Crash Distribution Dataset: Development and Validation for the Undivided Rural Roads in Oromia, Ethiopia
Predicting the number of crashes that may occur as a result of specific highway features is critical in evaluating different treatment or design alternatives. Since different highway geometric characteristics can influence crash distribution datasets, Highway Safety Manual’s (HSM’s) predictive metho...
Ausführliche Beschreibung
Autor*in: |
Tola Alamirew Mulugeta [verfasserIn] Demissie Tamene Adugna [verfasserIn] Saathoff Fokke [verfasserIn] Gebissa Alemayehu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Transport and Telecommunication - Sciendo, 2012, 23(2022), 1, Seite 11-24 |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:2022 ; number:1 ; pages:11-24 |
Links: |
---|
DOI / URN: |
10.2478/ttj-2022-0002 |
---|
Katalog-ID: |
DOAJ065417100 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ065417100 | ||
003 | DE-627 | ||
005 | 20230502134504.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.2478/ttj-2022-0002 |2 doi | |
035 | |a (DE-627)DOAJ065417100 | ||
035 | |a (DE-599)DOAJ6fe4b415563542e5a0f3b4634c380de6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a K4011-4343 | |
100 | 0 | |a Tola Alamirew Mulugeta |e verfasserin |4 aut | |
245 | 1 | 0 | |a Crash Distribution Dataset: Development and Validation for the Undivided Rural Roads in Oromia, Ethiopia |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Predicting the number of crashes that may occur as a result of specific highway features is critical in evaluating different treatment or design alternatives. Since different highway geometric characteristics can influence crash distribution datasets, Highway Safety Manual’s (HSM’s) predictive method encourages users to predict crashes based on their severity and collision type proportions. This study used crash data from rural two-way two-lane road segments in the Oromia region over seven years to develop Oromia’s fixed crash distribution dataset on Interactive Highway Safety Design Model (IHSDM) software. The crash distribution dataset has two parts; the crash severity proportions and the collision type percentages. The developed Oromia’s fixed crash distribution dataset was compared and validated against the default HSM crash configuration. As a result, the Crash Prediction Model (CPM) evaluation results confirmed that the developed crash severity proportion (the first part of the crash distribution dataset) estimates are more accurate and closer to the observed values. Furthermore, the findings show that crashes in the Oromia region are severer than in the states where the HSM crash configuration was developed. According to the second part of the crash distribution dataset evaluation (collision type percentage), the developed fixed crash distribution dataset outperforms the default HSM configuration in most collision type proportions, but not in all. For instance, from the ten collision type proportions developed, Right-Angle and sides-wipe collision proportions are predicted more precisely by the default HSM configuration. This points to the need for developing collision type proportion (the second part of the crash distribution dataset) as a function rather than a fixed configuration for a better result, based on the availability of complete crash data (i.e. crash location). In general, the study revealed that in order to exploit the full potential of HSM’s predictive approach, researchers must develop a jurisdiction crash distribution dataset using local crash data. The methodology demonstrated in this study to develop the jurisdiction’s crash distribution dataset has been validated as true thus, safety practitioners are encouraged to adopt it. | ||
650 | 4 | |a crash distribution dataset | |
650 | 4 | |a crash prediction model | |
650 | 4 | |a hsm | |
650 | 4 | |a ihsdm | |
650 | 4 | |a oromia | |
650 | 4 | |a rural roads | |
653 | 0 | |a Transportation and communication | |
700 | 0 | |a Demissie Tamene Adugna |e verfasserin |4 aut | |
700 | 0 | |a Saathoff Fokke |e verfasserin |4 aut | |
700 | 0 | |a Gebissa Alemayehu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Transport and Telecommunication |d Sciendo, 2012 |g 23(2022), 1, Seite 11-24 |w (DE-627)722237057 |w (DE-600)2677597-9 |x 14076179 |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:2022 |g number:1 |g pages:11-24 |
856 | 4 | 0 | |u https://doi.org/10.2478/ttj-2022-0002 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/6fe4b415563542e5a0f3b4634c380de6 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.2478/ttj-2022-0002 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1407-6179 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 23 |j 2022 |e 1 |h 11-24 |
author_variant |
t a m tam d t a dta s f sf g a ga |
---|---|
matchkey_str |
article:14076179:2022----::rsdsrbtodtsteeomnadaiainoteniierr |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
K |
publishDate |
2022 |
allfields |
10.2478/ttj-2022-0002 doi (DE-627)DOAJ065417100 (DE-599)DOAJ6fe4b415563542e5a0f3b4634c380de6 DE-627 ger DE-627 rakwb eng K4011-4343 Tola Alamirew Mulugeta verfasserin aut Crash Distribution Dataset: Development and Validation for the Undivided Rural Roads in Oromia, Ethiopia 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Predicting the number of crashes that may occur as a result of specific highway features is critical in evaluating different treatment or design alternatives. Since different highway geometric characteristics can influence crash distribution datasets, Highway Safety Manual’s (HSM’s) predictive method encourages users to predict crashes based on their severity and collision type proportions. This study used crash data from rural two-way two-lane road segments in the Oromia region over seven years to develop Oromia’s fixed crash distribution dataset on Interactive Highway Safety Design Model (IHSDM) software. The crash distribution dataset has two parts; the crash severity proportions and the collision type percentages. The developed Oromia’s fixed crash distribution dataset was compared and validated against the default HSM crash configuration. As a result, the Crash Prediction Model (CPM) evaluation results confirmed that the developed crash severity proportion (the first part of the crash distribution dataset) estimates are more accurate and closer to the observed values. Furthermore, the findings show that crashes in the Oromia region are severer than in the states where the HSM crash configuration was developed. According to the second part of the crash distribution dataset evaluation (collision type percentage), the developed fixed crash distribution dataset outperforms the default HSM configuration in most collision type proportions, but not in all. For instance, from the ten collision type proportions developed, Right-Angle and sides-wipe collision proportions are predicted more precisely by the default HSM configuration. This points to the need for developing collision type proportion (the second part of the crash distribution dataset) as a function rather than a fixed configuration for a better result, based on the availability of complete crash data (i.e. crash location). In general, the study revealed that in order to exploit the full potential of HSM’s predictive approach, researchers must develop a jurisdiction crash distribution dataset using local crash data. The methodology demonstrated in this study to develop the jurisdiction’s crash distribution dataset has been validated as true thus, safety practitioners are encouraged to adopt it. crash distribution dataset crash prediction model hsm ihsdm oromia rural roads Transportation and communication Demissie Tamene Adugna verfasserin aut Saathoff Fokke verfasserin aut Gebissa Alemayehu verfasserin aut In Transport and Telecommunication Sciendo, 2012 23(2022), 1, Seite 11-24 (DE-627)722237057 (DE-600)2677597-9 14076179 nnns volume:23 year:2022 number:1 pages:11-24 https://doi.org/10.2478/ttj-2022-0002 kostenfrei https://doaj.org/article/6fe4b415563542e5a0f3b4634c380de6 kostenfrei https://doi.org/10.2478/ttj-2022-0002 kostenfrei https://doaj.org/toc/1407-6179 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2022 1 11-24 |
spelling |
10.2478/ttj-2022-0002 doi (DE-627)DOAJ065417100 (DE-599)DOAJ6fe4b415563542e5a0f3b4634c380de6 DE-627 ger DE-627 rakwb eng K4011-4343 Tola Alamirew Mulugeta verfasserin aut Crash Distribution Dataset: Development and Validation for the Undivided Rural Roads in Oromia, Ethiopia 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Predicting the number of crashes that may occur as a result of specific highway features is critical in evaluating different treatment or design alternatives. Since different highway geometric characteristics can influence crash distribution datasets, Highway Safety Manual’s (HSM’s) predictive method encourages users to predict crashes based on their severity and collision type proportions. This study used crash data from rural two-way two-lane road segments in the Oromia region over seven years to develop Oromia’s fixed crash distribution dataset on Interactive Highway Safety Design Model (IHSDM) software. The crash distribution dataset has two parts; the crash severity proportions and the collision type percentages. The developed Oromia’s fixed crash distribution dataset was compared and validated against the default HSM crash configuration. As a result, the Crash Prediction Model (CPM) evaluation results confirmed that the developed crash severity proportion (the first part of the crash distribution dataset) estimates are more accurate and closer to the observed values. Furthermore, the findings show that crashes in the Oromia region are severer than in the states where the HSM crash configuration was developed. According to the second part of the crash distribution dataset evaluation (collision type percentage), the developed fixed crash distribution dataset outperforms the default HSM configuration in most collision type proportions, but not in all. For instance, from the ten collision type proportions developed, Right-Angle and sides-wipe collision proportions are predicted more precisely by the default HSM configuration. This points to the need for developing collision type proportion (the second part of the crash distribution dataset) as a function rather than a fixed configuration for a better result, based on the availability of complete crash data (i.e. crash location). In general, the study revealed that in order to exploit the full potential of HSM’s predictive approach, researchers must develop a jurisdiction crash distribution dataset using local crash data. The methodology demonstrated in this study to develop the jurisdiction’s crash distribution dataset has been validated as true thus, safety practitioners are encouraged to adopt it. crash distribution dataset crash prediction model hsm ihsdm oromia rural roads Transportation and communication Demissie Tamene Adugna verfasserin aut Saathoff Fokke verfasserin aut Gebissa Alemayehu verfasserin aut In Transport and Telecommunication Sciendo, 2012 23(2022), 1, Seite 11-24 (DE-627)722237057 (DE-600)2677597-9 14076179 nnns volume:23 year:2022 number:1 pages:11-24 https://doi.org/10.2478/ttj-2022-0002 kostenfrei https://doaj.org/article/6fe4b415563542e5a0f3b4634c380de6 kostenfrei https://doi.org/10.2478/ttj-2022-0002 kostenfrei https://doaj.org/toc/1407-6179 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2022 1 11-24 |
allfields_unstemmed |
10.2478/ttj-2022-0002 doi (DE-627)DOAJ065417100 (DE-599)DOAJ6fe4b415563542e5a0f3b4634c380de6 DE-627 ger DE-627 rakwb eng K4011-4343 Tola Alamirew Mulugeta verfasserin aut Crash Distribution Dataset: Development and Validation for the Undivided Rural Roads in Oromia, Ethiopia 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Predicting the number of crashes that may occur as a result of specific highway features is critical in evaluating different treatment or design alternatives. Since different highway geometric characteristics can influence crash distribution datasets, Highway Safety Manual’s (HSM’s) predictive method encourages users to predict crashes based on their severity and collision type proportions. This study used crash data from rural two-way two-lane road segments in the Oromia region over seven years to develop Oromia’s fixed crash distribution dataset on Interactive Highway Safety Design Model (IHSDM) software. The crash distribution dataset has two parts; the crash severity proportions and the collision type percentages. The developed Oromia’s fixed crash distribution dataset was compared and validated against the default HSM crash configuration. As a result, the Crash Prediction Model (CPM) evaluation results confirmed that the developed crash severity proportion (the first part of the crash distribution dataset) estimates are more accurate and closer to the observed values. Furthermore, the findings show that crashes in the Oromia region are severer than in the states where the HSM crash configuration was developed. According to the second part of the crash distribution dataset evaluation (collision type percentage), the developed fixed crash distribution dataset outperforms the default HSM configuration in most collision type proportions, but not in all. For instance, from the ten collision type proportions developed, Right-Angle and sides-wipe collision proportions are predicted more precisely by the default HSM configuration. This points to the need for developing collision type proportion (the second part of the crash distribution dataset) as a function rather than a fixed configuration for a better result, based on the availability of complete crash data (i.e. crash location). In general, the study revealed that in order to exploit the full potential of HSM’s predictive approach, researchers must develop a jurisdiction crash distribution dataset using local crash data. The methodology demonstrated in this study to develop the jurisdiction’s crash distribution dataset has been validated as true thus, safety practitioners are encouraged to adopt it. crash distribution dataset crash prediction model hsm ihsdm oromia rural roads Transportation and communication Demissie Tamene Adugna verfasserin aut Saathoff Fokke verfasserin aut Gebissa Alemayehu verfasserin aut In Transport and Telecommunication Sciendo, 2012 23(2022), 1, Seite 11-24 (DE-627)722237057 (DE-600)2677597-9 14076179 nnns volume:23 year:2022 number:1 pages:11-24 https://doi.org/10.2478/ttj-2022-0002 kostenfrei https://doaj.org/article/6fe4b415563542e5a0f3b4634c380de6 kostenfrei https://doi.org/10.2478/ttj-2022-0002 kostenfrei https://doaj.org/toc/1407-6179 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2022 1 11-24 |
allfieldsGer |
10.2478/ttj-2022-0002 doi (DE-627)DOAJ065417100 (DE-599)DOAJ6fe4b415563542e5a0f3b4634c380de6 DE-627 ger DE-627 rakwb eng K4011-4343 Tola Alamirew Mulugeta verfasserin aut Crash Distribution Dataset: Development and Validation for the Undivided Rural Roads in Oromia, Ethiopia 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Predicting the number of crashes that may occur as a result of specific highway features is critical in evaluating different treatment or design alternatives. Since different highway geometric characteristics can influence crash distribution datasets, Highway Safety Manual’s (HSM’s) predictive method encourages users to predict crashes based on their severity and collision type proportions. This study used crash data from rural two-way two-lane road segments in the Oromia region over seven years to develop Oromia’s fixed crash distribution dataset on Interactive Highway Safety Design Model (IHSDM) software. The crash distribution dataset has two parts; the crash severity proportions and the collision type percentages. The developed Oromia’s fixed crash distribution dataset was compared and validated against the default HSM crash configuration. As a result, the Crash Prediction Model (CPM) evaluation results confirmed that the developed crash severity proportion (the first part of the crash distribution dataset) estimates are more accurate and closer to the observed values. Furthermore, the findings show that crashes in the Oromia region are severer than in the states where the HSM crash configuration was developed. According to the second part of the crash distribution dataset evaluation (collision type percentage), the developed fixed crash distribution dataset outperforms the default HSM configuration in most collision type proportions, but not in all. For instance, from the ten collision type proportions developed, Right-Angle and sides-wipe collision proportions are predicted more precisely by the default HSM configuration. This points to the need for developing collision type proportion (the second part of the crash distribution dataset) as a function rather than a fixed configuration for a better result, based on the availability of complete crash data (i.e. crash location). In general, the study revealed that in order to exploit the full potential of HSM’s predictive approach, researchers must develop a jurisdiction crash distribution dataset using local crash data. The methodology demonstrated in this study to develop the jurisdiction’s crash distribution dataset has been validated as true thus, safety practitioners are encouraged to adopt it. crash distribution dataset crash prediction model hsm ihsdm oromia rural roads Transportation and communication Demissie Tamene Adugna verfasserin aut Saathoff Fokke verfasserin aut Gebissa Alemayehu verfasserin aut In Transport and Telecommunication Sciendo, 2012 23(2022), 1, Seite 11-24 (DE-627)722237057 (DE-600)2677597-9 14076179 nnns volume:23 year:2022 number:1 pages:11-24 https://doi.org/10.2478/ttj-2022-0002 kostenfrei https://doaj.org/article/6fe4b415563542e5a0f3b4634c380de6 kostenfrei https://doi.org/10.2478/ttj-2022-0002 kostenfrei https://doaj.org/toc/1407-6179 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2022 1 11-24 |
allfieldsSound |
10.2478/ttj-2022-0002 doi (DE-627)DOAJ065417100 (DE-599)DOAJ6fe4b415563542e5a0f3b4634c380de6 DE-627 ger DE-627 rakwb eng K4011-4343 Tola Alamirew Mulugeta verfasserin aut Crash Distribution Dataset: Development and Validation for the Undivided Rural Roads in Oromia, Ethiopia 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Predicting the number of crashes that may occur as a result of specific highway features is critical in evaluating different treatment or design alternatives. Since different highway geometric characteristics can influence crash distribution datasets, Highway Safety Manual’s (HSM’s) predictive method encourages users to predict crashes based on their severity and collision type proportions. This study used crash data from rural two-way two-lane road segments in the Oromia region over seven years to develop Oromia’s fixed crash distribution dataset on Interactive Highway Safety Design Model (IHSDM) software. The crash distribution dataset has two parts; the crash severity proportions and the collision type percentages. The developed Oromia’s fixed crash distribution dataset was compared and validated against the default HSM crash configuration. As a result, the Crash Prediction Model (CPM) evaluation results confirmed that the developed crash severity proportion (the first part of the crash distribution dataset) estimates are more accurate and closer to the observed values. Furthermore, the findings show that crashes in the Oromia region are severer than in the states where the HSM crash configuration was developed. According to the second part of the crash distribution dataset evaluation (collision type percentage), the developed fixed crash distribution dataset outperforms the default HSM configuration in most collision type proportions, but not in all. For instance, from the ten collision type proportions developed, Right-Angle and sides-wipe collision proportions are predicted more precisely by the default HSM configuration. This points to the need for developing collision type proportion (the second part of the crash distribution dataset) as a function rather than a fixed configuration for a better result, based on the availability of complete crash data (i.e. crash location). In general, the study revealed that in order to exploit the full potential of HSM’s predictive approach, researchers must develop a jurisdiction crash distribution dataset using local crash data. The methodology demonstrated in this study to develop the jurisdiction’s crash distribution dataset has been validated as true thus, safety practitioners are encouraged to adopt it. crash distribution dataset crash prediction model hsm ihsdm oromia rural roads Transportation and communication Demissie Tamene Adugna verfasserin aut Saathoff Fokke verfasserin aut Gebissa Alemayehu verfasserin aut In Transport and Telecommunication Sciendo, 2012 23(2022), 1, Seite 11-24 (DE-627)722237057 (DE-600)2677597-9 14076179 nnns volume:23 year:2022 number:1 pages:11-24 https://doi.org/10.2478/ttj-2022-0002 kostenfrei https://doaj.org/article/6fe4b415563542e5a0f3b4634c380de6 kostenfrei https://doi.org/10.2478/ttj-2022-0002 kostenfrei https://doaj.org/toc/1407-6179 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2022 1 11-24 |
language |
English |
source |
In Transport and Telecommunication 23(2022), 1, Seite 11-24 volume:23 year:2022 number:1 pages:11-24 |
sourceStr |
In Transport and Telecommunication 23(2022), 1, Seite 11-24 volume:23 year:2022 number:1 pages:11-24 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
crash distribution dataset crash prediction model hsm ihsdm oromia rural roads Transportation and communication |
isfreeaccess_bool |
true |
container_title |
Transport and Telecommunication |
authorswithroles_txt_mv |
Tola Alamirew Mulugeta @@aut@@ Demissie Tamene Adugna @@aut@@ Saathoff Fokke @@aut@@ Gebissa Alemayehu @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
722237057 |
id |
DOAJ065417100 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ065417100</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502134504.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2478/ttj-2022-0002</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ065417100</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6fe4b415563542e5a0f3b4634c380de6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">K4011-4343</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Tola Alamirew Mulugeta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Crash Distribution Dataset: Development and Validation for the Undivided Rural Roads in Oromia, Ethiopia</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Predicting the number of crashes that may occur as a result of specific highway features is critical in evaluating different treatment or design alternatives. Since different highway geometric characteristics can influence crash distribution datasets, Highway Safety Manual’s (HSM’s) predictive method encourages users to predict crashes based on their severity and collision type proportions. This study used crash data from rural two-way two-lane road segments in the Oromia region over seven years to develop Oromia’s fixed crash distribution dataset on Interactive Highway Safety Design Model (IHSDM) software. The crash distribution dataset has two parts; the crash severity proportions and the collision type percentages. The developed Oromia’s fixed crash distribution dataset was compared and validated against the default HSM crash configuration. As a result, the Crash Prediction Model (CPM) evaluation results confirmed that the developed crash severity proportion (the first part of the crash distribution dataset) estimates are more accurate and closer to the observed values. Furthermore, the findings show that crashes in the Oromia region are severer than in the states where the HSM crash configuration was developed. According to the second part of the crash distribution dataset evaluation (collision type percentage), the developed fixed crash distribution dataset outperforms the default HSM configuration in most collision type proportions, but not in all. For instance, from the ten collision type proportions developed, Right-Angle and sides-wipe collision proportions are predicted more precisely by the default HSM configuration. This points to the need for developing collision type proportion (the second part of the crash distribution dataset) as a function rather than a fixed configuration for a better result, based on the availability of complete crash data (i.e. crash location). In general, the study revealed that in order to exploit the full potential of HSM’s predictive approach, researchers must develop a jurisdiction crash distribution dataset using local crash data. The methodology demonstrated in this study to develop the jurisdiction’s crash distribution dataset has been validated as true thus, safety practitioners are encouraged to adopt it.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">crash distribution dataset</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">crash prediction model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hsm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ihsdm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">oromia</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rural roads</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Transportation and communication</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Demissie Tamene Adugna</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Saathoff Fokke</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gebissa Alemayehu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Transport and Telecommunication</subfield><subfield code="d">Sciendo, 2012</subfield><subfield code="g">23(2022), 1, Seite 11-24</subfield><subfield code="w">(DE-627)722237057</subfield><subfield code="w">(DE-600)2677597-9</subfield><subfield code="x">14076179</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:11-24</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.2478/ttj-2022-0002</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6fe4b415563542e5a0f3b4634c380de6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.2478/ttj-2022-0002</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1407-6179</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="h">11-24</subfield></datafield></record></collection>
|
callnumber-first |
K - Law |
author |
Tola Alamirew Mulugeta |
spellingShingle |
Tola Alamirew Mulugeta misc K4011-4343 misc crash distribution dataset misc crash prediction model misc hsm misc ihsdm misc oromia misc rural roads misc Transportation and communication Crash Distribution Dataset: Development and Validation for the Undivided Rural Roads in Oromia, Ethiopia |
authorStr |
Tola Alamirew Mulugeta |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)722237057 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
K4011-4343 |
illustrated |
Not Illustrated |
issn |
14076179 |
topic_title |
K4011-4343 Crash Distribution Dataset: Development and Validation for the Undivided Rural Roads in Oromia, Ethiopia crash distribution dataset crash prediction model hsm ihsdm oromia rural roads |
topic |
misc K4011-4343 misc crash distribution dataset misc crash prediction model misc hsm misc ihsdm misc oromia misc rural roads misc Transportation and communication |
topic_unstemmed |
misc K4011-4343 misc crash distribution dataset misc crash prediction model misc hsm misc ihsdm misc oromia misc rural roads misc Transportation and communication |
topic_browse |
misc K4011-4343 misc crash distribution dataset misc crash prediction model misc hsm misc ihsdm misc oromia misc rural roads misc Transportation and communication |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Transport and Telecommunication |
hierarchy_parent_id |
722237057 |
hierarchy_top_title |
Transport and Telecommunication |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)722237057 (DE-600)2677597-9 |
title |
Crash Distribution Dataset: Development and Validation for the Undivided Rural Roads in Oromia, Ethiopia |
ctrlnum |
(DE-627)DOAJ065417100 (DE-599)DOAJ6fe4b415563542e5a0f3b4634c380de6 |
title_full |
Crash Distribution Dataset: Development and Validation for the Undivided Rural Roads in Oromia, Ethiopia |
author_sort |
Tola Alamirew Mulugeta |
journal |
Transport and Telecommunication |
journalStr |
Transport and Telecommunication |
callnumber-first-code |
K |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
11 |
author_browse |
Tola Alamirew Mulugeta Demissie Tamene Adugna Saathoff Fokke Gebissa Alemayehu |
container_volume |
23 |
class |
K4011-4343 |
format_se |
Elektronische Aufsätze |
author-letter |
Tola Alamirew Mulugeta |
doi_str_mv |
10.2478/ttj-2022-0002 |
author2-role |
verfasserin |
title_sort |
crash distribution dataset: development and validation for the undivided rural roads in oromia, ethiopia |
callnumber |
K4011-4343 |
title_auth |
Crash Distribution Dataset: Development and Validation for the Undivided Rural Roads in Oromia, Ethiopia |
abstract |
Predicting the number of crashes that may occur as a result of specific highway features is critical in evaluating different treatment or design alternatives. Since different highway geometric characteristics can influence crash distribution datasets, Highway Safety Manual’s (HSM’s) predictive method encourages users to predict crashes based on their severity and collision type proportions. This study used crash data from rural two-way two-lane road segments in the Oromia region over seven years to develop Oromia’s fixed crash distribution dataset on Interactive Highway Safety Design Model (IHSDM) software. The crash distribution dataset has two parts; the crash severity proportions and the collision type percentages. The developed Oromia’s fixed crash distribution dataset was compared and validated against the default HSM crash configuration. As a result, the Crash Prediction Model (CPM) evaluation results confirmed that the developed crash severity proportion (the first part of the crash distribution dataset) estimates are more accurate and closer to the observed values. Furthermore, the findings show that crashes in the Oromia region are severer than in the states where the HSM crash configuration was developed. According to the second part of the crash distribution dataset evaluation (collision type percentage), the developed fixed crash distribution dataset outperforms the default HSM configuration in most collision type proportions, but not in all. For instance, from the ten collision type proportions developed, Right-Angle and sides-wipe collision proportions are predicted more precisely by the default HSM configuration. This points to the need for developing collision type proportion (the second part of the crash distribution dataset) as a function rather than a fixed configuration for a better result, based on the availability of complete crash data (i.e. crash location). In general, the study revealed that in order to exploit the full potential of HSM’s predictive approach, researchers must develop a jurisdiction crash distribution dataset using local crash data. The methodology demonstrated in this study to develop the jurisdiction’s crash distribution dataset has been validated as true thus, safety practitioners are encouraged to adopt it. |
abstractGer |
Predicting the number of crashes that may occur as a result of specific highway features is critical in evaluating different treatment or design alternatives. Since different highway geometric characteristics can influence crash distribution datasets, Highway Safety Manual’s (HSM’s) predictive method encourages users to predict crashes based on their severity and collision type proportions. This study used crash data from rural two-way two-lane road segments in the Oromia region over seven years to develop Oromia’s fixed crash distribution dataset on Interactive Highway Safety Design Model (IHSDM) software. The crash distribution dataset has two parts; the crash severity proportions and the collision type percentages. The developed Oromia’s fixed crash distribution dataset was compared and validated against the default HSM crash configuration. As a result, the Crash Prediction Model (CPM) evaluation results confirmed that the developed crash severity proportion (the first part of the crash distribution dataset) estimates are more accurate and closer to the observed values. Furthermore, the findings show that crashes in the Oromia region are severer than in the states where the HSM crash configuration was developed. According to the second part of the crash distribution dataset evaluation (collision type percentage), the developed fixed crash distribution dataset outperforms the default HSM configuration in most collision type proportions, but not in all. For instance, from the ten collision type proportions developed, Right-Angle and sides-wipe collision proportions are predicted more precisely by the default HSM configuration. This points to the need for developing collision type proportion (the second part of the crash distribution dataset) as a function rather than a fixed configuration for a better result, based on the availability of complete crash data (i.e. crash location). In general, the study revealed that in order to exploit the full potential of HSM’s predictive approach, researchers must develop a jurisdiction crash distribution dataset using local crash data. The methodology demonstrated in this study to develop the jurisdiction’s crash distribution dataset has been validated as true thus, safety practitioners are encouraged to adopt it. |
abstract_unstemmed |
Predicting the number of crashes that may occur as a result of specific highway features is critical in evaluating different treatment or design alternatives. Since different highway geometric characteristics can influence crash distribution datasets, Highway Safety Manual’s (HSM’s) predictive method encourages users to predict crashes based on their severity and collision type proportions. This study used crash data from rural two-way two-lane road segments in the Oromia region over seven years to develop Oromia’s fixed crash distribution dataset on Interactive Highway Safety Design Model (IHSDM) software. The crash distribution dataset has two parts; the crash severity proportions and the collision type percentages. The developed Oromia’s fixed crash distribution dataset was compared and validated against the default HSM crash configuration. As a result, the Crash Prediction Model (CPM) evaluation results confirmed that the developed crash severity proportion (the first part of the crash distribution dataset) estimates are more accurate and closer to the observed values. Furthermore, the findings show that crashes in the Oromia region are severer than in the states where the HSM crash configuration was developed. According to the second part of the crash distribution dataset evaluation (collision type percentage), the developed fixed crash distribution dataset outperforms the default HSM configuration in most collision type proportions, but not in all. For instance, from the ten collision type proportions developed, Right-Angle and sides-wipe collision proportions are predicted more precisely by the default HSM configuration. This points to the need for developing collision type proportion (the second part of the crash distribution dataset) as a function rather than a fixed configuration for a better result, based on the availability of complete crash data (i.e. crash location). In general, the study revealed that in order to exploit the full potential of HSM’s predictive approach, researchers must develop a jurisdiction crash distribution dataset using local crash data. The methodology demonstrated in this study to develop the jurisdiction’s crash distribution dataset has been validated as true thus, safety practitioners are encouraged to adopt it. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Crash Distribution Dataset: Development and Validation for the Undivided Rural Roads in Oromia, Ethiopia |
url |
https://doi.org/10.2478/ttj-2022-0002 https://doaj.org/article/6fe4b415563542e5a0f3b4634c380de6 https://doaj.org/toc/1407-6179 |
remote_bool |
true |
author2 |
Demissie Tamene Adugna Saathoff Fokke Gebissa Alemayehu |
author2Str |
Demissie Tamene Adugna Saathoff Fokke Gebissa Alemayehu |
ppnlink |
722237057 |
callnumber-subject |
K - General Law |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.2478/ttj-2022-0002 |
callnumber-a |
K4011-4343 |
up_date |
2024-07-03T14:39:23.934Z |
_version_ |
1803569137121755137 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ065417100</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502134504.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2478/ttj-2022-0002</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ065417100</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6fe4b415563542e5a0f3b4634c380de6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">K4011-4343</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Tola Alamirew Mulugeta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Crash Distribution Dataset: Development and Validation for the Undivided Rural Roads in Oromia, Ethiopia</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Predicting the number of crashes that may occur as a result of specific highway features is critical in evaluating different treatment or design alternatives. Since different highway geometric characteristics can influence crash distribution datasets, Highway Safety Manual’s (HSM’s) predictive method encourages users to predict crashes based on their severity and collision type proportions. This study used crash data from rural two-way two-lane road segments in the Oromia region over seven years to develop Oromia’s fixed crash distribution dataset on Interactive Highway Safety Design Model (IHSDM) software. The crash distribution dataset has two parts; the crash severity proportions and the collision type percentages. The developed Oromia’s fixed crash distribution dataset was compared and validated against the default HSM crash configuration. As a result, the Crash Prediction Model (CPM) evaluation results confirmed that the developed crash severity proportion (the first part of the crash distribution dataset) estimates are more accurate and closer to the observed values. Furthermore, the findings show that crashes in the Oromia region are severer than in the states where the HSM crash configuration was developed. According to the second part of the crash distribution dataset evaluation (collision type percentage), the developed fixed crash distribution dataset outperforms the default HSM configuration in most collision type proportions, but not in all. For instance, from the ten collision type proportions developed, Right-Angle and sides-wipe collision proportions are predicted more precisely by the default HSM configuration. This points to the need for developing collision type proportion (the second part of the crash distribution dataset) as a function rather than a fixed configuration for a better result, based on the availability of complete crash data (i.e. crash location). In general, the study revealed that in order to exploit the full potential of HSM’s predictive approach, researchers must develop a jurisdiction crash distribution dataset using local crash data. The methodology demonstrated in this study to develop the jurisdiction’s crash distribution dataset has been validated as true thus, safety practitioners are encouraged to adopt it.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">crash distribution dataset</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">crash prediction model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hsm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ihsdm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">oromia</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rural roads</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Transportation and communication</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Demissie Tamene Adugna</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Saathoff Fokke</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gebissa Alemayehu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Transport and Telecommunication</subfield><subfield code="d">Sciendo, 2012</subfield><subfield code="g">23(2022), 1, Seite 11-24</subfield><subfield code="w">(DE-627)722237057</subfield><subfield code="w">(DE-600)2677597-9</subfield><subfield code="x">14076179</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:11-24</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.2478/ttj-2022-0002</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6fe4b415563542e5a0f3b4634c380de6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.2478/ttj-2022-0002</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1407-6179</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="h">11-24</subfield></datafield></record></collection>
|
score |
7.4016542 |