on the environment. The main indicators that may indicate direct contamination of the pig complex, such as nitrates, nitrites, ammonium nitrogen and microbiological studies, do not exceed the normalized values, set for drinking water. In this case, the specific indicators are within normal limits. Petroleum products were not detected in the studied samples observation network groundwater aquifer groundwater level groundwater quality impact on groundwater Life Viktor Maksin verfasserin aut In EUREKA: Life Sciences Scientific Route OÜ, 2020 (2021), 5, Seite 35-45 (DE-627)169100880X 25045695 nnns year:2021 number:5 pages:35-45 https://doi.org/10.21303/2504-5695.2021.002062 kostenfrei https://doaj.org/article/8621f401179f4e909c81a221ba747919 kostenfrei http://journal.eu-jr.eu/life/article/view/2062 kostenfrei https://doaj.org/toc/2504-5687 Journal toc kostenfrei https://doaj.org/toc/2504-5695 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2021 5 35-45 |
language |
English |
source |
In EUREKA: Life Sciences (2021), 5, Seite 35-45 year:2021 number:5 pages:35-45 |
sourceStr |
In EUREKA: Life Sciences (2021), 5, Seite 35-45 year:2021 number:5 pages:35-45 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
observation network groundwater aquifer groundwater level groundwater quality impact on groundwater Life |
isfreeaccess_bool |
true |
container_title |
EUREKA: Life Sciences |
authorswithroles_txt_mv |
Viktoriia Serdiuk @@aut@@ Viktor Maksin @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
169100880X |
id |
DOAJ064804003 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ064804003</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309042313.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.21303/2504-5695.2021.002062</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ064804003</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8621f401179f4e909c81a221ba747919</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH501-531</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Viktoriia Serdiuk</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Creation of an observation network for assessment of the impact of the pig complex on the groundwater aquifer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Ukraine, as a party to the Association Agreement, in accordance with Directive 2000/60/EC of the European Parliament and of the Council, recognizes water as the most expensive resource on our planet, which must be protected and saved. Every country and every inhabitant of the planet must do everything possible to reduce the thoughtless use of water and stop water pollution. The priority is the identification of water users and "polluters", as well as the detection and prevention of pollution of water resources, which includes the identification of water sampling points around potential sources of pollution. The aim of the research is to determine the impact of pig farms on the qualitative and quantitative characteristics of groundwater using existing water intakes to preserve natural water resources from pollution and depletion. An important point for monitoring in this situation is the use of existing water intakes (bores and wells) without additional construction of observation bores and interference in the environment. To complete the study, it is necessary to create an observation (monitoring) network of selected points and establish the frequency of their study. The observation network should determine the level (static and dynamic) as well as the quality of groundwater, which reflects background concentrations (natural or "conditionally natural"). "Conditionally natural" concentrations may indicate an excess of pollutants, associated with anthropogenic impacts that occurred prior to the activities of a particular entity, in respect of which the study is conducted. Given the changes in the quality characteristics of water, caused by external factors, "conditionally natural" concentrations can be taken as background. The obtained information will allow, depending on the quality and quantity of groundwater (their level) to make management decisions on the management of groundwater resources. Groundwater in rural settlements near enterprises is in most cases the only source of water supply. The laboratory analysis of water samples from selected points in 2020 showed an excess of color, odor at 60 °C, turbidity, total iron in bores and wells. The detected elevations are due to the peculiarity of the geological structure (aquifer of Eocene sediments). The excess in the hydrogen index is almost 10 times from the surface water body, which can be taken as "conditionally natural" (background) with further study of the specific impact of the complex on the environment. The main indicators that may indicate direct contamination of the pig complex, such as nitrates, nitrites, ammonium nitrogen and microbiological studies, do not exceed the normalized values, set for drinking water. In this case, the specific indicators are within normal limits. Petroleum products were not detected in the studied samples</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">observation network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">groundwater aquifer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">groundwater level</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">groundwater quality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">impact on groundwater</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Life</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Viktor Maksin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">EUREKA: Life Sciences</subfield><subfield code="d">Scientific Route OÜ, 2020</subfield><subfield code="g">(2021), 5, Seite 35-45</subfield><subfield code="w">(DE-627)169100880X</subfield><subfield code="x">25045695</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2021</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:35-45</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.21303/2504-5695.2021.002062</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8621f401179f4e909c81a221ba747919</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://journal.eu-jr.eu/life/article/view/2062</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2504-5687</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2504-5695</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2021</subfield><subfield code="e">5</subfield><subfield code="h">35-45</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Viktoriia Serdiuk |
spellingShingle |
Viktoriia Serdiuk misc QH501-531 misc observation network misc groundwater aquifer misc groundwater level misc groundwater quality misc impact on groundwater misc Life Creation of an observation network for assessment of the impact of the pig complex on the groundwater aquifer |
authorStr |
Viktoriia Serdiuk |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)169100880X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QH501-531 |
illustrated |
Not Illustrated |
issn |
25045695 |
topic_title |
QH501-531 Creation of an observation network for assessment of the impact of the pig complex on the groundwater aquifer observation network groundwater aquifer groundwater level groundwater quality impact on groundwater |
topic |
misc QH501-531 misc observation network misc groundwater aquifer misc groundwater level misc groundwater quality misc impact on groundwater misc Life |
topic_unstemmed |
misc QH501-531 misc observation network misc groundwater aquifer misc groundwater level misc groundwater quality misc impact on groundwater misc Life |
topic_browse |
misc QH501-531 misc observation network misc groundwater aquifer misc groundwater level misc groundwater quality misc impact on groundwater misc Life |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
EUREKA: Life Sciences |
hierarchy_parent_id |
169100880X |
hierarchy_top_title |
EUREKA: Life Sciences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)169100880X |
title |
Creation of an observation network for assessment of the impact of the pig complex on the groundwater aquifer |
ctrlnum |
(DE-627)DOAJ064804003 (DE-599)DOAJ8621f401179f4e909c81a221ba747919 |
title_full |
Creation of an observation network for assessment of the impact of the pig complex on the groundwater aquifer |
author_sort |
Viktoriia Serdiuk |
journal |
EUREKA: Life Sciences |
journalStr |
EUREKA: Life Sciences |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
35 |
author_browse |
Viktoriia Serdiuk Viktor Maksin |
class |
QH501-531 |
format_se |
Elektronische Aufsätze |
author-letter |
Viktoriia Serdiuk |
doi_str_mv |
10.21303/2504-5695.2021.002062 |
author2-role |
verfasserin |
title_sort |
creation of an observation network for assessment of the impact of the pig complex on the groundwater aquifer |
callnumber |
QH501-531 |
title_auth |
Creation of an observation network for assessment of the impact of the pig complex on the groundwater aquifer |
abstract |
Ukraine, as a party to the Association Agreement, in accordance with Directive 2000/60/EC of the European Parliament and of the Council, recognizes water as the most expensive resource on our planet, which must be protected and saved. Every country and every inhabitant of the planet must do everything possible to reduce the thoughtless use of water and stop water pollution. The priority is the identification of water users and "polluters", as well as the detection and prevention of pollution of water resources, which includes the identification of water sampling points around potential sources of pollution. The aim of the research is to determine the impact of pig farms on the qualitative and quantitative characteristics of groundwater using existing water intakes to preserve natural water resources from pollution and depletion. An important point for monitoring in this situation is the use of existing water intakes (bores and wells) without additional construction of observation bores and interference in the environment. To complete the study, it is necessary to create an observation (monitoring) network of selected points and establish the frequency of their study. The observation network should determine the level (static and dynamic) as well as the quality of groundwater, which reflects background concentrations (natural or "conditionally natural"). "Conditionally natural" concentrations may indicate an excess of pollutants, associated with anthropogenic impacts that occurred prior to the activities of a particular entity, in respect of which the study is conducted. Given the changes in the quality characteristics of water, caused by external factors, "conditionally natural" concentrations can be taken as background. The obtained information will allow, depending on the quality and quantity of groundwater (their level) to make management decisions on the management of groundwater resources. Groundwater in rural settlements near enterprises is in most cases the only source of water supply. The laboratory analysis of water samples from selected points in 2020 showed an excess of color, odor at 60 °C, turbidity, total iron in bores and wells. The detected elevations are due to the peculiarity of the geological structure (aquifer of Eocene sediments). The excess in the hydrogen index is almost 10 times from the surface water body, which can be taken as "conditionally natural" (background) with further study of the specific impact of the complex on the environment. The main indicators that may indicate direct contamination of the pig complex, such as nitrates, nitrites, ammonium nitrogen and microbiological studies, do not exceed the normalized values, set for drinking water. In this case, the specific indicators are within normal limits. Petroleum products were not detected in the studied samples |
abstractGer |
Ukraine, as a party to the Association Agreement, in accordance with Directive 2000/60/EC of the European Parliament and of the Council, recognizes water as the most expensive resource on our planet, which must be protected and saved. Every country and every inhabitant of the planet must do everything possible to reduce the thoughtless use of water and stop water pollution. The priority is the identification of water users and "polluters", as well as the detection and prevention of pollution of water resources, which includes the identification of water sampling points around potential sources of pollution. The aim of the research is to determine the impact of pig farms on the qualitative and quantitative characteristics of groundwater using existing water intakes to preserve natural water resources from pollution and depletion. An important point for monitoring in this situation is the use of existing water intakes (bores and wells) without additional construction of observation bores and interference in the environment. To complete the study, it is necessary to create an observation (monitoring) network of selected points and establish the frequency of their study. The observation network should determine the level (static and dynamic) as well as the quality of groundwater, which reflects background concentrations (natural or "conditionally natural"). "Conditionally natural" concentrations may indicate an excess of pollutants, associated with anthropogenic impacts that occurred prior to the activities of a particular entity, in respect of which the study is conducted. Given the changes in the quality characteristics of water, caused by external factors, "conditionally natural" concentrations can be taken as background. The obtained information will allow, depending on the quality and quantity of groundwater (their level) to make management decisions on the management of groundwater resources. Groundwater in rural settlements near enterprises is in most cases the only source of water supply. The laboratory analysis of water samples from selected points in 2020 showed an excess of color, odor at 60 °C, turbidity, total iron in bores and wells. The detected elevations are due to the peculiarity of the geological structure (aquifer of Eocene sediments). The excess in the hydrogen index is almost 10 times from the surface water body, which can be taken as "conditionally natural" (background) with further study of the specific impact of the complex on the environment. The main indicators that may indicate direct contamination of the pig complex, such as nitrates, nitrites, ammonium nitrogen and microbiological studies, do not exceed the normalized values, set for drinking water. In this case, the specific indicators are within normal limits. Petroleum products were not detected in the studied samples |
abstract_unstemmed |
Ukraine, as a party to the Association Agreement, in accordance with Directive 2000/60/EC of the European Parliament and of the Council, recognizes water as the most expensive resource on our planet, which must be protected and saved. Every country and every inhabitant of the planet must do everything possible to reduce the thoughtless use of water and stop water pollution. The priority is the identification of water users and "polluters", as well as the detection and prevention of pollution of water resources, which includes the identification of water sampling points around potential sources of pollution. The aim of the research is to determine the impact of pig farms on the qualitative and quantitative characteristics of groundwater using existing water intakes to preserve natural water resources from pollution and depletion. An important point for monitoring in this situation is the use of existing water intakes (bores and wells) without additional construction of observation bores and interference in the environment. To complete the study, it is necessary to create an observation (monitoring) network of selected points and establish the frequency of their study. The observation network should determine the level (static and dynamic) as well as the quality of groundwater, which reflects background concentrations (natural or "conditionally natural"). "Conditionally natural" concentrations may indicate an excess of pollutants, associated with anthropogenic impacts that occurred prior to the activities of a particular entity, in respect of which the study is conducted. Given the changes in the quality characteristics of water, caused by external factors, "conditionally natural" concentrations can be taken as background. The obtained information will allow, depending on the quality and quantity of groundwater (their level) to make management decisions on the management of groundwater resources. Groundwater in rural settlements near enterprises is in most cases the only source of water supply. The laboratory analysis of water samples from selected points in 2020 showed an excess of color, odor at 60 °C, turbidity, total iron in bores and wells. The detected elevations are due to the peculiarity of the geological structure (aquifer of Eocene sediments). The excess in the hydrogen index is almost 10 times from the surface water body, which can be taken as "conditionally natural" (background) with further study of the specific impact of the complex on the environment. The main indicators that may indicate direct contamination of the pig complex, such as nitrates, nitrites, ammonium nitrogen and microbiological studies, do not exceed the normalized values, set for drinking water. In this case, the specific indicators are within normal limits. Petroleum products were not detected in the studied samples |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
5 |
title_short |
Creation of an observation network for assessment of the impact of the pig complex on the groundwater aquifer |
url |
https://doi.org/10.21303/2504-5695.2021.002062 https://doaj.org/article/8621f401179f4e909c81a221ba747919 http://journal.eu-jr.eu/life/article/view/2062 https://doaj.org/toc/2504-5687 https://doaj.org/toc/2504-5695 |
remote_bool |
true |
author2 |
Viktor Maksin |
author2Str |
Viktor Maksin |
ppnlink |
169100880X |
callnumber-subject |
QH - Natural History and Biology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.21303/2504-5695.2021.002062 |
callnumber-a |
QH501-531 |
up_date |
2024-07-04T00:25:23.125Z |
_version_ |
1803606004205617152 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ064804003</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309042313.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.21303/2504-5695.2021.002062</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ064804003</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8621f401179f4e909c81a221ba747919</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH501-531</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Viktoriia Serdiuk</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Creation of an observation network for assessment of the impact of the pig complex on the groundwater aquifer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Ukraine, as a party to the Association Agreement, in accordance with Directive 2000/60/EC of the European Parliament and of the Council, recognizes water as the most expensive resource on our planet, which must be protected and saved. Every country and every inhabitant of the planet must do everything possible to reduce the thoughtless use of water and stop water pollution. The priority is the identification of water users and "polluters", as well as the detection and prevention of pollution of water resources, which includes the identification of water sampling points around potential sources of pollution. The aim of the research is to determine the impact of pig farms on the qualitative and quantitative characteristics of groundwater using existing water intakes to preserve natural water resources from pollution and depletion. An important point for monitoring in this situation is the use of existing water intakes (bores and wells) without additional construction of observation bores and interference in the environment. To complete the study, it is necessary to create an observation (monitoring) network of selected points and establish the frequency of their study. The observation network should determine the level (static and dynamic) as well as the quality of groundwater, which reflects background concentrations (natural or "conditionally natural"). "Conditionally natural" concentrations may indicate an excess of pollutants, associated with anthropogenic impacts that occurred prior to the activities of a particular entity, in respect of which the study is conducted. Given the changes in the quality characteristics of water, caused by external factors, "conditionally natural" concentrations can be taken as background. The obtained information will allow, depending on the quality and quantity of groundwater (their level) to make management decisions on the management of groundwater resources. Groundwater in rural settlements near enterprises is in most cases the only source of water supply. The laboratory analysis of water samples from selected points in 2020 showed an excess of color, odor at 60 °C, turbidity, total iron in bores and wells. The detected elevations are due to the peculiarity of the geological structure (aquifer of Eocene sediments). The excess in the hydrogen index is almost 10 times from the surface water body, which can be taken as "conditionally natural" (background) with further study of the specific impact of the complex on the environment. The main indicators that may indicate direct contamination of the pig complex, such as nitrates, nitrites, ammonium nitrogen and microbiological studies, do not exceed the normalized values, set for drinking water. In this case, the specific indicators are within normal limits. Petroleum products were not detected in the studied samples</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">observation network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">groundwater aquifer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">groundwater level</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">groundwater quality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">impact on groundwater</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Life</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Viktor Maksin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">EUREKA: Life Sciences</subfield><subfield code="d">Scientific Route OÜ, 2020</subfield><subfield code="g">(2021), 5, Seite 35-45</subfield><subfield code="w">(DE-627)169100880X</subfield><subfield code="x">25045695</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2021</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:35-45</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.21303/2504-5695.2021.002062</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8621f401179f4e909c81a221ba747919</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://journal.eu-jr.eu/life/article/view/2062</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2504-5687</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2504-5695</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2021</subfield><subfield code="e">5</subfield><subfield code="h">35-45</subfield></datafield></record></collection>
|
score |
7.402916 |