Global Existence of a Solution for a Multiscale Model Describing Moisture Transport in Concrete Materials
In the previous study [5] we proved the existence of a solution locally in time for a two-scale problem which is given as a mathematical model for moisture transport arising in a concrete carbonation process. The two-scale model consists of a diffusion equation of the relative humidity in a macro do...
Ausführliche Beschreibung
Autor*in: |
K. Kumazaki [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch ; Russisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Известия Иркутского государственного университета: Серия "Математика" - Irkutsk State University, 2018, 28(2019), 1, Seite 69-84 |
---|---|
Übergeordnetes Werk: |
volume:28 ; year:2019 ; number:1 ; pages:69-84 |
Links: |
Link aufrufen |
---|
Katalog-ID: |
DOAJ066180589 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ066180589 | ||
003 | DE-627 | ||
005 | 20230309055242.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2019 xx |||||o 00| ||eng c | ||
035 | |a (DE-627)DOAJ066180589 | ||
035 | |a (DE-599)DOAJ49dca6e32f8541999143abb1dbb352fa | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng |a rus | ||
050 | 0 | |a QA1-939 | |
100 | 0 | |a K. Kumazaki |e verfasserin |4 aut | |
245 | 1 | 0 | |a Global Existence of a Solution for a Multiscale Model Describing Moisture Transport in Concrete Materials |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In the previous study [5] we proved the existence of a solution locally in time for a two-scale problem which is given as a mathematical model for moisture transport arising in a concrete carbonation process. The two-scale model consists of a diffusion equation of the relative humidity in a macro domain and the free boundary problems describing a wetting and drying process in infinite micro domains. In this paper, by improving the diffusion equation of the relative humidity based on the experimental result [3; 10], we construct a globally-in-time solution of the two scale model. For the global existence, we obtain uniform estimates and uniform boundedness of the solution with respect to time and use the method of extending local solutions. | ||
650 | 4 | |a two-scale model | |
650 | 4 | |a free boundary problem | |
650 | 4 | |a quasilinear parabolic equation | |
650 | 4 | |a moisture transport | |
653 | 0 | |a Mathematics | |
773 | 0 | 8 | |i In |t Известия Иркутского государственного университета: Серия "Математика" |d Irkutsk State University, 2018 |g 28(2019), 1, Seite 69-84 |w (DE-627)721347320 |w (DE-600)2677883-X |x 25418785 |7 nnns |
773 | 1 | 8 | |g volume:28 |g year:2019 |g number:1 |g pages:69-84 |
856 | 4 | 0 | |u https://doi.org/10.26516/1997-7670.2019.28.69 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/49dca6e32f8541999143abb1dbb352fa |z kostenfrei |
856 | 4 | 0 | |u http://mathizv.isu.ru/en/article/file?id=1298 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1997-7670 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2541-8785 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 28 |j 2019 |e 1 |h 69-84 |
author_variant |
k k kk |
---|---|
matchkey_str |
article:25418785:2019----::lblxsecoaouinoautsaeoedsrbnmitrta |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
QA |
publishDate |
2019 |
allfields |
(DE-627)DOAJ066180589 (DE-599)DOAJ49dca6e32f8541999143abb1dbb352fa DE-627 ger DE-627 rakwb eng rus QA1-939 K. Kumazaki verfasserin aut Global Existence of a Solution for a Multiscale Model Describing Moisture Transport in Concrete Materials 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the previous study [5] we proved the existence of a solution locally in time for a two-scale problem which is given as a mathematical model for moisture transport arising in a concrete carbonation process. The two-scale model consists of a diffusion equation of the relative humidity in a macro domain and the free boundary problems describing a wetting and drying process in infinite micro domains. In this paper, by improving the diffusion equation of the relative humidity based on the experimental result [3; 10], we construct a globally-in-time solution of the two scale model. For the global existence, we obtain uniform estimates and uniform boundedness of the solution with respect to time and use the method of extending local solutions. two-scale model free boundary problem quasilinear parabolic equation moisture transport Mathematics In Известия Иркутского государственного университета: Серия "Математика" Irkutsk State University, 2018 28(2019), 1, Seite 69-84 (DE-627)721347320 (DE-600)2677883-X 25418785 nnns volume:28 year:2019 number:1 pages:69-84 https://doi.org/10.26516/1997-7670.2019.28.69 kostenfrei https://doaj.org/article/49dca6e32f8541999143abb1dbb352fa kostenfrei http://mathizv.isu.ru/en/article/file?id=1298 kostenfrei https://doaj.org/toc/1997-7670 Journal toc kostenfrei https://doaj.org/toc/2541-8785 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 28 2019 1 69-84 |
spelling |
(DE-627)DOAJ066180589 (DE-599)DOAJ49dca6e32f8541999143abb1dbb352fa DE-627 ger DE-627 rakwb eng rus QA1-939 K. Kumazaki verfasserin aut Global Existence of a Solution for a Multiscale Model Describing Moisture Transport in Concrete Materials 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the previous study [5] we proved the existence of a solution locally in time for a two-scale problem which is given as a mathematical model for moisture transport arising in a concrete carbonation process. The two-scale model consists of a diffusion equation of the relative humidity in a macro domain and the free boundary problems describing a wetting and drying process in infinite micro domains. In this paper, by improving the diffusion equation of the relative humidity based on the experimental result [3; 10], we construct a globally-in-time solution of the two scale model. For the global existence, we obtain uniform estimates and uniform boundedness of the solution with respect to time and use the method of extending local solutions. two-scale model free boundary problem quasilinear parabolic equation moisture transport Mathematics In Известия Иркутского государственного университета: Серия "Математика" Irkutsk State University, 2018 28(2019), 1, Seite 69-84 (DE-627)721347320 (DE-600)2677883-X 25418785 nnns volume:28 year:2019 number:1 pages:69-84 https://doi.org/10.26516/1997-7670.2019.28.69 kostenfrei https://doaj.org/article/49dca6e32f8541999143abb1dbb352fa kostenfrei http://mathizv.isu.ru/en/article/file?id=1298 kostenfrei https://doaj.org/toc/1997-7670 Journal toc kostenfrei https://doaj.org/toc/2541-8785 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 28 2019 1 69-84 |
allfields_unstemmed |
(DE-627)DOAJ066180589 (DE-599)DOAJ49dca6e32f8541999143abb1dbb352fa DE-627 ger DE-627 rakwb eng rus QA1-939 K. Kumazaki verfasserin aut Global Existence of a Solution for a Multiscale Model Describing Moisture Transport in Concrete Materials 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the previous study [5] we proved the existence of a solution locally in time for a two-scale problem which is given as a mathematical model for moisture transport arising in a concrete carbonation process. The two-scale model consists of a diffusion equation of the relative humidity in a macro domain and the free boundary problems describing a wetting and drying process in infinite micro domains. In this paper, by improving the diffusion equation of the relative humidity based on the experimental result [3; 10], we construct a globally-in-time solution of the two scale model. For the global existence, we obtain uniform estimates and uniform boundedness of the solution with respect to time and use the method of extending local solutions. two-scale model free boundary problem quasilinear parabolic equation moisture transport Mathematics In Известия Иркутского государственного университета: Серия "Математика" Irkutsk State University, 2018 28(2019), 1, Seite 69-84 (DE-627)721347320 (DE-600)2677883-X 25418785 nnns volume:28 year:2019 number:1 pages:69-84 https://doi.org/10.26516/1997-7670.2019.28.69 kostenfrei https://doaj.org/article/49dca6e32f8541999143abb1dbb352fa kostenfrei http://mathizv.isu.ru/en/article/file?id=1298 kostenfrei https://doaj.org/toc/1997-7670 Journal toc kostenfrei https://doaj.org/toc/2541-8785 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 28 2019 1 69-84 |
allfieldsGer |
(DE-627)DOAJ066180589 (DE-599)DOAJ49dca6e32f8541999143abb1dbb352fa DE-627 ger DE-627 rakwb eng rus QA1-939 K. Kumazaki verfasserin aut Global Existence of a Solution for a Multiscale Model Describing Moisture Transport in Concrete Materials 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the previous study [5] we proved the existence of a solution locally in time for a two-scale problem which is given as a mathematical model for moisture transport arising in a concrete carbonation process. The two-scale model consists of a diffusion equation of the relative humidity in a macro domain and the free boundary problems describing a wetting and drying process in infinite micro domains. In this paper, by improving the diffusion equation of the relative humidity based on the experimental result [3; 10], we construct a globally-in-time solution of the two scale model. For the global existence, we obtain uniform estimates and uniform boundedness of the solution with respect to time and use the method of extending local solutions. two-scale model free boundary problem quasilinear parabolic equation moisture transport Mathematics In Известия Иркутского государственного университета: Серия "Математика" Irkutsk State University, 2018 28(2019), 1, Seite 69-84 (DE-627)721347320 (DE-600)2677883-X 25418785 nnns volume:28 year:2019 number:1 pages:69-84 https://doi.org/10.26516/1997-7670.2019.28.69 kostenfrei https://doaj.org/article/49dca6e32f8541999143abb1dbb352fa kostenfrei http://mathizv.isu.ru/en/article/file?id=1298 kostenfrei https://doaj.org/toc/1997-7670 Journal toc kostenfrei https://doaj.org/toc/2541-8785 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 28 2019 1 69-84 |
allfieldsSound |
(DE-627)DOAJ066180589 (DE-599)DOAJ49dca6e32f8541999143abb1dbb352fa DE-627 ger DE-627 rakwb eng rus QA1-939 K. Kumazaki verfasserin aut Global Existence of a Solution for a Multiscale Model Describing Moisture Transport in Concrete Materials 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the previous study [5] we proved the existence of a solution locally in time for a two-scale problem which is given as a mathematical model for moisture transport arising in a concrete carbonation process. The two-scale model consists of a diffusion equation of the relative humidity in a macro domain and the free boundary problems describing a wetting and drying process in infinite micro domains. In this paper, by improving the diffusion equation of the relative humidity based on the experimental result [3; 10], we construct a globally-in-time solution of the two scale model. For the global existence, we obtain uniform estimates and uniform boundedness of the solution with respect to time and use the method of extending local solutions. two-scale model free boundary problem quasilinear parabolic equation moisture transport Mathematics In Известия Иркутского государственного университета: Серия "Математика" Irkutsk State University, 2018 28(2019), 1, Seite 69-84 (DE-627)721347320 (DE-600)2677883-X 25418785 nnns volume:28 year:2019 number:1 pages:69-84 https://doi.org/10.26516/1997-7670.2019.28.69 kostenfrei https://doaj.org/article/49dca6e32f8541999143abb1dbb352fa kostenfrei http://mathizv.isu.ru/en/article/file?id=1298 kostenfrei https://doaj.org/toc/1997-7670 Journal toc kostenfrei https://doaj.org/toc/2541-8785 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 28 2019 1 69-84 |
language |
English Russian |
source |
In Известия Иркутского государственного университета: Серия "Математика" 28(2019), 1, Seite 69-84 volume:28 year:2019 number:1 pages:69-84 |
sourceStr |
In Известия Иркутского государственного университета: Серия "Математика" 28(2019), 1, Seite 69-84 volume:28 year:2019 number:1 pages:69-84 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
two-scale model free boundary problem quasilinear parabolic equation moisture transport Mathematics |
isfreeaccess_bool |
true |
container_title |
Известия Иркутского государственного университета: Серия "Математика" |
authorswithroles_txt_mv |
K. Kumazaki @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
721347320 |
id |
DOAJ066180589 |
language_de |
englisch russisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ066180589</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309055242.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ066180589</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ49dca6e32f8541999143abb1dbb352fa</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">rus</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">K. Kumazaki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Global Existence of a Solution for a Multiscale Model Describing Moisture Transport in Concrete Materials</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the previous study [5] we proved the existence of a solution locally in time for a two-scale problem which is given as a mathematical model for moisture transport arising in a concrete carbonation process. The two-scale model consists of a diffusion equation of the relative humidity in a macro domain and the free boundary problems describing a wetting and drying process in infinite micro domains. In this paper, by improving the diffusion equation of the relative humidity based on the experimental result [3; 10], we construct a globally-in-time solution of the two scale model. For the global existence, we obtain uniform estimates and uniform boundedness of the solution with respect to time and use the method of extending local solutions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">two-scale model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">free boundary problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quasilinear parabolic equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">moisture transport</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Известия Иркутского государственного университета: Серия "Математика"</subfield><subfield code="d">Irkutsk State University, 2018</subfield><subfield code="g">28(2019), 1, Seite 69-84</subfield><subfield code="w">(DE-627)721347320</subfield><subfield code="w">(DE-600)2677883-X</subfield><subfield code="x">25418785</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:28</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:69-84</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.26516/1997-7670.2019.28.69</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/49dca6e32f8541999143abb1dbb352fa</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://mathizv.isu.ru/en/article/file?id=1298</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1997-7670</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2541-8785</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">28</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="h">69-84</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
K. Kumazaki |
spellingShingle |
K. Kumazaki misc QA1-939 misc two-scale model misc free boundary problem misc quasilinear parabolic equation misc moisture transport misc Mathematics Global Existence of a Solution for a Multiscale Model Describing Moisture Transport in Concrete Materials |
authorStr |
K. Kumazaki |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)721347320 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA1-939 |
illustrated |
Not Illustrated |
issn |
25418785 |
topic_title |
QA1-939 Global Existence of a Solution for a Multiscale Model Describing Moisture Transport in Concrete Materials two-scale model free boundary problem quasilinear parabolic equation moisture transport |
topic |
misc QA1-939 misc two-scale model misc free boundary problem misc quasilinear parabolic equation misc moisture transport misc Mathematics |
topic_unstemmed |
misc QA1-939 misc two-scale model misc free boundary problem misc quasilinear parabolic equation misc moisture transport misc Mathematics |
topic_browse |
misc QA1-939 misc two-scale model misc free boundary problem misc quasilinear parabolic equation misc moisture transport misc Mathematics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Известия Иркутского государственного университета: Серия "Математика" |
hierarchy_parent_id |
721347320 |
hierarchy_top_title |
Известия Иркутского государственного университета: Серия "Математика" |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)721347320 (DE-600)2677883-X |
title |
Global Existence of a Solution for a Multiscale Model Describing Moisture Transport in Concrete Materials |
ctrlnum |
(DE-627)DOAJ066180589 (DE-599)DOAJ49dca6e32f8541999143abb1dbb352fa |
title_full |
Global Existence of a Solution for a Multiscale Model Describing Moisture Transport in Concrete Materials |
author_sort |
K. Kumazaki |
journal |
Известия Иркутского государственного университета: Серия "Математика" |
journalStr |
Известия Иркутского государственного университета: Серия "Математика" |
callnumber-first-code |
Q |
lang_code |
eng rus |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
69 |
author_browse |
K. Kumazaki |
container_volume |
28 |
class |
QA1-939 |
format_se |
Elektronische Aufsätze |
author-letter |
K. Kumazaki |
title_sort |
global existence of a solution for a multiscale model describing moisture transport in concrete materials |
callnumber |
QA1-939 |
title_auth |
Global Existence of a Solution for a Multiscale Model Describing Moisture Transport in Concrete Materials |
abstract |
In the previous study [5] we proved the existence of a solution locally in time for a two-scale problem which is given as a mathematical model for moisture transport arising in a concrete carbonation process. The two-scale model consists of a diffusion equation of the relative humidity in a macro domain and the free boundary problems describing a wetting and drying process in infinite micro domains. In this paper, by improving the diffusion equation of the relative humidity based on the experimental result [3; 10], we construct a globally-in-time solution of the two scale model. For the global existence, we obtain uniform estimates and uniform boundedness of the solution with respect to time and use the method of extending local solutions. |
abstractGer |
In the previous study [5] we proved the existence of a solution locally in time for a two-scale problem which is given as a mathematical model for moisture transport arising in a concrete carbonation process. The two-scale model consists of a diffusion equation of the relative humidity in a macro domain and the free boundary problems describing a wetting and drying process in infinite micro domains. In this paper, by improving the diffusion equation of the relative humidity based on the experimental result [3; 10], we construct a globally-in-time solution of the two scale model. For the global existence, we obtain uniform estimates and uniform boundedness of the solution with respect to time and use the method of extending local solutions. |
abstract_unstemmed |
In the previous study [5] we proved the existence of a solution locally in time for a two-scale problem which is given as a mathematical model for moisture transport arising in a concrete carbonation process. The two-scale model consists of a diffusion equation of the relative humidity in a macro domain and the free boundary problems describing a wetting and drying process in infinite micro domains. In this paper, by improving the diffusion equation of the relative humidity based on the experimental result [3; 10], we construct a globally-in-time solution of the two scale model. For the global existence, we obtain uniform estimates and uniform boundedness of the solution with respect to time and use the method of extending local solutions. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Global Existence of a Solution for a Multiscale Model Describing Moisture Transport in Concrete Materials |
url |
https://doi.org/10.26516/1997-7670.2019.28.69 https://doaj.org/article/49dca6e32f8541999143abb1dbb352fa http://mathizv.isu.ru/en/article/file?id=1298 https://doaj.org/toc/1997-7670 https://doaj.org/toc/2541-8785 |
remote_bool |
true |
ppnlink |
721347320 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
callnumber-a |
QA1-939 |
up_date |
2024-07-03T18:39:57.330Z |
_version_ |
1803584271636496384 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ066180589</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309055242.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ066180589</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ49dca6e32f8541999143abb1dbb352fa</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">rus</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">K. Kumazaki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Global Existence of a Solution for a Multiscale Model Describing Moisture Transport in Concrete Materials</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the previous study [5] we proved the existence of a solution locally in time for a two-scale problem which is given as a mathematical model for moisture transport arising in a concrete carbonation process. The two-scale model consists of a diffusion equation of the relative humidity in a macro domain and the free boundary problems describing a wetting and drying process in infinite micro domains. In this paper, by improving the diffusion equation of the relative humidity based on the experimental result [3; 10], we construct a globally-in-time solution of the two scale model. For the global existence, we obtain uniform estimates and uniform boundedness of the solution with respect to time and use the method of extending local solutions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">two-scale model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">free boundary problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quasilinear parabolic equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">moisture transport</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Известия Иркутского государственного университета: Серия "Математика"</subfield><subfield code="d">Irkutsk State University, 2018</subfield><subfield code="g">28(2019), 1, Seite 69-84</subfield><subfield code="w">(DE-627)721347320</subfield><subfield code="w">(DE-600)2677883-X</subfield><subfield code="x">25418785</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:28</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:69-84</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.26516/1997-7670.2019.28.69</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/49dca6e32f8541999143abb1dbb352fa</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://mathizv.isu.ru/en/article/file?id=1298</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1997-7670</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2541-8785</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">28</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="h">69-84</subfield></datafield></record></collection>
|
score |
7.399749 |