Learning Language and Acoustic Models for Identifying Alzheimer’s Dementia From Speech
Alzheimer’s dementia (AD) is a chronic neurodegenerative illness that manifests in a gradual decline of cognitive function. Early identification of AD is essential for managing the ensuing cognitive deficits, which may lead to a better prognostic outcome. Speech data can serve as a window into cogni...
Ausführliche Beschreibung
Autor*in: |
Zehra Shah [verfasserIn] Jeffrey Sawalha [verfasserIn] Mashrura Tasnim [verfasserIn] Shi-ang Qi [verfasserIn] Eleni Stroulia [verfasserIn] Russell Greiner [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
speech and audio classification pathological speech and language |
---|
Übergeordnetes Werk: |
In: Frontiers in Computer Science - Frontiers Media S.A., 2019, 3(2021) |
---|---|
Übergeordnetes Werk: |
volume:3 ; year:2021 |
Links: |
---|
DOI / URN: |
10.3389/fcomp.2021.624659 |
---|
Katalog-ID: |
DOAJ066400171 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ066400171 | ||
003 | DE-627 | ||
005 | 20230503151252.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3389/fcomp.2021.624659 |2 doi | |
035 | |a (DE-627)DOAJ066400171 | ||
035 | |a (DE-599)DOAJ5b94191aa49d4d809ec3e2fefeeab3a4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA75.5-76.95 | |
100 | 0 | |a Zehra Shah |e verfasserin |4 aut | |
245 | 1 | 0 | |a Learning Language and Acoustic Models for Identifying Alzheimer’s Dementia From Speech |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Alzheimer’s dementia (AD) is a chronic neurodegenerative illness that manifests in a gradual decline of cognitive function. Early identification of AD is essential for managing the ensuing cognitive deficits, which may lead to a better prognostic outcome. Speech data can serve as a window into cognitive functioning and can be used to screen for early signs of AD. This paper describes methods for learning models using speech samples from the DementiaBank database, for identifying which subjects have Alzheimer’s dementia. We consider two machine learning tasks: 1) binary classification to distinguish patients from healthy controls, and 2) regression to estimate each subject’s Mini-Mental State Examination (MMSE) score. To develop models that can use acoustic and/or language features, we explore a variety of dimension reduction techniques, training algorithms, and fusion strategies. Our best performing classification model, using language features with dimension reduction and regularized logistic regression, achieves an accuracy of 85.4% on a held-out test set. On the regression task, a linear regression model trained on a reduced set of language features achieves a root mean square error (RMSE) of 5.62 on the test set. These results demonstrate the promise of using machine learning for detecting cognitive decline from speech in AD patients. | ||
650 | 4 | |a speech and audio classification | |
650 | 4 | |a pathological speech and language | |
650 | 4 | |a automatic analysis of speaker states and traits | |
650 | 4 | |a machine learning | |
650 | 4 | |a natural language proceeding (NLP) | |
653 | 0 | |a Electronic computers. Computer science | |
700 | 0 | |a Jeffrey Sawalha |e verfasserin |4 aut | |
700 | 0 | |a Mashrura Tasnim |e verfasserin |4 aut | |
700 | 0 | |a Shi-ang Qi |e verfasserin |4 aut | |
700 | 0 | |a Eleni Stroulia |e verfasserin |4 aut | |
700 | 0 | |a Russell Greiner |e verfasserin |4 aut | |
700 | 0 | |a Russell Greiner |e verfasserin |4 aut | |
700 | 0 | |a Russell Greiner |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Frontiers in Computer Science |d Frontiers Media S.A., 2019 |g 3(2021) |w (DE-627)169122393X |w (DE-600)3010036-7 |x 26249898 |7 nnns |
773 | 1 | 8 | |g volume:3 |g year:2021 |
856 | 4 | 0 | |u https://doi.org/10.3389/fcomp.2021.624659 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/5b94191aa49d4d809ec3e2fefeeab3a4 |z kostenfrei |
856 | 4 | 0 | |u https://www.frontiersin.org/articles/10.3389/fcomp.2021.624659/full |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2624-9898 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 3 |j 2021 |
author_variant |
z s zs j s js m t mt s a q saq e s es r g rg r g rg r g rg |
---|---|
matchkey_str |
article:26249898:2021----::erigagaenaosimdlfrdniynazem |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
QA |
publishDate |
2021 |
allfields |
10.3389/fcomp.2021.624659 doi (DE-627)DOAJ066400171 (DE-599)DOAJ5b94191aa49d4d809ec3e2fefeeab3a4 DE-627 ger DE-627 rakwb eng QA75.5-76.95 Zehra Shah verfasserin aut Learning Language and Acoustic Models for Identifying Alzheimer’s Dementia From Speech 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Alzheimer’s dementia (AD) is a chronic neurodegenerative illness that manifests in a gradual decline of cognitive function. Early identification of AD is essential for managing the ensuing cognitive deficits, which may lead to a better prognostic outcome. Speech data can serve as a window into cognitive functioning and can be used to screen for early signs of AD. This paper describes methods for learning models using speech samples from the DementiaBank database, for identifying which subjects have Alzheimer’s dementia. We consider two machine learning tasks: 1) binary classification to distinguish patients from healthy controls, and 2) regression to estimate each subject’s Mini-Mental State Examination (MMSE) score. To develop models that can use acoustic and/or language features, we explore a variety of dimension reduction techniques, training algorithms, and fusion strategies. Our best performing classification model, using language features with dimension reduction and regularized logistic regression, achieves an accuracy of 85.4% on a held-out test set. On the regression task, a linear regression model trained on a reduced set of language features achieves a root mean square error (RMSE) of 5.62 on the test set. These results demonstrate the promise of using machine learning for detecting cognitive decline from speech in AD patients. speech and audio classification pathological speech and language automatic analysis of speaker states and traits machine learning natural language proceeding (NLP) Electronic computers. Computer science Jeffrey Sawalha verfasserin aut Mashrura Tasnim verfasserin aut Shi-ang Qi verfasserin aut Eleni Stroulia verfasserin aut Russell Greiner verfasserin aut Russell Greiner verfasserin aut Russell Greiner verfasserin aut In Frontiers in Computer Science Frontiers Media S.A., 2019 3(2021) (DE-627)169122393X (DE-600)3010036-7 26249898 nnns volume:3 year:2021 https://doi.org/10.3389/fcomp.2021.624659 kostenfrei https://doaj.org/article/5b94191aa49d4d809ec3e2fefeeab3a4 kostenfrei https://www.frontiersin.org/articles/10.3389/fcomp.2021.624659/full kostenfrei https://doaj.org/toc/2624-9898 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2021 |
spelling |
10.3389/fcomp.2021.624659 doi (DE-627)DOAJ066400171 (DE-599)DOAJ5b94191aa49d4d809ec3e2fefeeab3a4 DE-627 ger DE-627 rakwb eng QA75.5-76.95 Zehra Shah verfasserin aut Learning Language and Acoustic Models for Identifying Alzheimer’s Dementia From Speech 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Alzheimer’s dementia (AD) is a chronic neurodegenerative illness that manifests in a gradual decline of cognitive function. Early identification of AD is essential for managing the ensuing cognitive deficits, which may lead to a better prognostic outcome. Speech data can serve as a window into cognitive functioning and can be used to screen for early signs of AD. This paper describes methods for learning models using speech samples from the DementiaBank database, for identifying which subjects have Alzheimer’s dementia. We consider two machine learning tasks: 1) binary classification to distinguish patients from healthy controls, and 2) regression to estimate each subject’s Mini-Mental State Examination (MMSE) score. To develop models that can use acoustic and/or language features, we explore a variety of dimension reduction techniques, training algorithms, and fusion strategies. Our best performing classification model, using language features with dimension reduction and regularized logistic regression, achieves an accuracy of 85.4% on a held-out test set. On the regression task, a linear regression model trained on a reduced set of language features achieves a root mean square error (RMSE) of 5.62 on the test set. These results demonstrate the promise of using machine learning for detecting cognitive decline from speech in AD patients. speech and audio classification pathological speech and language automatic analysis of speaker states and traits machine learning natural language proceeding (NLP) Electronic computers. Computer science Jeffrey Sawalha verfasserin aut Mashrura Tasnim verfasserin aut Shi-ang Qi verfasserin aut Eleni Stroulia verfasserin aut Russell Greiner verfasserin aut Russell Greiner verfasserin aut Russell Greiner verfasserin aut In Frontiers in Computer Science Frontiers Media S.A., 2019 3(2021) (DE-627)169122393X (DE-600)3010036-7 26249898 nnns volume:3 year:2021 https://doi.org/10.3389/fcomp.2021.624659 kostenfrei https://doaj.org/article/5b94191aa49d4d809ec3e2fefeeab3a4 kostenfrei https://www.frontiersin.org/articles/10.3389/fcomp.2021.624659/full kostenfrei https://doaj.org/toc/2624-9898 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2021 |
allfields_unstemmed |
10.3389/fcomp.2021.624659 doi (DE-627)DOAJ066400171 (DE-599)DOAJ5b94191aa49d4d809ec3e2fefeeab3a4 DE-627 ger DE-627 rakwb eng QA75.5-76.95 Zehra Shah verfasserin aut Learning Language and Acoustic Models for Identifying Alzheimer’s Dementia From Speech 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Alzheimer’s dementia (AD) is a chronic neurodegenerative illness that manifests in a gradual decline of cognitive function. Early identification of AD is essential for managing the ensuing cognitive deficits, which may lead to a better prognostic outcome. Speech data can serve as a window into cognitive functioning and can be used to screen for early signs of AD. This paper describes methods for learning models using speech samples from the DementiaBank database, for identifying which subjects have Alzheimer’s dementia. We consider two machine learning tasks: 1) binary classification to distinguish patients from healthy controls, and 2) regression to estimate each subject’s Mini-Mental State Examination (MMSE) score. To develop models that can use acoustic and/or language features, we explore a variety of dimension reduction techniques, training algorithms, and fusion strategies. Our best performing classification model, using language features with dimension reduction and regularized logistic regression, achieves an accuracy of 85.4% on a held-out test set. On the regression task, a linear regression model trained on a reduced set of language features achieves a root mean square error (RMSE) of 5.62 on the test set. These results demonstrate the promise of using machine learning for detecting cognitive decline from speech in AD patients. speech and audio classification pathological speech and language automatic analysis of speaker states and traits machine learning natural language proceeding (NLP) Electronic computers. Computer science Jeffrey Sawalha verfasserin aut Mashrura Tasnim verfasserin aut Shi-ang Qi verfasserin aut Eleni Stroulia verfasserin aut Russell Greiner verfasserin aut Russell Greiner verfasserin aut Russell Greiner verfasserin aut In Frontiers in Computer Science Frontiers Media S.A., 2019 3(2021) (DE-627)169122393X (DE-600)3010036-7 26249898 nnns volume:3 year:2021 https://doi.org/10.3389/fcomp.2021.624659 kostenfrei https://doaj.org/article/5b94191aa49d4d809ec3e2fefeeab3a4 kostenfrei https://www.frontiersin.org/articles/10.3389/fcomp.2021.624659/full kostenfrei https://doaj.org/toc/2624-9898 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2021 |
allfieldsGer |
10.3389/fcomp.2021.624659 doi (DE-627)DOAJ066400171 (DE-599)DOAJ5b94191aa49d4d809ec3e2fefeeab3a4 DE-627 ger DE-627 rakwb eng QA75.5-76.95 Zehra Shah verfasserin aut Learning Language and Acoustic Models for Identifying Alzheimer’s Dementia From Speech 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Alzheimer’s dementia (AD) is a chronic neurodegenerative illness that manifests in a gradual decline of cognitive function. Early identification of AD is essential for managing the ensuing cognitive deficits, which may lead to a better prognostic outcome. Speech data can serve as a window into cognitive functioning and can be used to screen for early signs of AD. This paper describes methods for learning models using speech samples from the DementiaBank database, for identifying which subjects have Alzheimer’s dementia. We consider two machine learning tasks: 1) binary classification to distinguish patients from healthy controls, and 2) regression to estimate each subject’s Mini-Mental State Examination (MMSE) score. To develop models that can use acoustic and/or language features, we explore a variety of dimension reduction techniques, training algorithms, and fusion strategies. Our best performing classification model, using language features with dimension reduction and regularized logistic regression, achieves an accuracy of 85.4% on a held-out test set. On the regression task, a linear regression model trained on a reduced set of language features achieves a root mean square error (RMSE) of 5.62 on the test set. These results demonstrate the promise of using machine learning for detecting cognitive decline from speech in AD patients. speech and audio classification pathological speech and language automatic analysis of speaker states and traits machine learning natural language proceeding (NLP) Electronic computers. Computer science Jeffrey Sawalha verfasserin aut Mashrura Tasnim verfasserin aut Shi-ang Qi verfasserin aut Eleni Stroulia verfasserin aut Russell Greiner verfasserin aut Russell Greiner verfasserin aut Russell Greiner verfasserin aut In Frontiers in Computer Science Frontiers Media S.A., 2019 3(2021) (DE-627)169122393X (DE-600)3010036-7 26249898 nnns volume:3 year:2021 https://doi.org/10.3389/fcomp.2021.624659 kostenfrei https://doaj.org/article/5b94191aa49d4d809ec3e2fefeeab3a4 kostenfrei https://www.frontiersin.org/articles/10.3389/fcomp.2021.624659/full kostenfrei https://doaj.org/toc/2624-9898 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2021 |
allfieldsSound |
10.3389/fcomp.2021.624659 doi (DE-627)DOAJ066400171 (DE-599)DOAJ5b94191aa49d4d809ec3e2fefeeab3a4 DE-627 ger DE-627 rakwb eng QA75.5-76.95 Zehra Shah verfasserin aut Learning Language and Acoustic Models for Identifying Alzheimer’s Dementia From Speech 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Alzheimer’s dementia (AD) is a chronic neurodegenerative illness that manifests in a gradual decline of cognitive function. Early identification of AD is essential for managing the ensuing cognitive deficits, which may lead to a better prognostic outcome. Speech data can serve as a window into cognitive functioning and can be used to screen for early signs of AD. This paper describes methods for learning models using speech samples from the DementiaBank database, for identifying which subjects have Alzheimer’s dementia. We consider two machine learning tasks: 1) binary classification to distinguish patients from healthy controls, and 2) regression to estimate each subject’s Mini-Mental State Examination (MMSE) score. To develop models that can use acoustic and/or language features, we explore a variety of dimension reduction techniques, training algorithms, and fusion strategies. Our best performing classification model, using language features with dimension reduction and regularized logistic regression, achieves an accuracy of 85.4% on a held-out test set. On the regression task, a linear regression model trained on a reduced set of language features achieves a root mean square error (RMSE) of 5.62 on the test set. These results demonstrate the promise of using machine learning for detecting cognitive decline from speech in AD patients. speech and audio classification pathological speech and language automatic analysis of speaker states and traits machine learning natural language proceeding (NLP) Electronic computers. Computer science Jeffrey Sawalha verfasserin aut Mashrura Tasnim verfasserin aut Shi-ang Qi verfasserin aut Eleni Stroulia verfasserin aut Russell Greiner verfasserin aut Russell Greiner verfasserin aut Russell Greiner verfasserin aut In Frontiers in Computer Science Frontiers Media S.A., 2019 3(2021) (DE-627)169122393X (DE-600)3010036-7 26249898 nnns volume:3 year:2021 https://doi.org/10.3389/fcomp.2021.624659 kostenfrei https://doaj.org/article/5b94191aa49d4d809ec3e2fefeeab3a4 kostenfrei https://www.frontiersin.org/articles/10.3389/fcomp.2021.624659/full kostenfrei https://doaj.org/toc/2624-9898 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2021 |
language |
English |
source |
In Frontiers in Computer Science 3(2021) volume:3 year:2021 |
sourceStr |
In Frontiers in Computer Science 3(2021) volume:3 year:2021 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
speech and audio classification pathological speech and language automatic analysis of speaker states and traits machine learning natural language proceeding (NLP) Electronic computers. Computer science |
isfreeaccess_bool |
true |
container_title |
Frontiers in Computer Science |
authorswithroles_txt_mv |
Zehra Shah @@aut@@ Jeffrey Sawalha @@aut@@ Mashrura Tasnim @@aut@@ Shi-ang Qi @@aut@@ Eleni Stroulia @@aut@@ Russell Greiner @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
169122393X |
id |
DOAJ066400171 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ066400171</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503151252.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fcomp.2021.624659</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ066400171</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5b94191aa49d4d809ec3e2fefeeab3a4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA75.5-76.95</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Zehra Shah</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Learning Language and Acoustic Models for Identifying Alzheimer’s Dementia From Speech</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Alzheimer’s dementia (AD) is a chronic neurodegenerative illness that manifests in a gradual decline of cognitive function. Early identification of AD is essential for managing the ensuing cognitive deficits, which may lead to a better prognostic outcome. Speech data can serve as a window into cognitive functioning and can be used to screen for early signs of AD. This paper describes methods for learning models using speech samples from the DementiaBank database, for identifying which subjects have Alzheimer’s dementia. We consider two machine learning tasks: 1) binary classification to distinguish patients from healthy controls, and 2) regression to estimate each subject’s Mini-Mental State Examination (MMSE) score. To develop models that can use acoustic and/or language features, we explore a variety of dimension reduction techniques, training algorithms, and fusion strategies. Our best performing classification model, using language features with dimension reduction and regularized logistic regression, achieves an accuracy of 85.4% on a held-out test set. On the regression task, a linear regression model trained on a reduced set of language features achieves a root mean square error (RMSE) of 5.62 on the test set. These results demonstrate the promise of using machine learning for detecting cognitive decline from speech in AD patients.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">speech and audio classification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pathological speech and language</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">automatic analysis of speaker states and traits</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">natural language proceeding (NLP)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronic computers. Computer science</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jeffrey Sawalha</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mashrura Tasnim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shi-ang Qi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Eleni Stroulia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Russell Greiner</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Russell Greiner</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Russell Greiner</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Computer Science</subfield><subfield code="d">Frontiers Media S.A., 2019</subfield><subfield code="g">3(2021)</subfield><subfield code="w">(DE-627)169122393X</subfield><subfield code="w">(DE-600)3010036-7</subfield><subfield code="x">26249898</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:3</subfield><subfield code="g">year:2021</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fcomp.2021.624659</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5b94191aa49d4d809ec3e2fefeeab3a4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/fcomp.2021.624659/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2624-9898</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">3</subfield><subfield code="j">2021</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Zehra Shah |
spellingShingle |
Zehra Shah misc QA75.5-76.95 misc speech and audio classification misc pathological speech and language misc automatic analysis of speaker states and traits misc machine learning misc natural language proceeding (NLP) misc Electronic computers. Computer science Learning Language and Acoustic Models for Identifying Alzheimer’s Dementia From Speech |
authorStr |
Zehra Shah |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)169122393X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA75 |
illustrated |
Not Illustrated |
issn |
26249898 |
topic_title |
QA75.5-76.95 Learning Language and Acoustic Models for Identifying Alzheimer’s Dementia From Speech speech and audio classification pathological speech and language automatic analysis of speaker states and traits machine learning natural language proceeding (NLP) |
topic |
misc QA75.5-76.95 misc speech and audio classification misc pathological speech and language misc automatic analysis of speaker states and traits misc machine learning misc natural language proceeding (NLP) misc Electronic computers. Computer science |
topic_unstemmed |
misc QA75.5-76.95 misc speech and audio classification misc pathological speech and language misc automatic analysis of speaker states and traits misc machine learning misc natural language proceeding (NLP) misc Electronic computers. Computer science |
topic_browse |
misc QA75.5-76.95 misc speech and audio classification misc pathological speech and language misc automatic analysis of speaker states and traits misc machine learning misc natural language proceeding (NLP) misc Electronic computers. Computer science |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Frontiers in Computer Science |
hierarchy_parent_id |
169122393X |
hierarchy_top_title |
Frontiers in Computer Science |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)169122393X (DE-600)3010036-7 |
title |
Learning Language and Acoustic Models for Identifying Alzheimer’s Dementia From Speech |
ctrlnum |
(DE-627)DOAJ066400171 (DE-599)DOAJ5b94191aa49d4d809ec3e2fefeeab3a4 |
title_full |
Learning Language and Acoustic Models for Identifying Alzheimer’s Dementia From Speech |
author_sort |
Zehra Shah |
journal |
Frontiers in Computer Science |
journalStr |
Frontiers in Computer Science |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Zehra Shah Jeffrey Sawalha Mashrura Tasnim Shi-ang Qi Eleni Stroulia Russell Greiner |
container_volume |
3 |
class |
QA75.5-76.95 |
format_se |
Elektronische Aufsätze |
author-letter |
Zehra Shah |
doi_str_mv |
10.3389/fcomp.2021.624659 |
author2-role |
verfasserin |
title_sort |
learning language and acoustic models for identifying alzheimer’s dementia from speech |
callnumber |
QA75.5-76.95 |
title_auth |
Learning Language and Acoustic Models for Identifying Alzheimer’s Dementia From Speech |
abstract |
Alzheimer’s dementia (AD) is a chronic neurodegenerative illness that manifests in a gradual decline of cognitive function. Early identification of AD is essential for managing the ensuing cognitive deficits, which may lead to a better prognostic outcome. Speech data can serve as a window into cognitive functioning and can be used to screen for early signs of AD. This paper describes methods for learning models using speech samples from the DementiaBank database, for identifying which subjects have Alzheimer’s dementia. We consider two machine learning tasks: 1) binary classification to distinguish patients from healthy controls, and 2) regression to estimate each subject’s Mini-Mental State Examination (MMSE) score. To develop models that can use acoustic and/or language features, we explore a variety of dimension reduction techniques, training algorithms, and fusion strategies. Our best performing classification model, using language features with dimension reduction and regularized logistic regression, achieves an accuracy of 85.4% on a held-out test set. On the regression task, a linear regression model trained on a reduced set of language features achieves a root mean square error (RMSE) of 5.62 on the test set. These results demonstrate the promise of using machine learning for detecting cognitive decline from speech in AD patients. |
abstractGer |
Alzheimer’s dementia (AD) is a chronic neurodegenerative illness that manifests in a gradual decline of cognitive function. Early identification of AD is essential for managing the ensuing cognitive deficits, which may lead to a better prognostic outcome. Speech data can serve as a window into cognitive functioning and can be used to screen for early signs of AD. This paper describes methods for learning models using speech samples from the DementiaBank database, for identifying which subjects have Alzheimer’s dementia. We consider two machine learning tasks: 1) binary classification to distinguish patients from healthy controls, and 2) regression to estimate each subject’s Mini-Mental State Examination (MMSE) score. To develop models that can use acoustic and/or language features, we explore a variety of dimension reduction techniques, training algorithms, and fusion strategies. Our best performing classification model, using language features with dimension reduction and regularized logistic regression, achieves an accuracy of 85.4% on a held-out test set. On the regression task, a linear regression model trained on a reduced set of language features achieves a root mean square error (RMSE) of 5.62 on the test set. These results demonstrate the promise of using machine learning for detecting cognitive decline from speech in AD patients. |
abstract_unstemmed |
Alzheimer’s dementia (AD) is a chronic neurodegenerative illness that manifests in a gradual decline of cognitive function. Early identification of AD is essential for managing the ensuing cognitive deficits, which may lead to a better prognostic outcome. Speech data can serve as a window into cognitive functioning and can be used to screen for early signs of AD. This paper describes methods for learning models using speech samples from the DementiaBank database, for identifying which subjects have Alzheimer’s dementia. We consider two machine learning tasks: 1) binary classification to distinguish patients from healthy controls, and 2) regression to estimate each subject’s Mini-Mental State Examination (MMSE) score. To develop models that can use acoustic and/or language features, we explore a variety of dimension reduction techniques, training algorithms, and fusion strategies. Our best performing classification model, using language features with dimension reduction and regularized logistic regression, achieves an accuracy of 85.4% on a held-out test set. On the regression task, a linear regression model trained on a reduced set of language features achieves a root mean square error (RMSE) of 5.62 on the test set. These results demonstrate the promise of using machine learning for detecting cognitive decline from speech in AD patients. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Learning Language and Acoustic Models for Identifying Alzheimer’s Dementia From Speech |
url |
https://doi.org/10.3389/fcomp.2021.624659 https://doaj.org/article/5b94191aa49d4d809ec3e2fefeeab3a4 https://www.frontiersin.org/articles/10.3389/fcomp.2021.624659/full https://doaj.org/toc/2624-9898 |
remote_bool |
true |
author2 |
Jeffrey Sawalha Mashrura Tasnim Shi-ang Qi Eleni Stroulia Russell Greiner |
author2Str |
Jeffrey Sawalha Mashrura Tasnim Shi-ang Qi Eleni Stroulia Russell Greiner |
ppnlink |
169122393X |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3389/fcomp.2021.624659 |
callnumber-a |
QA75.5-76.95 |
up_date |
2024-07-03T19:50:55.769Z |
_version_ |
1803588736934477824 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ066400171</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503151252.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fcomp.2021.624659</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ066400171</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5b94191aa49d4d809ec3e2fefeeab3a4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA75.5-76.95</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Zehra Shah</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Learning Language and Acoustic Models for Identifying Alzheimer’s Dementia From Speech</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Alzheimer’s dementia (AD) is a chronic neurodegenerative illness that manifests in a gradual decline of cognitive function. Early identification of AD is essential for managing the ensuing cognitive deficits, which may lead to a better prognostic outcome. Speech data can serve as a window into cognitive functioning and can be used to screen for early signs of AD. This paper describes methods for learning models using speech samples from the DementiaBank database, for identifying which subjects have Alzheimer’s dementia. We consider two machine learning tasks: 1) binary classification to distinguish patients from healthy controls, and 2) regression to estimate each subject’s Mini-Mental State Examination (MMSE) score. To develop models that can use acoustic and/or language features, we explore a variety of dimension reduction techniques, training algorithms, and fusion strategies. Our best performing classification model, using language features with dimension reduction and regularized logistic regression, achieves an accuracy of 85.4% on a held-out test set. On the regression task, a linear regression model trained on a reduced set of language features achieves a root mean square error (RMSE) of 5.62 on the test set. These results demonstrate the promise of using machine learning for detecting cognitive decline from speech in AD patients.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">speech and audio classification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pathological speech and language</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">automatic analysis of speaker states and traits</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">natural language proceeding (NLP)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronic computers. Computer science</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jeffrey Sawalha</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mashrura Tasnim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shi-ang Qi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Eleni Stroulia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Russell Greiner</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Russell Greiner</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Russell Greiner</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Computer Science</subfield><subfield code="d">Frontiers Media S.A., 2019</subfield><subfield code="g">3(2021)</subfield><subfield code="w">(DE-627)169122393X</subfield><subfield code="w">(DE-600)3010036-7</subfield><subfield code="x">26249898</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:3</subfield><subfield code="g">year:2021</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fcomp.2021.624659</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5b94191aa49d4d809ec3e2fefeeab3a4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/fcomp.2021.624659/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2624-9898</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">3</subfield><subfield code="j">2021</subfield></datafield></record></collection>
|
score |
7.4010077 |