Geochemistry and Acid Hydrometallurgy Accessibility of Uraninite from Mianhuakeng Granite-Hosted Uranium Deposit, South China
Systematic study of the surface chemical properties of uranium minerals is necessary to improve the uranium ore extracting process. The presented work aims to argue geochemistry and acid hydrometallurgy accessibility of uraninite from the Mianhuakeng (MHK) granite-hosted uranium deposit, South China...
Ausführliche Beschreibung
Autor*in: |
Jian Wang [verfasserIn] Zhanxue Sun [verfasserIn] Guangrong Li [verfasserIn] Yajie Liu [verfasserIn] Zhongkui Zhou [verfasserIn] Xuegang Wang [verfasserIn] Zhihong Zheng [verfasserIn] Yipeng Zhou [verfasserIn] Kai Zhao [verfasserIn] Ling Xiang [verfasserIn] Jiaxin Wei [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Minerals - MDPI AG, 2012, 10(2020), 9, p 747 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2020 ; number:9, p 747 |
Links: |
---|
DOI / URN: |
10.3390/min10090747 |
---|
Katalog-ID: |
DOAJ065285328 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ065285328 | ||
003 | DE-627 | ||
005 | 20240412215326.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/min10090747 |2 doi | |
035 | |a (DE-627)DOAJ065285328 | ||
035 | |a (DE-599)DOAJ3931d431deb7416daf77291204c9bd2e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QE351-399.2 | |
100 | 0 | |a Jian Wang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Geochemistry and Acid Hydrometallurgy Accessibility of Uraninite from Mianhuakeng Granite-Hosted Uranium Deposit, South China |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Systematic study of the surface chemical properties of uranium minerals is necessary to improve the uranium ore extracting process. The presented work aims to argue geochemistry and acid hydrometallurgy accessibility of uraninite from the Mianhuakeng (MHK) granite-hosted uranium deposit, South China, which provides insight on this ore extracting domain. Mineralogy, geochemical composition, U–Th–Pb chemical age, and uranium deportment of the uraninite were systematically analyzed by using scanning electron microscope with energy dispersion spectrum (SEM-EDS), an electron probe microanalyzer (EPMA), and x-ray photoelectron spectroscopy (XPS). The results showed that uraninite was intergrowth with coffinite, probably due to uraninite being partly metasomatized into coffinite along the fissures. The major element content of uraninite such as for UO<sub<2</sub<, SiO<sub<2</sub<, and CaO were 79.46 ± 2.03 wt%, 6.19 ± 1.36 wt%, and 5.09 ± 0.80 wt%, respectively. Single-point U–Th–Pb chemical ages for uraninite grains were calculated with the EPMA data, and the results showed ages ranging from a few million to dozens of million years, indicating Pb loss after uraninite formed. Uranium deportment in uraninite generally existed in the forms of UO<sub<2</sub<, U<sub<3</sub<O<sub<8</sub<, and UO<sub<3</sub<, and mostly showed high valence states suggested by XPS. Uranium on the surface of the uraninite grain was partially oxidized by sulfuric acid leaching, which led to tetravalent uranium converting to hexavalent uranium, suggesting uraninite in the MHK uranium deposit is accessible to be leached by sulfuric acid. | ||
650 | 4 | |a uraninite | |
650 | 4 | |a geochemical composition | |
650 | 4 | |a uranium valence | |
650 | 4 | |a acid hydrometallurgy | |
650 | 4 | |a Mianhuakeng uranium deposit | |
653 | 0 | |a Mineralogy | |
700 | 0 | |a Zhanxue Sun |e verfasserin |4 aut | |
700 | 0 | |a Guangrong Li |e verfasserin |4 aut | |
700 | 0 | |a Yajie Liu |e verfasserin |4 aut | |
700 | 0 | |a Zhongkui Zhou |e verfasserin |4 aut | |
700 | 0 | |a Xuegang Wang |e verfasserin |4 aut | |
700 | 0 | |a Zhihong Zheng |e verfasserin |4 aut | |
700 | 0 | |a Yipeng Zhou |e verfasserin |4 aut | |
700 | 0 | |a Kai Zhao |e verfasserin |4 aut | |
700 | 0 | |a Ling Xiang |e verfasserin |4 aut | |
700 | 0 | |a Jiaxin Wei |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Minerals |d MDPI AG, 2012 |g 10(2020), 9, p 747 |w (DE-627)689132069 |w (DE-600)2655947-X |x 2075163X |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2020 |g number:9, p 747 |
856 | 4 | 0 | |u https://doi.org/10.3390/min10090747 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/3931d431deb7416daf77291204c9bd2e |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2075-163X/10/9/747 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2075-163X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2020 |e 9, p 747 |
author_variant |
j w jw z s zs g l gl y l yl z z zz x w xw z z zz y z yz k z kz l x lx j w jw |
---|---|
matchkey_str |
article:2075163X:2020----::eceitynaihdoealrycesbltouaiierminukngaie |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
QE |
publishDate |
2020 |
allfields |
10.3390/min10090747 doi (DE-627)DOAJ065285328 (DE-599)DOAJ3931d431deb7416daf77291204c9bd2e DE-627 ger DE-627 rakwb eng QE351-399.2 Jian Wang verfasserin aut Geochemistry and Acid Hydrometallurgy Accessibility of Uraninite from Mianhuakeng Granite-Hosted Uranium Deposit, South China 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Systematic study of the surface chemical properties of uranium minerals is necessary to improve the uranium ore extracting process. The presented work aims to argue geochemistry and acid hydrometallurgy accessibility of uraninite from the Mianhuakeng (MHK) granite-hosted uranium deposit, South China, which provides insight on this ore extracting domain. Mineralogy, geochemical composition, U–Th–Pb chemical age, and uranium deportment of the uraninite were systematically analyzed by using scanning electron microscope with energy dispersion spectrum (SEM-EDS), an electron probe microanalyzer (EPMA), and x-ray photoelectron spectroscopy (XPS). The results showed that uraninite was intergrowth with coffinite, probably due to uraninite being partly metasomatized into coffinite along the fissures. The major element content of uraninite such as for UO<sub<2</sub<, SiO<sub<2</sub<, and CaO were 79.46 ± 2.03 wt%, 6.19 ± 1.36 wt%, and 5.09 ± 0.80 wt%, respectively. Single-point U–Th–Pb chemical ages for uraninite grains were calculated with the EPMA data, and the results showed ages ranging from a few million to dozens of million years, indicating Pb loss after uraninite formed. Uranium deportment in uraninite generally existed in the forms of UO<sub<2</sub<, U<sub<3</sub<O<sub<8</sub<, and UO<sub<3</sub<, and mostly showed high valence states suggested by XPS. Uranium on the surface of the uraninite grain was partially oxidized by sulfuric acid leaching, which led to tetravalent uranium converting to hexavalent uranium, suggesting uraninite in the MHK uranium deposit is accessible to be leached by sulfuric acid. uraninite geochemical composition uranium valence acid hydrometallurgy Mianhuakeng uranium deposit Mineralogy Zhanxue Sun verfasserin aut Guangrong Li verfasserin aut Yajie Liu verfasserin aut Zhongkui Zhou verfasserin aut Xuegang Wang verfasserin aut Zhihong Zheng verfasserin aut Yipeng Zhou verfasserin aut Kai Zhao verfasserin aut Ling Xiang verfasserin aut Jiaxin Wei verfasserin aut In Minerals MDPI AG, 2012 10(2020), 9, p 747 (DE-627)689132069 (DE-600)2655947-X 2075163X nnns volume:10 year:2020 number:9, p 747 https://doi.org/10.3390/min10090747 kostenfrei https://doaj.org/article/3931d431deb7416daf77291204c9bd2e kostenfrei https://www.mdpi.com/2075-163X/10/9/747 kostenfrei https://doaj.org/toc/2075-163X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 9, p 747 |
spelling |
10.3390/min10090747 doi (DE-627)DOAJ065285328 (DE-599)DOAJ3931d431deb7416daf77291204c9bd2e DE-627 ger DE-627 rakwb eng QE351-399.2 Jian Wang verfasserin aut Geochemistry and Acid Hydrometallurgy Accessibility of Uraninite from Mianhuakeng Granite-Hosted Uranium Deposit, South China 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Systematic study of the surface chemical properties of uranium minerals is necessary to improve the uranium ore extracting process. The presented work aims to argue geochemistry and acid hydrometallurgy accessibility of uraninite from the Mianhuakeng (MHK) granite-hosted uranium deposit, South China, which provides insight on this ore extracting domain. Mineralogy, geochemical composition, U–Th–Pb chemical age, and uranium deportment of the uraninite were systematically analyzed by using scanning electron microscope with energy dispersion spectrum (SEM-EDS), an electron probe microanalyzer (EPMA), and x-ray photoelectron spectroscopy (XPS). The results showed that uraninite was intergrowth with coffinite, probably due to uraninite being partly metasomatized into coffinite along the fissures. The major element content of uraninite such as for UO<sub<2</sub<, SiO<sub<2</sub<, and CaO were 79.46 ± 2.03 wt%, 6.19 ± 1.36 wt%, and 5.09 ± 0.80 wt%, respectively. Single-point U–Th–Pb chemical ages for uraninite grains were calculated with the EPMA data, and the results showed ages ranging from a few million to dozens of million years, indicating Pb loss after uraninite formed. Uranium deportment in uraninite generally existed in the forms of UO<sub<2</sub<, U<sub<3</sub<O<sub<8</sub<, and UO<sub<3</sub<, and mostly showed high valence states suggested by XPS. Uranium on the surface of the uraninite grain was partially oxidized by sulfuric acid leaching, which led to tetravalent uranium converting to hexavalent uranium, suggesting uraninite in the MHK uranium deposit is accessible to be leached by sulfuric acid. uraninite geochemical composition uranium valence acid hydrometallurgy Mianhuakeng uranium deposit Mineralogy Zhanxue Sun verfasserin aut Guangrong Li verfasserin aut Yajie Liu verfasserin aut Zhongkui Zhou verfasserin aut Xuegang Wang verfasserin aut Zhihong Zheng verfasserin aut Yipeng Zhou verfasserin aut Kai Zhao verfasserin aut Ling Xiang verfasserin aut Jiaxin Wei verfasserin aut In Minerals MDPI AG, 2012 10(2020), 9, p 747 (DE-627)689132069 (DE-600)2655947-X 2075163X nnns volume:10 year:2020 number:9, p 747 https://doi.org/10.3390/min10090747 kostenfrei https://doaj.org/article/3931d431deb7416daf77291204c9bd2e kostenfrei https://www.mdpi.com/2075-163X/10/9/747 kostenfrei https://doaj.org/toc/2075-163X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 9, p 747 |
allfields_unstemmed |
10.3390/min10090747 doi (DE-627)DOAJ065285328 (DE-599)DOAJ3931d431deb7416daf77291204c9bd2e DE-627 ger DE-627 rakwb eng QE351-399.2 Jian Wang verfasserin aut Geochemistry and Acid Hydrometallurgy Accessibility of Uraninite from Mianhuakeng Granite-Hosted Uranium Deposit, South China 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Systematic study of the surface chemical properties of uranium minerals is necessary to improve the uranium ore extracting process. The presented work aims to argue geochemistry and acid hydrometallurgy accessibility of uraninite from the Mianhuakeng (MHK) granite-hosted uranium deposit, South China, which provides insight on this ore extracting domain. Mineralogy, geochemical composition, U–Th–Pb chemical age, and uranium deportment of the uraninite were systematically analyzed by using scanning electron microscope with energy dispersion spectrum (SEM-EDS), an electron probe microanalyzer (EPMA), and x-ray photoelectron spectroscopy (XPS). The results showed that uraninite was intergrowth with coffinite, probably due to uraninite being partly metasomatized into coffinite along the fissures. The major element content of uraninite such as for UO<sub<2</sub<, SiO<sub<2</sub<, and CaO were 79.46 ± 2.03 wt%, 6.19 ± 1.36 wt%, and 5.09 ± 0.80 wt%, respectively. Single-point U–Th–Pb chemical ages for uraninite grains were calculated with the EPMA data, and the results showed ages ranging from a few million to dozens of million years, indicating Pb loss after uraninite formed. Uranium deportment in uraninite generally existed in the forms of UO<sub<2</sub<, U<sub<3</sub<O<sub<8</sub<, and UO<sub<3</sub<, and mostly showed high valence states suggested by XPS. Uranium on the surface of the uraninite grain was partially oxidized by sulfuric acid leaching, which led to tetravalent uranium converting to hexavalent uranium, suggesting uraninite in the MHK uranium deposit is accessible to be leached by sulfuric acid. uraninite geochemical composition uranium valence acid hydrometallurgy Mianhuakeng uranium deposit Mineralogy Zhanxue Sun verfasserin aut Guangrong Li verfasserin aut Yajie Liu verfasserin aut Zhongkui Zhou verfasserin aut Xuegang Wang verfasserin aut Zhihong Zheng verfasserin aut Yipeng Zhou verfasserin aut Kai Zhao verfasserin aut Ling Xiang verfasserin aut Jiaxin Wei verfasserin aut In Minerals MDPI AG, 2012 10(2020), 9, p 747 (DE-627)689132069 (DE-600)2655947-X 2075163X nnns volume:10 year:2020 number:9, p 747 https://doi.org/10.3390/min10090747 kostenfrei https://doaj.org/article/3931d431deb7416daf77291204c9bd2e kostenfrei https://www.mdpi.com/2075-163X/10/9/747 kostenfrei https://doaj.org/toc/2075-163X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 9, p 747 |
allfieldsGer |
10.3390/min10090747 doi (DE-627)DOAJ065285328 (DE-599)DOAJ3931d431deb7416daf77291204c9bd2e DE-627 ger DE-627 rakwb eng QE351-399.2 Jian Wang verfasserin aut Geochemistry and Acid Hydrometallurgy Accessibility of Uraninite from Mianhuakeng Granite-Hosted Uranium Deposit, South China 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Systematic study of the surface chemical properties of uranium minerals is necessary to improve the uranium ore extracting process. The presented work aims to argue geochemistry and acid hydrometallurgy accessibility of uraninite from the Mianhuakeng (MHK) granite-hosted uranium deposit, South China, which provides insight on this ore extracting domain. Mineralogy, geochemical composition, U–Th–Pb chemical age, and uranium deportment of the uraninite were systematically analyzed by using scanning electron microscope with energy dispersion spectrum (SEM-EDS), an electron probe microanalyzer (EPMA), and x-ray photoelectron spectroscopy (XPS). The results showed that uraninite was intergrowth with coffinite, probably due to uraninite being partly metasomatized into coffinite along the fissures. The major element content of uraninite such as for UO<sub<2</sub<, SiO<sub<2</sub<, and CaO were 79.46 ± 2.03 wt%, 6.19 ± 1.36 wt%, and 5.09 ± 0.80 wt%, respectively. Single-point U–Th–Pb chemical ages for uraninite grains were calculated with the EPMA data, and the results showed ages ranging from a few million to dozens of million years, indicating Pb loss after uraninite formed. Uranium deportment in uraninite generally existed in the forms of UO<sub<2</sub<, U<sub<3</sub<O<sub<8</sub<, and UO<sub<3</sub<, and mostly showed high valence states suggested by XPS. Uranium on the surface of the uraninite grain was partially oxidized by sulfuric acid leaching, which led to tetravalent uranium converting to hexavalent uranium, suggesting uraninite in the MHK uranium deposit is accessible to be leached by sulfuric acid. uraninite geochemical composition uranium valence acid hydrometallurgy Mianhuakeng uranium deposit Mineralogy Zhanxue Sun verfasserin aut Guangrong Li verfasserin aut Yajie Liu verfasserin aut Zhongkui Zhou verfasserin aut Xuegang Wang verfasserin aut Zhihong Zheng verfasserin aut Yipeng Zhou verfasserin aut Kai Zhao verfasserin aut Ling Xiang verfasserin aut Jiaxin Wei verfasserin aut In Minerals MDPI AG, 2012 10(2020), 9, p 747 (DE-627)689132069 (DE-600)2655947-X 2075163X nnns volume:10 year:2020 number:9, p 747 https://doi.org/10.3390/min10090747 kostenfrei https://doaj.org/article/3931d431deb7416daf77291204c9bd2e kostenfrei https://www.mdpi.com/2075-163X/10/9/747 kostenfrei https://doaj.org/toc/2075-163X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 9, p 747 |
allfieldsSound |
10.3390/min10090747 doi (DE-627)DOAJ065285328 (DE-599)DOAJ3931d431deb7416daf77291204c9bd2e DE-627 ger DE-627 rakwb eng QE351-399.2 Jian Wang verfasserin aut Geochemistry and Acid Hydrometallurgy Accessibility of Uraninite from Mianhuakeng Granite-Hosted Uranium Deposit, South China 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Systematic study of the surface chemical properties of uranium minerals is necessary to improve the uranium ore extracting process. The presented work aims to argue geochemistry and acid hydrometallurgy accessibility of uraninite from the Mianhuakeng (MHK) granite-hosted uranium deposit, South China, which provides insight on this ore extracting domain. Mineralogy, geochemical composition, U–Th–Pb chemical age, and uranium deportment of the uraninite were systematically analyzed by using scanning electron microscope with energy dispersion spectrum (SEM-EDS), an electron probe microanalyzer (EPMA), and x-ray photoelectron spectroscopy (XPS). The results showed that uraninite was intergrowth with coffinite, probably due to uraninite being partly metasomatized into coffinite along the fissures. The major element content of uraninite such as for UO<sub<2</sub<, SiO<sub<2</sub<, and CaO were 79.46 ± 2.03 wt%, 6.19 ± 1.36 wt%, and 5.09 ± 0.80 wt%, respectively. Single-point U–Th–Pb chemical ages for uraninite grains were calculated with the EPMA data, and the results showed ages ranging from a few million to dozens of million years, indicating Pb loss after uraninite formed. Uranium deportment in uraninite generally existed in the forms of UO<sub<2</sub<, U<sub<3</sub<O<sub<8</sub<, and UO<sub<3</sub<, and mostly showed high valence states suggested by XPS. Uranium on the surface of the uraninite grain was partially oxidized by sulfuric acid leaching, which led to tetravalent uranium converting to hexavalent uranium, suggesting uraninite in the MHK uranium deposit is accessible to be leached by sulfuric acid. uraninite geochemical composition uranium valence acid hydrometallurgy Mianhuakeng uranium deposit Mineralogy Zhanxue Sun verfasserin aut Guangrong Li verfasserin aut Yajie Liu verfasserin aut Zhongkui Zhou verfasserin aut Xuegang Wang verfasserin aut Zhihong Zheng verfasserin aut Yipeng Zhou verfasserin aut Kai Zhao verfasserin aut Ling Xiang verfasserin aut Jiaxin Wei verfasserin aut In Minerals MDPI AG, 2012 10(2020), 9, p 747 (DE-627)689132069 (DE-600)2655947-X 2075163X nnns volume:10 year:2020 number:9, p 747 https://doi.org/10.3390/min10090747 kostenfrei https://doaj.org/article/3931d431deb7416daf77291204c9bd2e kostenfrei https://www.mdpi.com/2075-163X/10/9/747 kostenfrei https://doaj.org/toc/2075-163X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 9, p 747 |
language |
English |
source |
In Minerals 10(2020), 9, p 747 volume:10 year:2020 number:9, p 747 |
sourceStr |
In Minerals 10(2020), 9, p 747 volume:10 year:2020 number:9, p 747 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
uraninite geochemical composition uranium valence acid hydrometallurgy Mianhuakeng uranium deposit Mineralogy |
isfreeaccess_bool |
true |
container_title |
Minerals |
authorswithroles_txt_mv |
Jian Wang @@aut@@ Zhanxue Sun @@aut@@ Guangrong Li @@aut@@ Yajie Liu @@aut@@ Zhongkui Zhou @@aut@@ Xuegang Wang @@aut@@ Zhihong Zheng @@aut@@ Yipeng Zhou @@aut@@ Kai Zhao @@aut@@ Ling Xiang @@aut@@ Jiaxin Wei @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
689132069 |
id |
DOAJ065285328 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ065285328</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412215326.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/min10090747</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ065285328</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3931d431deb7416daf77291204c9bd2e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QE351-399.2</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jian Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geochemistry and Acid Hydrometallurgy Accessibility of Uraninite from Mianhuakeng Granite-Hosted Uranium Deposit, South China</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Systematic study of the surface chemical properties of uranium minerals is necessary to improve the uranium ore extracting process. The presented work aims to argue geochemistry and acid hydrometallurgy accessibility of uraninite from the Mianhuakeng (MHK) granite-hosted uranium deposit, South China, which provides insight on this ore extracting domain. Mineralogy, geochemical composition, U–Th–Pb chemical age, and uranium deportment of the uraninite were systematically analyzed by using scanning electron microscope with energy dispersion spectrum (SEM-EDS), an electron probe microanalyzer (EPMA), and x-ray photoelectron spectroscopy (XPS). The results showed that uraninite was intergrowth with coffinite, probably due to uraninite being partly metasomatized into coffinite along the fissures. The major element content of uraninite such as for UO<sub<2</sub<, SiO<sub<2</sub<, and CaO were 79.46 ± 2.03 wt%, 6.19 ± 1.36 wt%, and 5.09 ± 0.80 wt%, respectively. Single-point U–Th–Pb chemical ages for uraninite grains were calculated with the EPMA data, and the results showed ages ranging from a few million to dozens of million years, indicating Pb loss after uraninite formed. Uranium deportment in uraninite generally existed in the forms of UO<sub<2</sub<, U<sub<3</sub<O<sub<8</sub<, and UO<sub<3</sub<, and mostly showed high valence states suggested by XPS. Uranium on the surface of the uraninite grain was partially oxidized by sulfuric acid leaching, which led to tetravalent uranium converting to hexavalent uranium, suggesting uraninite in the MHK uranium deposit is accessible to be leached by sulfuric acid.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">uraninite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">geochemical composition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">uranium valence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">acid hydrometallurgy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mianhuakeng uranium deposit</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mineralogy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhanxue Sun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guangrong Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yajie Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhongkui Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xuegang Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhihong Zheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yipeng Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kai Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ling Xiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiaxin Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Minerals</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">10(2020), 9, p 747</subfield><subfield code="w">(DE-627)689132069</subfield><subfield code="w">(DE-600)2655947-X</subfield><subfield code="x">2075163X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:9, p 747</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/min10090747</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3931d431deb7416daf77291204c9bd2e</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-163X/10/9/747</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-163X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2020</subfield><subfield code="e">9, p 747</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Jian Wang |
spellingShingle |
Jian Wang misc QE351-399.2 misc uraninite misc geochemical composition misc uranium valence misc acid hydrometallurgy misc Mianhuakeng uranium deposit misc Mineralogy Geochemistry and Acid Hydrometallurgy Accessibility of Uraninite from Mianhuakeng Granite-Hosted Uranium Deposit, South China |
authorStr |
Jian Wang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)689132069 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QE351-399 |
illustrated |
Not Illustrated |
issn |
2075163X |
topic_title |
QE351-399.2 Geochemistry and Acid Hydrometallurgy Accessibility of Uraninite from Mianhuakeng Granite-Hosted Uranium Deposit, South China uraninite geochemical composition uranium valence acid hydrometallurgy Mianhuakeng uranium deposit |
topic |
misc QE351-399.2 misc uraninite misc geochemical composition misc uranium valence misc acid hydrometallurgy misc Mianhuakeng uranium deposit misc Mineralogy |
topic_unstemmed |
misc QE351-399.2 misc uraninite misc geochemical composition misc uranium valence misc acid hydrometallurgy misc Mianhuakeng uranium deposit misc Mineralogy |
topic_browse |
misc QE351-399.2 misc uraninite misc geochemical composition misc uranium valence misc acid hydrometallurgy misc Mianhuakeng uranium deposit misc Mineralogy |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Minerals |
hierarchy_parent_id |
689132069 |
hierarchy_top_title |
Minerals |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)689132069 (DE-600)2655947-X |
title |
Geochemistry and Acid Hydrometallurgy Accessibility of Uraninite from Mianhuakeng Granite-Hosted Uranium Deposit, South China |
ctrlnum |
(DE-627)DOAJ065285328 (DE-599)DOAJ3931d431deb7416daf77291204c9bd2e |
title_full |
Geochemistry and Acid Hydrometallurgy Accessibility of Uraninite from Mianhuakeng Granite-Hosted Uranium Deposit, South China |
author_sort |
Jian Wang |
journal |
Minerals |
journalStr |
Minerals |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Jian Wang Zhanxue Sun Guangrong Li Yajie Liu Zhongkui Zhou Xuegang Wang Zhihong Zheng Yipeng Zhou Kai Zhao Ling Xiang Jiaxin Wei |
container_volume |
10 |
class |
QE351-399.2 |
format_se |
Elektronische Aufsätze |
author-letter |
Jian Wang |
doi_str_mv |
10.3390/min10090747 |
author2-role |
verfasserin |
title_sort |
geochemistry and acid hydrometallurgy accessibility of uraninite from mianhuakeng granite-hosted uranium deposit, south china |
callnumber |
QE351-399.2 |
title_auth |
Geochemistry and Acid Hydrometallurgy Accessibility of Uraninite from Mianhuakeng Granite-Hosted Uranium Deposit, South China |
abstract |
Systematic study of the surface chemical properties of uranium minerals is necessary to improve the uranium ore extracting process. The presented work aims to argue geochemistry and acid hydrometallurgy accessibility of uraninite from the Mianhuakeng (MHK) granite-hosted uranium deposit, South China, which provides insight on this ore extracting domain. Mineralogy, geochemical composition, U–Th–Pb chemical age, and uranium deportment of the uraninite were systematically analyzed by using scanning electron microscope with energy dispersion spectrum (SEM-EDS), an electron probe microanalyzer (EPMA), and x-ray photoelectron spectroscopy (XPS). The results showed that uraninite was intergrowth with coffinite, probably due to uraninite being partly metasomatized into coffinite along the fissures. The major element content of uraninite such as for UO<sub<2</sub<, SiO<sub<2</sub<, and CaO were 79.46 ± 2.03 wt%, 6.19 ± 1.36 wt%, and 5.09 ± 0.80 wt%, respectively. Single-point U–Th–Pb chemical ages for uraninite grains were calculated with the EPMA data, and the results showed ages ranging from a few million to dozens of million years, indicating Pb loss after uraninite formed. Uranium deportment in uraninite generally existed in the forms of UO<sub<2</sub<, U<sub<3</sub<O<sub<8</sub<, and UO<sub<3</sub<, and mostly showed high valence states suggested by XPS. Uranium on the surface of the uraninite grain was partially oxidized by sulfuric acid leaching, which led to tetravalent uranium converting to hexavalent uranium, suggesting uraninite in the MHK uranium deposit is accessible to be leached by sulfuric acid. |
abstractGer |
Systematic study of the surface chemical properties of uranium minerals is necessary to improve the uranium ore extracting process. The presented work aims to argue geochemistry and acid hydrometallurgy accessibility of uraninite from the Mianhuakeng (MHK) granite-hosted uranium deposit, South China, which provides insight on this ore extracting domain. Mineralogy, geochemical composition, U–Th–Pb chemical age, and uranium deportment of the uraninite were systematically analyzed by using scanning electron microscope with energy dispersion spectrum (SEM-EDS), an electron probe microanalyzer (EPMA), and x-ray photoelectron spectroscopy (XPS). The results showed that uraninite was intergrowth with coffinite, probably due to uraninite being partly metasomatized into coffinite along the fissures. The major element content of uraninite such as for UO<sub<2</sub<, SiO<sub<2</sub<, and CaO were 79.46 ± 2.03 wt%, 6.19 ± 1.36 wt%, and 5.09 ± 0.80 wt%, respectively. Single-point U–Th–Pb chemical ages for uraninite grains were calculated with the EPMA data, and the results showed ages ranging from a few million to dozens of million years, indicating Pb loss after uraninite formed. Uranium deportment in uraninite generally existed in the forms of UO<sub<2</sub<, U<sub<3</sub<O<sub<8</sub<, and UO<sub<3</sub<, and mostly showed high valence states suggested by XPS. Uranium on the surface of the uraninite grain was partially oxidized by sulfuric acid leaching, which led to tetravalent uranium converting to hexavalent uranium, suggesting uraninite in the MHK uranium deposit is accessible to be leached by sulfuric acid. |
abstract_unstemmed |
Systematic study of the surface chemical properties of uranium minerals is necessary to improve the uranium ore extracting process. The presented work aims to argue geochemistry and acid hydrometallurgy accessibility of uraninite from the Mianhuakeng (MHK) granite-hosted uranium deposit, South China, which provides insight on this ore extracting domain. Mineralogy, geochemical composition, U–Th–Pb chemical age, and uranium deportment of the uraninite were systematically analyzed by using scanning electron microscope with energy dispersion spectrum (SEM-EDS), an electron probe microanalyzer (EPMA), and x-ray photoelectron spectroscopy (XPS). The results showed that uraninite was intergrowth with coffinite, probably due to uraninite being partly metasomatized into coffinite along the fissures. The major element content of uraninite such as for UO<sub<2</sub<, SiO<sub<2</sub<, and CaO were 79.46 ± 2.03 wt%, 6.19 ± 1.36 wt%, and 5.09 ± 0.80 wt%, respectively. Single-point U–Th–Pb chemical ages for uraninite grains were calculated with the EPMA data, and the results showed ages ranging from a few million to dozens of million years, indicating Pb loss after uraninite formed. Uranium deportment in uraninite generally existed in the forms of UO<sub<2</sub<, U<sub<3</sub<O<sub<8</sub<, and UO<sub<3</sub<, and mostly showed high valence states suggested by XPS. Uranium on the surface of the uraninite grain was partially oxidized by sulfuric acid leaching, which led to tetravalent uranium converting to hexavalent uranium, suggesting uraninite in the MHK uranium deposit is accessible to be leached by sulfuric acid. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
9, p 747 |
title_short |
Geochemistry and Acid Hydrometallurgy Accessibility of Uraninite from Mianhuakeng Granite-Hosted Uranium Deposit, South China |
url |
https://doi.org/10.3390/min10090747 https://doaj.org/article/3931d431deb7416daf77291204c9bd2e https://www.mdpi.com/2075-163X/10/9/747 https://doaj.org/toc/2075-163X |
remote_bool |
true |
author2 |
Zhanxue Sun Guangrong Li Yajie Liu Zhongkui Zhou Xuegang Wang Zhihong Zheng Yipeng Zhou Kai Zhao Ling Xiang Jiaxin Wei |
author2Str |
Zhanxue Sun Guangrong Li Yajie Liu Zhongkui Zhou Xuegang Wang Zhihong Zheng Yipeng Zhou Kai Zhao Ling Xiang Jiaxin Wei |
ppnlink |
689132069 |
callnumber-subject |
QE - Geology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/min10090747 |
callnumber-a |
QE351-399.2 |
up_date |
2024-07-03T13:58:15.890Z |
_version_ |
1803566549192146944 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ065285328</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412215326.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/min10090747</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ065285328</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3931d431deb7416daf77291204c9bd2e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QE351-399.2</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jian Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geochemistry and Acid Hydrometallurgy Accessibility of Uraninite from Mianhuakeng Granite-Hosted Uranium Deposit, South China</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Systematic study of the surface chemical properties of uranium minerals is necessary to improve the uranium ore extracting process. The presented work aims to argue geochemistry and acid hydrometallurgy accessibility of uraninite from the Mianhuakeng (MHK) granite-hosted uranium deposit, South China, which provides insight on this ore extracting domain. Mineralogy, geochemical composition, U–Th–Pb chemical age, and uranium deportment of the uraninite were systematically analyzed by using scanning electron microscope with energy dispersion spectrum (SEM-EDS), an electron probe microanalyzer (EPMA), and x-ray photoelectron spectroscopy (XPS). The results showed that uraninite was intergrowth with coffinite, probably due to uraninite being partly metasomatized into coffinite along the fissures. The major element content of uraninite such as for UO<sub<2</sub<, SiO<sub<2</sub<, and CaO were 79.46 ± 2.03 wt%, 6.19 ± 1.36 wt%, and 5.09 ± 0.80 wt%, respectively. Single-point U–Th–Pb chemical ages for uraninite grains were calculated with the EPMA data, and the results showed ages ranging from a few million to dozens of million years, indicating Pb loss after uraninite formed. Uranium deportment in uraninite generally existed in the forms of UO<sub<2</sub<, U<sub<3</sub<O<sub<8</sub<, and UO<sub<3</sub<, and mostly showed high valence states suggested by XPS. Uranium on the surface of the uraninite grain was partially oxidized by sulfuric acid leaching, which led to tetravalent uranium converting to hexavalent uranium, suggesting uraninite in the MHK uranium deposit is accessible to be leached by sulfuric acid.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">uraninite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">geochemical composition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">uranium valence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">acid hydrometallurgy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mianhuakeng uranium deposit</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mineralogy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhanxue Sun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guangrong Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yajie Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhongkui Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xuegang Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhihong Zheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yipeng Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kai Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ling Xiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiaxin Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Minerals</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">10(2020), 9, p 747</subfield><subfield code="w">(DE-627)689132069</subfield><subfield code="w">(DE-600)2655947-X</subfield><subfield code="x">2075163X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:9, p 747</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/min10090747</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3931d431deb7416daf77291204c9bd2e</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-163X/10/9/747</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-163X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2020</subfield><subfield code="e">9, p 747</subfield></datafield></record></collection>
|
score |
7.4025745 |