A Note on Rational Approximation with Respect to Metrizable Compactifications of the Plane
In the present note we examine possible extensions of Runge, Mergelyan and Arakelian Theorems, when the uniform approximation is meant with respect to the metric ρ of a metrizable compactification (S, ρ) of the complex plane C.
Autor*in: |
M. Fragoulopoulou [verfasserIn] V. Nestoridis [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Extracta Mathematicae - University of Extremadura, 2020, 31(2016), 1 |
---|---|
Übergeordnetes Werk: |
volume:31 ; year:2016 ; number:1 |
Links: |
---|
Katalog-ID: |
DOAJ065008804 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ065008804 | ||
003 | DE-627 | ||
005 | 20230309043828.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2016 xx |||||o 00| ||eng c | ||
035 | |a (DE-627)DOAJ065008804 | ||
035 | |a (DE-599)DOAJ648ad2010d324e22a07c33a9eca9fe9a | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA1-939 | |
100 | 0 | |a M. Fragoulopoulou |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Note on Rational Approximation with Respect to Metrizable Compactifications of the Plane |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In the present note we examine possible extensions of Runge, Mergelyan and Arakelian Theorems, when the uniform approximation is meant with respect to the metric ρ of a metrizable compactification (S, ρ) of the complex plane C. | ||
650 | 4 | |a compactification | |
650 | 4 | |a Arakelian’s theorem | |
650 | 4 | |a Mergelyan’s theorem | |
650 | 4 | |a Runge’s theorem | |
650 | 4 | |a uniform approximation in the complex domain. | |
653 | 0 | |a Mathematics | |
700 | 0 | |a V. Nestoridis |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Extracta Mathematicae |d University of Extremadura, 2020 |g 31(2016), 1 |w (DE-627)326973451 |w (DE-600)2043432-7 |x 26055686 |7 nnns |
773 | 1 | 8 | |g volume:31 |g year:2016 |g number:1 |
856 | 4 | 0 | |u https://doaj.org/article/648ad2010d324e22a07c33a9eca9fe9a |z kostenfrei |
856 | 4 | 0 | |u https://publicaciones.unex.es/index.php/EM/article/view/405 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/0213-8743 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2605-5686 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 31 |j 2016 |e 1 |
author_variant |
m f mf v n vn |
---|---|
matchkey_str |
article:26055686:2016----::ntortoaapoiainihepctmtialcma |
hierarchy_sort_str |
2016 |
callnumber-subject-code |
QA |
publishDate |
2016 |
allfields |
(DE-627)DOAJ065008804 (DE-599)DOAJ648ad2010d324e22a07c33a9eca9fe9a DE-627 ger DE-627 rakwb eng QA1-939 M. Fragoulopoulou verfasserin aut A Note on Rational Approximation with Respect to Metrizable Compactifications of the Plane 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the present note we examine possible extensions of Runge, Mergelyan and Arakelian Theorems, when the uniform approximation is meant with respect to the metric ρ of a metrizable compactification (S, ρ) of the complex plane C. compactification Arakelian’s theorem Mergelyan’s theorem Runge’s theorem uniform approximation in the complex domain. Mathematics V. Nestoridis verfasserin aut In Extracta Mathematicae University of Extremadura, 2020 31(2016), 1 (DE-627)326973451 (DE-600)2043432-7 26055686 nnns volume:31 year:2016 number:1 https://doaj.org/article/648ad2010d324e22a07c33a9eca9fe9a kostenfrei https://publicaciones.unex.es/index.php/EM/article/view/405 kostenfrei https://doaj.org/toc/0213-8743 Journal toc kostenfrei https://doaj.org/toc/2605-5686 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 31 2016 1 |
spelling |
(DE-627)DOAJ065008804 (DE-599)DOAJ648ad2010d324e22a07c33a9eca9fe9a DE-627 ger DE-627 rakwb eng QA1-939 M. Fragoulopoulou verfasserin aut A Note on Rational Approximation with Respect to Metrizable Compactifications of the Plane 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the present note we examine possible extensions of Runge, Mergelyan and Arakelian Theorems, when the uniform approximation is meant with respect to the metric ρ of a metrizable compactification (S, ρ) of the complex plane C. compactification Arakelian’s theorem Mergelyan’s theorem Runge’s theorem uniform approximation in the complex domain. Mathematics V. Nestoridis verfasserin aut In Extracta Mathematicae University of Extremadura, 2020 31(2016), 1 (DE-627)326973451 (DE-600)2043432-7 26055686 nnns volume:31 year:2016 number:1 https://doaj.org/article/648ad2010d324e22a07c33a9eca9fe9a kostenfrei https://publicaciones.unex.es/index.php/EM/article/view/405 kostenfrei https://doaj.org/toc/0213-8743 Journal toc kostenfrei https://doaj.org/toc/2605-5686 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 31 2016 1 |
allfields_unstemmed |
(DE-627)DOAJ065008804 (DE-599)DOAJ648ad2010d324e22a07c33a9eca9fe9a DE-627 ger DE-627 rakwb eng QA1-939 M. Fragoulopoulou verfasserin aut A Note on Rational Approximation with Respect to Metrizable Compactifications of the Plane 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the present note we examine possible extensions of Runge, Mergelyan and Arakelian Theorems, when the uniform approximation is meant with respect to the metric ρ of a metrizable compactification (S, ρ) of the complex plane C. compactification Arakelian’s theorem Mergelyan’s theorem Runge’s theorem uniform approximation in the complex domain. Mathematics V. Nestoridis verfasserin aut In Extracta Mathematicae University of Extremadura, 2020 31(2016), 1 (DE-627)326973451 (DE-600)2043432-7 26055686 nnns volume:31 year:2016 number:1 https://doaj.org/article/648ad2010d324e22a07c33a9eca9fe9a kostenfrei https://publicaciones.unex.es/index.php/EM/article/view/405 kostenfrei https://doaj.org/toc/0213-8743 Journal toc kostenfrei https://doaj.org/toc/2605-5686 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 31 2016 1 |
allfieldsGer |
(DE-627)DOAJ065008804 (DE-599)DOAJ648ad2010d324e22a07c33a9eca9fe9a DE-627 ger DE-627 rakwb eng QA1-939 M. Fragoulopoulou verfasserin aut A Note on Rational Approximation with Respect to Metrizable Compactifications of the Plane 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the present note we examine possible extensions of Runge, Mergelyan and Arakelian Theorems, when the uniform approximation is meant with respect to the metric ρ of a metrizable compactification (S, ρ) of the complex plane C. compactification Arakelian’s theorem Mergelyan’s theorem Runge’s theorem uniform approximation in the complex domain. Mathematics V. Nestoridis verfasserin aut In Extracta Mathematicae University of Extremadura, 2020 31(2016), 1 (DE-627)326973451 (DE-600)2043432-7 26055686 nnns volume:31 year:2016 number:1 https://doaj.org/article/648ad2010d324e22a07c33a9eca9fe9a kostenfrei https://publicaciones.unex.es/index.php/EM/article/view/405 kostenfrei https://doaj.org/toc/0213-8743 Journal toc kostenfrei https://doaj.org/toc/2605-5686 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 31 2016 1 |
allfieldsSound |
(DE-627)DOAJ065008804 (DE-599)DOAJ648ad2010d324e22a07c33a9eca9fe9a DE-627 ger DE-627 rakwb eng QA1-939 M. Fragoulopoulou verfasserin aut A Note on Rational Approximation with Respect to Metrizable Compactifications of the Plane 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the present note we examine possible extensions of Runge, Mergelyan and Arakelian Theorems, when the uniform approximation is meant with respect to the metric ρ of a metrizable compactification (S, ρ) of the complex plane C. compactification Arakelian’s theorem Mergelyan’s theorem Runge’s theorem uniform approximation in the complex domain. Mathematics V. Nestoridis verfasserin aut In Extracta Mathematicae University of Extremadura, 2020 31(2016), 1 (DE-627)326973451 (DE-600)2043432-7 26055686 nnns volume:31 year:2016 number:1 https://doaj.org/article/648ad2010d324e22a07c33a9eca9fe9a kostenfrei https://publicaciones.unex.es/index.php/EM/article/view/405 kostenfrei https://doaj.org/toc/0213-8743 Journal toc kostenfrei https://doaj.org/toc/2605-5686 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 31 2016 1 |
language |
English |
source |
In Extracta Mathematicae 31(2016), 1 volume:31 year:2016 number:1 |
sourceStr |
In Extracta Mathematicae 31(2016), 1 volume:31 year:2016 number:1 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
compactification Arakelian’s theorem Mergelyan’s theorem Runge’s theorem uniform approximation in the complex domain. Mathematics |
isfreeaccess_bool |
true |
container_title |
Extracta Mathematicae |
authorswithroles_txt_mv |
M. Fragoulopoulou @@aut@@ V. Nestoridis @@aut@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
326973451 |
id |
DOAJ065008804 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ065008804</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309043828.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ065008804</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ648ad2010d324e22a07c33a9eca9fe9a</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">M. Fragoulopoulou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Note on Rational Approximation with Respect to Metrizable Compactifications of the Plane</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the present note we examine possible extensions of Runge, Mergelyan and Arakelian Theorems, when the uniform approximation is meant with respect to the metric ρ of a metrizable compactification (S, ρ) of the complex plane C.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">compactification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Arakelian’s theorem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mergelyan’s theorem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Runge’s theorem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">uniform approximation in the complex domain.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">V. Nestoridis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Extracta Mathematicae</subfield><subfield code="d">University of Extremadura, 2020</subfield><subfield code="g">31(2016), 1</subfield><subfield code="w">(DE-627)326973451</subfield><subfield code="w">(DE-600)2043432-7</subfield><subfield code="x">26055686</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:31</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/648ad2010d324e22a07c33a9eca9fe9a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://publicaciones.unex.es/index.php/EM/article/view/405</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0213-8743</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2605-5686</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">31</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
M. Fragoulopoulou |
spellingShingle |
M. Fragoulopoulou misc QA1-939 misc compactification misc Arakelian’s theorem misc Mergelyan’s theorem misc Runge’s theorem misc uniform approximation in the complex domain. misc Mathematics A Note on Rational Approximation with Respect to Metrizable Compactifications of the Plane |
authorStr |
M. Fragoulopoulou |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)326973451 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA1-939 |
illustrated |
Not Illustrated |
issn |
26055686 |
topic_title |
QA1-939 A Note on Rational Approximation with Respect to Metrizable Compactifications of the Plane compactification Arakelian’s theorem Mergelyan’s theorem Runge’s theorem uniform approximation in the complex domain |
topic |
misc QA1-939 misc compactification misc Arakelian’s theorem misc Mergelyan’s theorem misc Runge’s theorem misc uniform approximation in the complex domain. misc Mathematics |
topic_unstemmed |
misc QA1-939 misc compactification misc Arakelian’s theorem misc Mergelyan’s theorem misc Runge’s theorem misc uniform approximation in the complex domain. misc Mathematics |
topic_browse |
misc QA1-939 misc compactification misc Arakelian’s theorem misc Mergelyan’s theorem misc Runge’s theorem misc uniform approximation in the complex domain. misc Mathematics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Extracta Mathematicae |
hierarchy_parent_id |
326973451 |
hierarchy_top_title |
Extracta Mathematicae |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)326973451 (DE-600)2043432-7 |
title |
A Note on Rational Approximation with Respect to Metrizable Compactifications of the Plane |
ctrlnum |
(DE-627)DOAJ065008804 (DE-599)DOAJ648ad2010d324e22a07c33a9eca9fe9a |
title_full |
A Note on Rational Approximation with Respect to Metrizable Compactifications of the Plane |
author_sort |
M. Fragoulopoulou |
journal |
Extracta Mathematicae |
journalStr |
Extracta Mathematicae |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
author_browse |
M. Fragoulopoulou V. Nestoridis |
container_volume |
31 |
class |
QA1-939 |
format_se |
Elektronische Aufsätze |
author-letter |
M. Fragoulopoulou |
author2-role |
verfasserin |
title_sort |
note on rational approximation with respect to metrizable compactifications of the plane |
callnumber |
QA1-939 |
title_auth |
A Note on Rational Approximation with Respect to Metrizable Compactifications of the Plane |
abstract |
In the present note we examine possible extensions of Runge, Mergelyan and Arakelian Theorems, when the uniform approximation is meant with respect to the metric ρ of a metrizable compactification (S, ρ) of the complex plane C. |
abstractGer |
In the present note we examine possible extensions of Runge, Mergelyan and Arakelian Theorems, when the uniform approximation is meant with respect to the metric ρ of a metrizable compactification (S, ρ) of the complex plane C. |
abstract_unstemmed |
In the present note we examine possible extensions of Runge, Mergelyan and Arakelian Theorems, when the uniform approximation is meant with respect to the metric ρ of a metrizable compactification (S, ρ) of the complex plane C. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
A Note on Rational Approximation with Respect to Metrizable Compactifications of the Plane |
url |
https://doaj.org/article/648ad2010d324e22a07c33a9eca9fe9a https://publicaciones.unex.es/index.php/EM/article/view/405 https://doaj.org/toc/0213-8743 https://doaj.org/toc/2605-5686 |
remote_bool |
true |
author2 |
V. Nestoridis |
author2Str |
V. Nestoridis |
ppnlink |
326973451 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
callnumber-a |
QA1-939 |
up_date |
2024-07-04T01:09:55.395Z |
_version_ |
1803608806283804672 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ065008804</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309043828.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ065008804</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ648ad2010d324e22a07c33a9eca9fe9a</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">M. Fragoulopoulou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Note on Rational Approximation with Respect to Metrizable Compactifications of the Plane</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the present note we examine possible extensions of Runge, Mergelyan and Arakelian Theorems, when the uniform approximation is meant with respect to the metric ρ of a metrizable compactification (S, ρ) of the complex plane C.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">compactification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Arakelian’s theorem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mergelyan’s theorem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Runge’s theorem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">uniform approximation in the complex domain.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">V. Nestoridis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Extracta Mathematicae</subfield><subfield code="d">University of Extremadura, 2020</subfield><subfield code="g">31(2016), 1</subfield><subfield code="w">(DE-627)326973451</subfield><subfield code="w">(DE-600)2043432-7</subfield><subfield code="x">26055686</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:31</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/648ad2010d324e22a07c33a9eca9fe9a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://publicaciones.unex.es/index.php/EM/article/view/405</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0213-8743</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2605-5686</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">31</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield></datafield></record></collection>
|
score |
7.40226 |