XCO<sub<2</sub< observations using satellite measurements with moderate spectral resolution: investigation using GOSAT and OCO-2 measurements
<p<In light of the proposed space segment of Europe's future <span class="inline-formula"<CO<sub<2</sub<</span< monitoring system, we investigate the spectral resolution of the <span class="inline-formula"<CO<sub<2</sub<</sp...
Ausführliche Beschreibung
Autor*in: |
L. Wu [verfasserIn] J. aan de Brugh [verfasserIn] Y. Meijer [verfasserIn] B. Sierk [verfasserIn] O. Hasekamp [verfasserIn] A. Butz [verfasserIn] J. Landgraf [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Übergeordnetes Werk: |
In: Atmospheric Measurement Techniques - Copernicus Publications, 2009, 13(2020), Seite 713-729 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2020 ; pages:713-729 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.5194/amt-13-713-2020 |
---|
Katalog-ID: |
DOAJ066496330 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ066496330 | ||
003 | DE-627 | ||
005 | 20230309061507.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.5194/amt-13-713-2020 |2 doi | |
035 | |a (DE-627)DOAJ066496330 | ||
035 | |a (DE-599)DOAJab282c291d394d39a6e4a0f467c76f45 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA170-171 | |
050 | 0 | |a TA715-787 | |
100 | 0 | |a L. Wu |e verfasserin |4 aut | |
245 | 1 | 0 | |a XCO<sub<2</sub< observations using satellite measurements with moderate spectral resolution: investigation using GOSAT and OCO-2 measurements |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a <p<In light of the proposed space segment of Europe's future <span class="inline-formula"<CO<sub<2</sub<</span< monitoring system, we investigate the spectral resolution of the <span class="inline-formula"<CO<sub<2</sub<</span< spectrometer, which measures earthshine radiance in the three relevant spectral bands at 0.76, 1.61, and 2.06 <span class="inline-formula"<µm</span<. The Orbiting Carbon Observatory-2 (OCO-2) mission covers these bands with fine spectral resolution but limited spatial coverage, which hampers the monitoring of localized anthropogenic <span class="inline-formula"<CO<sub<2</sub<</span< emission. The future European <span class="inline-formula"<CO<sub<2</sub<</span< monitoring constellation, currently undergoing feasibility studies at the European Space Agency (ESA), is targeting a moderate spectral resolution of 0.1, 0.3, and 0.3–0.55 <span class="inline-formula"<nm</span< in the three spectral bands with a high signal-to-noise ratio (SNR) as well as a spatial resolution of 4 <span class="inline-formula"<km<sup<2</sup<</span< and an across-track swath width <span class="inline-formula"<>250</span< <span class="inline-formula"<km</span<. This spectral and radiometric sizing is deemed to be favorable for large-swath imaging of point sources of <span class="inline-formula"<CO<sub<2</sub<</span< emission. To assess this choice, we use real and synthetic OCO-2 satellite observations, which we spectrally degrade to the envisaged lower spectral resolution. We evaluate the corresponding <span class="inline-formula"<CO<sub<2</sub<</span< retrieval accuracy by taking the Total Carbon Column Observing Network (TCCON) observations as reference. Here, a lower spectral resolution enhances the scatter error of the retrieved <span class="inline-formula"<CO<sub<2</sub<</span< column mixing ratio (<span class="inline-formula"<XCO<sub<2</sub<</span<) but has little effect on the station-to-station variation in the biases. We show that the scatter error gradually increases with decreasing spectral resolution. Part of the scatter error increase can be attributed to the retrieval noise error which can be compensated for by a future instrument with improved SNR. Moreover, we consider the effect of the reduced spectral resolution on the capability to capture regional <span class="inline-formula"<XCO<sub<2</sub<</span< variations and <span class="inline-formula"<XCO<sub<2</sub<</span< plumes from selected OCO-2 orbits. The investigation using measurements from the Greenhouse gases Observing SATellite (GOSAT) and synthetic measurements confirms our finding and indicates that one major source of uncertainties regarding <span class="inline-formula"<CO<sub<2</sub<</span< retrieval is the insufficient information on aerosol properties that can be inferred from the observations. We hence recommend the implementation of simultaneous, co-located measurements that have a larger information content on aerosols with an auxiliary instrument in the future European observing system.</p< | ||
653 | 0 | |a Environmental engineering | |
653 | 0 | |a Earthwork. Foundations | |
700 | 0 | |a J. aan de Brugh |e verfasserin |4 aut | |
700 | 0 | |a Y. Meijer |e verfasserin |4 aut | |
700 | 0 | |a B. Sierk |e verfasserin |4 aut | |
700 | 0 | |a O. Hasekamp |e verfasserin |4 aut | |
700 | 0 | |a A. Butz |e verfasserin |4 aut | |
700 | 0 | |a J. Landgraf |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Atmospheric Measurement Techniques |d Copernicus Publications, 2009 |g 13(2020), Seite 713-729 |w (DE-627)605214441 |w (DE-600)2505596-3 |x 18678548 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2020 |g pages:713-729 |
856 | 4 | 0 | |u https://doi.org/10.5194/amt-13-713-2020 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/ab282c291d394d39a6e4a0f467c76f45 |z kostenfrei |
856 | 4 | 0 | |u https://www.atmos-meas-tech.net/13/713/2020/amt-13-713-2020.pdf |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1867-1381 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1867-8548 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2020 |h 713-729 |
author_variant |
l w lw j a d b jadb y m ym b s bs o h oh a b ab j l jl |
---|---|
matchkey_str |
article:18678548:2020----::csbsbbevtossnstlieesrmnsihoeaepcrleouinnetgto |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
TA |
publishDate |
2020 |
allfields |
10.5194/amt-13-713-2020 doi (DE-627)DOAJ066496330 (DE-599)DOAJab282c291d394d39a6e4a0f467c76f45 DE-627 ger DE-627 rakwb eng TA170-171 TA715-787 L. Wu verfasserin aut XCO<sub<2</sub< observations using satellite measurements with moderate spectral resolution: investigation using GOSAT and OCO-2 measurements 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <p<In light of the proposed space segment of Europe's future <span class="inline-formula"<CO<sub<2</sub<</span< monitoring system, we investigate the spectral resolution of the <span class="inline-formula"<CO<sub<2</sub<</span< spectrometer, which measures earthshine radiance in the three relevant spectral bands at 0.76, 1.61, and 2.06 <span class="inline-formula"<µm</span<. The Orbiting Carbon Observatory-2 (OCO-2) mission covers these bands with fine spectral resolution but limited spatial coverage, which hampers the monitoring of localized anthropogenic <span class="inline-formula"<CO<sub<2</sub<</span< emission. The future European <span class="inline-formula"<CO<sub<2</sub<</span< monitoring constellation, currently undergoing feasibility studies at the European Space Agency (ESA), is targeting a moderate spectral resolution of 0.1, 0.3, and 0.3–0.55 <span class="inline-formula"<nm</span< in the three spectral bands with a high signal-to-noise ratio (SNR) as well as a spatial resolution of 4 <span class="inline-formula"<km<sup<2</sup<</span< and an across-track swath width <span class="inline-formula"<>250</span< <span class="inline-formula"<km</span<. This spectral and radiometric sizing is deemed to be favorable for large-swath imaging of point sources of <span class="inline-formula"<CO<sub<2</sub<</span< emission. To assess this choice, we use real and synthetic OCO-2 satellite observations, which we spectrally degrade to the envisaged lower spectral resolution. We evaluate the corresponding <span class="inline-formula"<CO<sub<2</sub<</span< retrieval accuracy by taking the Total Carbon Column Observing Network (TCCON) observations as reference. Here, a lower spectral resolution enhances the scatter error of the retrieved <span class="inline-formula"<CO<sub<2</sub<</span< column mixing ratio (<span class="inline-formula"<XCO<sub<2</sub<</span<) but has little effect on the station-to-station variation in the biases. We show that the scatter error gradually increases with decreasing spectral resolution. Part of the scatter error increase can be attributed to the retrieval noise error which can be compensated for by a future instrument with improved SNR. Moreover, we consider the effect of the reduced spectral resolution on the capability to capture regional <span class="inline-formula"<XCO<sub<2</sub<</span< variations and <span class="inline-formula"<XCO<sub<2</sub<</span< plumes from selected OCO-2 orbits. The investigation using measurements from the Greenhouse gases Observing SATellite (GOSAT) and synthetic measurements confirms our finding and indicates that one major source of uncertainties regarding <span class="inline-formula"<CO<sub<2</sub<</span< retrieval is the insufficient information on aerosol properties that can be inferred from the observations. We hence recommend the implementation of simultaneous, co-located measurements that have a larger information content on aerosols with an auxiliary instrument in the future European observing system.</p< Environmental engineering Earthwork. Foundations J. aan de Brugh verfasserin aut Y. Meijer verfasserin aut B. Sierk verfasserin aut O. Hasekamp verfasserin aut A. Butz verfasserin aut J. Landgraf verfasserin aut In Atmospheric Measurement Techniques Copernicus Publications, 2009 13(2020), Seite 713-729 (DE-627)605214441 (DE-600)2505596-3 18678548 nnns volume:13 year:2020 pages:713-729 https://doi.org/10.5194/amt-13-713-2020 kostenfrei https://doaj.org/article/ab282c291d394d39a6e4a0f467c76f45 kostenfrei https://www.atmos-meas-tech.net/13/713/2020/amt-13-713-2020.pdf kostenfrei https://doaj.org/toc/1867-1381 Journal toc kostenfrei https://doaj.org/toc/1867-8548 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_267 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2020 713-729 |
spelling |
10.5194/amt-13-713-2020 doi (DE-627)DOAJ066496330 (DE-599)DOAJab282c291d394d39a6e4a0f467c76f45 DE-627 ger DE-627 rakwb eng TA170-171 TA715-787 L. Wu verfasserin aut XCO<sub<2</sub< observations using satellite measurements with moderate spectral resolution: investigation using GOSAT and OCO-2 measurements 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <p<In light of the proposed space segment of Europe's future <span class="inline-formula"<CO<sub<2</sub<</span< monitoring system, we investigate the spectral resolution of the <span class="inline-formula"<CO<sub<2</sub<</span< spectrometer, which measures earthshine radiance in the three relevant spectral bands at 0.76, 1.61, and 2.06 <span class="inline-formula"<µm</span<. The Orbiting Carbon Observatory-2 (OCO-2) mission covers these bands with fine spectral resolution but limited spatial coverage, which hampers the monitoring of localized anthropogenic <span class="inline-formula"<CO<sub<2</sub<</span< emission. The future European <span class="inline-formula"<CO<sub<2</sub<</span< monitoring constellation, currently undergoing feasibility studies at the European Space Agency (ESA), is targeting a moderate spectral resolution of 0.1, 0.3, and 0.3–0.55 <span class="inline-formula"<nm</span< in the three spectral bands with a high signal-to-noise ratio (SNR) as well as a spatial resolution of 4 <span class="inline-formula"<km<sup<2</sup<</span< and an across-track swath width <span class="inline-formula"<>250</span< <span class="inline-formula"<km</span<. This spectral and radiometric sizing is deemed to be favorable for large-swath imaging of point sources of <span class="inline-formula"<CO<sub<2</sub<</span< emission. To assess this choice, we use real and synthetic OCO-2 satellite observations, which we spectrally degrade to the envisaged lower spectral resolution. We evaluate the corresponding <span class="inline-formula"<CO<sub<2</sub<</span< retrieval accuracy by taking the Total Carbon Column Observing Network (TCCON) observations as reference. Here, a lower spectral resolution enhances the scatter error of the retrieved <span class="inline-formula"<CO<sub<2</sub<</span< column mixing ratio (<span class="inline-formula"<XCO<sub<2</sub<</span<) but has little effect on the station-to-station variation in the biases. We show that the scatter error gradually increases with decreasing spectral resolution. Part of the scatter error increase can be attributed to the retrieval noise error which can be compensated for by a future instrument with improved SNR. Moreover, we consider the effect of the reduced spectral resolution on the capability to capture regional <span class="inline-formula"<XCO<sub<2</sub<</span< variations and <span class="inline-formula"<XCO<sub<2</sub<</span< plumes from selected OCO-2 orbits. The investigation using measurements from the Greenhouse gases Observing SATellite (GOSAT) and synthetic measurements confirms our finding and indicates that one major source of uncertainties regarding <span class="inline-formula"<CO<sub<2</sub<</span< retrieval is the insufficient information on aerosol properties that can be inferred from the observations. We hence recommend the implementation of simultaneous, co-located measurements that have a larger information content on aerosols with an auxiliary instrument in the future European observing system.</p< Environmental engineering Earthwork. Foundations J. aan de Brugh verfasserin aut Y. Meijer verfasserin aut B. Sierk verfasserin aut O. Hasekamp verfasserin aut A. Butz verfasserin aut J. Landgraf verfasserin aut In Atmospheric Measurement Techniques Copernicus Publications, 2009 13(2020), Seite 713-729 (DE-627)605214441 (DE-600)2505596-3 18678548 nnns volume:13 year:2020 pages:713-729 https://doi.org/10.5194/amt-13-713-2020 kostenfrei https://doaj.org/article/ab282c291d394d39a6e4a0f467c76f45 kostenfrei https://www.atmos-meas-tech.net/13/713/2020/amt-13-713-2020.pdf kostenfrei https://doaj.org/toc/1867-1381 Journal toc kostenfrei https://doaj.org/toc/1867-8548 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_267 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2020 713-729 |
allfields_unstemmed |
10.5194/amt-13-713-2020 doi (DE-627)DOAJ066496330 (DE-599)DOAJab282c291d394d39a6e4a0f467c76f45 DE-627 ger DE-627 rakwb eng TA170-171 TA715-787 L. Wu verfasserin aut XCO<sub<2</sub< observations using satellite measurements with moderate spectral resolution: investigation using GOSAT and OCO-2 measurements 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <p<In light of the proposed space segment of Europe's future <span class="inline-formula"<CO<sub<2</sub<</span< monitoring system, we investigate the spectral resolution of the <span class="inline-formula"<CO<sub<2</sub<</span< spectrometer, which measures earthshine radiance in the three relevant spectral bands at 0.76, 1.61, and 2.06 <span class="inline-formula"<µm</span<. The Orbiting Carbon Observatory-2 (OCO-2) mission covers these bands with fine spectral resolution but limited spatial coverage, which hampers the monitoring of localized anthropogenic <span class="inline-formula"<CO<sub<2</sub<</span< emission. The future European <span class="inline-formula"<CO<sub<2</sub<</span< monitoring constellation, currently undergoing feasibility studies at the European Space Agency (ESA), is targeting a moderate spectral resolution of 0.1, 0.3, and 0.3–0.55 <span class="inline-formula"<nm</span< in the three spectral bands with a high signal-to-noise ratio (SNR) as well as a spatial resolution of 4 <span class="inline-formula"<km<sup<2</sup<</span< and an across-track swath width <span class="inline-formula"<>250</span< <span class="inline-formula"<km</span<. This spectral and radiometric sizing is deemed to be favorable for large-swath imaging of point sources of <span class="inline-formula"<CO<sub<2</sub<</span< emission. To assess this choice, we use real and synthetic OCO-2 satellite observations, which we spectrally degrade to the envisaged lower spectral resolution. We evaluate the corresponding <span class="inline-formula"<CO<sub<2</sub<</span< retrieval accuracy by taking the Total Carbon Column Observing Network (TCCON) observations as reference. Here, a lower spectral resolution enhances the scatter error of the retrieved <span class="inline-formula"<CO<sub<2</sub<</span< column mixing ratio (<span class="inline-formula"<XCO<sub<2</sub<</span<) but has little effect on the station-to-station variation in the biases. We show that the scatter error gradually increases with decreasing spectral resolution. Part of the scatter error increase can be attributed to the retrieval noise error which can be compensated for by a future instrument with improved SNR. Moreover, we consider the effect of the reduced spectral resolution on the capability to capture regional <span class="inline-formula"<XCO<sub<2</sub<</span< variations and <span class="inline-formula"<XCO<sub<2</sub<</span< plumes from selected OCO-2 orbits. The investigation using measurements from the Greenhouse gases Observing SATellite (GOSAT) and synthetic measurements confirms our finding and indicates that one major source of uncertainties regarding <span class="inline-formula"<CO<sub<2</sub<</span< retrieval is the insufficient information on aerosol properties that can be inferred from the observations. We hence recommend the implementation of simultaneous, co-located measurements that have a larger information content on aerosols with an auxiliary instrument in the future European observing system.</p< Environmental engineering Earthwork. Foundations J. aan de Brugh verfasserin aut Y. Meijer verfasserin aut B. Sierk verfasserin aut O. Hasekamp verfasserin aut A. Butz verfasserin aut J. Landgraf verfasserin aut In Atmospheric Measurement Techniques Copernicus Publications, 2009 13(2020), Seite 713-729 (DE-627)605214441 (DE-600)2505596-3 18678548 nnns volume:13 year:2020 pages:713-729 https://doi.org/10.5194/amt-13-713-2020 kostenfrei https://doaj.org/article/ab282c291d394d39a6e4a0f467c76f45 kostenfrei https://www.atmos-meas-tech.net/13/713/2020/amt-13-713-2020.pdf kostenfrei https://doaj.org/toc/1867-1381 Journal toc kostenfrei https://doaj.org/toc/1867-8548 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_267 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2020 713-729 |
allfieldsGer |
10.5194/amt-13-713-2020 doi (DE-627)DOAJ066496330 (DE-599)DOAJab282c291d394d39a6e4a0f467c76f45 DE-627 ger DE-627 rakwb eng TA170-171 TA715-787 L. Wu verfasserin aut XCO<sub<2</sub< observations using satellite measurements with moderate spectral resolution: investigation using GOSAT and OCO-2 measurements 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <p<In light of the proposed space segment of Europe's future <span class="inline-formula"<CO<sub<2</sub<</span< monitoring system, we investigate the spectral resolution of the <span class="inline-formula"<CO<sub<2</sub<</span< spectrometer, which measures earthshine radiance in the three relevant spectral bands at 0.76, 1.61, and 2.06 <span class="inline-formula"<µm</span<. The Orbiting Carbon Observatory-2 (OCO-2) mission covers these bands with fine spectral resolution but limited spatial coverage, which hampers the monitoring of localized anthropogenic <span class="inline-formula"<CO<sub<2</sub<</span< emission. The future European <span class="inline-formula"<CO<sub<2</sub<</span< monitoring constellation, currently undergoing feasibility studies at the European Space Agency (ESA), is targeting a moderate spectral resolution of 0.1, 0.3, and 0.3–0.55 <span class="inline-formula"<nm</span< in the three spectral bands with a high signal-to-noise ratio (SNR) as well as a spatial resolution of 4 <span class="inline-formula"<km<sup<2</sup<</span< and an across-track swath width <span class="inline-formula"<>250</span< <span class="inline-formula"<km</span<. This spectral and radiometric sizing is deemed to be favorable for large-swath imaging of point sources of <span class="inline-formula"<CO<sub<2</sub<</span< emission. To assess this choice, we use real and synthetic OCO-2 satellite observations, which we spectrally degrade to the envisaged lower spectral resolution. We evaluate the corresponding <span class="inline-formula"<CO<sub<2</sub<</span< retrieval accuracy by taking the Total Carbon Column Observing Network (TCCON) observations as reference. Here, a lower spectral resolution enhances the scatter error of the retrieved <span class="inline-formula"<CO<sub<2</sub<</span< column mixing ratio (<span class="inline-formula"<XCO<sub<2</sub<</span<) but has little effect on the station-to-station variation in the biases. We show that the scatter error gradually increases with decreasing spectral resolution. Part of the scatter error increase can be attributed to the retrieval noise error which can be compensated for by a future instrument with improved SNR. Moreover, we consider the effect of the reduced spectral resolution on the capability to capture regional <span class="inline-formula"<XCO<sub<2</sub<</span< variations and <span class="inline-formula"<XCO<sub<2</sub<</span< plumes from selected OCO-2 orbits. The investigation using measurements from the Greenhouse gases Observing SATellite (GOSAT) and synthetic measurements confirms our finding and indicates that one major source of uncertainties regarding <span class="inline-formula"<CO<sub<2</sub<</span< retrieval is the insufficient information on aerosol properties that can be inferred from the observations. We hence recommend the implementation of simultaneous, co-located measurements that have a larger information content on aerosols with an auxiliary instrument in the future European observing system.</p< Environmental engineering Earthwork. Foundations J. aan de Brugh verfasserin aut Y. Meijer verfasserin aut B. Sierk verfasserin aut O. Hasekamp verfasserin aut A. Butz verfasserin aut J. Landgraf verfasserin aut In Atmospheric Measurement Techniques Copernicus Publications, 2009 13(2020), Seite 713-729 (DE-627)605214441 (DE-600)2505596-3 18678548 nnns volume:13 year:2020 pages:713-729 https://doi.org/10.5194/amt-13-713-2020 kostenfrei https://doaj.org/article/ab282c291d394d39a6e4a0f467c76f45 kostenfrei https://www.atmos-meas-tech.net/13/713/2020/amt-13-713-2020.pdf kostenfrei https://doaj.org/toc/1867-1381 Journal toc kostenfrei https://doaj.org/toc/1867-8548 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_267 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2020 713-729 |
allfieldsSound |
10.5194/amt-13-713-2020 doi (DE-627)DOAJ066496330 (DE-599)DOAJab282c291d394d39a6e4a0f467c76f45 DE-627 ger DE-627 rakwb eng TA170-171 TA715-787 L. Wu verfasserin aut XCO<sub<2</sub< observations using satellite measurements with moderate spectral resolution: investigation using GOSAT and OCO-2 measurements 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <p<In light of the proposed space segment of Europe's future <span class="inline-formula"<CO<sub<2</sub<</span< monitoring system, we investigate the spectral resolution of the <span class="inline-formula"<CO<sub<2</sub<</span< spectrometer, which measures earthshine radiance in the three relevant spectral bands at 0.76, 1.61, and 2.06 <span class="inline-formula"<µm</span<. The Orbiting Carbon Observatory-2 (OCO-2) mission covers these bands with fine spectral resolution but limited spatial coverage, which hampers the monitoring of localized anthropogenic <span class="inline-formula"<CO<sub<2</sub<</span< emission. The future European <span class="inline-formula"<CO<sub<2</sub<</span< monitoring constellation, currently undergoing feasibility studies at the European Space Agency (ESA), is targeting a moderate spectral resolution of 0.1, 0.3, and 0.3–0.55 <span class="inline-formula"<nm</span< in the three spectral bands with a high signal-to-noise ratio (SNR) as well as a spatial resolution of 4 <span class="inline-formula"<km<sup<2</sup<</span< and an across-track swath width <span class="inline-formula"<>250</span< <span class="inline-formula"<km</span<. This spectral and radiometric sizing is deemed to be favorable for large-swath imaging of point sources of <span class="inline-formula"<CO<sub<2</sub<</span< emission. To assess this choice, we use real and synthetic OCO-2 satellite observations, which we spectrally degrade to the envisaged lower spectral resolution. We evaluate the corresponding <span class="inline-formula"<CO<sub<2</sub<</span< retrieval accuracy by taking the Total Carbon Column Observing Network (TCCON) observations as reference. Here, a lower spectral resolution enhances the scatter error of the retrieved <span class="inline-formula"<CO<sub<2</sub<</span< column mixing ratio (<span class="inline-formula"<XCO<sub<2</sub<</span<) but has little effect on the station-to-station variation in the biases. We show that the scatter error gradually increases with decreasing spectral resolution. Part of the scatter error increase can be attributed to the retrieval noise error which can be compensated for by a future instrument with improved SNR. Moreover, we consider the effect of the reduced spectral resolution on the capability to capture regional <span class="inline-formula"<XCO<sub<2</sub<</span< variations and <span class="inline-formula"<XCO<sub<2</sub<</span< plumes from selected OCO-2 orbits. The investigation using measurements from the Greenhouse gases Observing SATellite (GOSAT) and synthetic measurements confirms our finding and indicates that one major source of uncertainties regarding <span class="inline-formula"<CO<sub<2</sub<</span< retrieval is the insufficient information on aerosol properties that can be inferred from the observations. We hence recommend the implementation of simultaneous, co-located measurements that have a larger information content on aerosols with an auxiliary instrument in the future European observing system.</p< Environmental engineering Earthwork. Foundations J. aan de Brugh verfasserin aut Y. Meijer verfasserin aut B. Sierk verfasserin aut O. Hasekamp verfasserin aut A. Butz verfasserin aut J. Landgraf verfasserin aut In Atmospheric Measurement Techniques Copernicus Publications, 2009 13(2020), Seite 713-729 (DE-627)605214441 (DE-600)2505596-3 18678548 nnns volume:13 year:2020 pages:713-729 https://doi.org/10.5194/amt-13-713-2020 kostenfrei https://doaj.org/article/ab282c291d394d39a6e4a0f467c76f45 kostenfrei https://www.atmos-meas-tech.net/13/713/2020/amt-13-713-2020.pdf kostenfrei https://doaj.org/toc/1867-1381 Journal toc kostenfrei https://doaj.org/toc/1867-8548 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_267 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2020 713-729 |
language |
English |
source |
In Atmospheric Measurement Techniques 13(2020), Seite 713-729 volume:13 year:2020 pages:713-729 |
sourceStr |
In Atmospheric Measurement Techniques 13(2020), Seite 713-729 volume:13 year:2020 pages:713-729 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Environmental engineering Earthwork. Foundations |
isfreeaccess_bool |
true |
container_title |
Atmospheric Measurement Techniques |
authorswithroles_txt_mv |
L. Wu @@aut@@ J. aan de Brugh @@aut@@ Y. Meijer @@aut@@ B. Sierk @@aut@@ O. Hasekamp @@aut@@ A. Butz @@aut@@ J. Landgraf @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
605214441 |
id |
DOAJ066496330 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ066496330</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309061507.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.5194/amt-13-713-2020</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ066496330</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJab282c291d394d39a6e4a0f467c76f45</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA170-171</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA715-787</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">L. Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">XCO<sub<2</sub< observations using satellite measurements with moderate spectral resolution: investigation using GOSAT and OCO-2 measurements</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a"><p<In light of the proposed space segment of Europe's future <span class="inline-formula"<CO<sub<2</sub<</span< monitoring system, we investigate the spectral resolution of the <span class="inline-formula"<CO<sub<2</sub<</span< spectrometer, which measures earthshine radiance in the three relevant spectral bands at 0.76, 1.61, and 2.06 <span class="inline-formula"<µm</span<. The Orbiting Carbon Observatory-2 (OCO-2) mission covers these bands with fine spectral resolution but limited spatial coverage, which hampers the monitoring of localized anthropogenic <span class="inline-formula"<CO<sub<2</sub<</span< emission. The future European <span class="inline-formula"<CO<sub<2</sub<</span< monitoring constellation, currently undergoing feasibility studies at the European Space Agency (ESA), is targeting a moderate spectral resolution of 0.1, 0.3, and 0.3–0.55 <span class="inline-formula"<nm</span< in the three spectral bands with a high signal-to-noise ratio (SNR) as well as a spatial resolution of 4 <span class="inline-formula"<km<sup<2</sup<</span< and an across-track swath width <span class="inline-formula"<&gt;250</span< <span class="inline-formula"<km</span<. This spectral and radiometric sizing is deemed to be favorable for large-swath imaging of point sources of <span class="inline-formula"<CO<sub<2</sub<</span< emission. To assess this choice, we use real and synthetic OCO-2 satellite observations, which we spectrally degrade to the envisaged lower spectral resolution. We evaluate the corresponding <span class="inline-formula"<CO<sub<2</sub<</span< retrieval accuracy by taking the Total Carbon Column Observing Network (TCCON) observations as reference. Here, a lower spectral resolution enhances the scatter error of the retrieved <span class="inline-formula"<CO<sub<2</sub<</span< column mixing ratio (<span class="inline-formula"<XCO<sub<2</sub<</span<) but has little effect on the station-to-station variation in the biases. We show that the scatter error gradually increases with decreasing spectral resolution. Part of the scatter error increase can be attributed to the retrieval noise error which can be compensated for by a future instrument with improved SNR. Moreover, we consider the effect of the reduced spectral resolution on the capability to capture regional <span class="inline-formula"<XCO<sub<2</sub<</span< variations and <span class="inline-formula"<XCO<sub<2</sub<</span< plumes from selected OCO-2 orbits. The investigation using measurements from the Greenhouse gases Observing SATellite (GOSAT) and synthetic measurements confirms our finding and indicates that one major source of uncertainties regarding <span class="inline-formula"<CO<sub<2</sub<</span< retrieval is the insufficient information on aerosol properties that can be inferred from the observations. We hence recommend the implementation of simultaneous, co-located measurements that have a larger information content on aerosols with an auxiliary instrument in the future European observing system.</p<</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Earthwork. Foundations</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">J. aan de Brugh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Y. Meijer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">B. Sierk</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">O. Hasekamp</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">A. Butz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">J. Landgraf</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Atmospheric Measurement Techniques</subfield><subfield code="d">Copernicus Publications, 2009</subfield><subfield code="g">13(2020), Seite 713-729</subfield><subfield code="w">(DE-627)605214441</subfield><subfield code="w">(DE-600)2505596-3</subfield><subfield code="x">18678548</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:713-729</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.5194/amt-13-713-2020</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ab282c291d394d39a6e4a0f467c76f45</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.atmos-meas-tech.net/13/713/2020/amt-13-713-2020.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1867-1381</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1867-8548</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2020</subfield><subfield code="h">713-729</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
L. Wu |
spellingShingle |
L. Wu misc TA170-171 misc TA715-787 misc Environmental engineering misc Earthwork. Foundations XCO<sub<2</sub< observations using satellite measurements with moderate spectral resolution: investigation using GOSAT and OCO-2 measurements |
authorStr |
L. Wu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)605214441 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA170-171 |
illustrated |
Not Illustrated |
issn |
18678548 |
topic_title |
TA170-171 TA715-787 XCO<sub<2</sub< observations using satellite measurements with moderate spectral resolution: investigation using GOSAT and OCO-2 measurements |
topic |
misc TA170-171 misc TA715-787 misc Environmental engineering misc Earthwork. Foundations |
topic_unstemmed |
misc TA170-171 misc TA715-787 misc Environmental engineering misc Earthwork. Foundations |
topic_browse |
misc TA170-171 misc TA715-787 misc Environmental engineering misc Earthwork. Foundations |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Atmospheric Measurement Techniques |
hierarchy_parent_id |
605214441 |
hierarchy_top_title |
Atmospheric Measurement Techniques |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)605214441 (DE-600)2505596-3 |
title |
XCO<sub<2</sub< observations using satellite measurements with moderate spectral resolution: investigation using GOSAT and OCO-2 measurements |
ctrlnum |
(DE-627)DOAJ066496330 (DE-599)DOAJab282c291d394d39a6e4a0f467c76f45 |
title_full |
XCO<sub<2</sub< observations using satellite measurements with moderate spectral resolution: investigation using GOSAT and OCO-2 measurements |
author_sort |
L. Wu |
journal |
Atmospheric Measurement Techniques |
journalStr |
Atmospheric Measurement Techniques |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
713 |
author_browse |
L. Wu J. aan de Brugh Y. Meijer B. Sierk O. Hasekamp A. Butz J. Landgraf |
container_volume |
13 |
class |
TA170-171 TA715-787 |
format_se |
Elektronische Aufsätze |
author-letter |
L. Wu |
doi_str_mv |
10.5194/amt-13-713-2020 |
author2-role |
verfasserin |
title_sort |
xco<sub<2</sub< observations using satellite measurements with moderate spectral resolution: investigation using gosat and oco-2 measurements |
callnumber |
TA170-171 |
title_auth |
XCO<sub<2</sub< observations using satellite measurements with moderate spectral resolution: investigation using GOSAT and OCO-2 measurements |
abstract |
<p<In light of the proposed space segment of Europe's future <span class="inline-formula"<CO<sub<2</sub<</span< monitoring system, we investigate the spectral resolution of the <span class="inline-formula"<CO<sub<2</sub<</span< spectrometer, which measures earthshine radiance in the three relevant spectral bands at 0.76, 1.61, and 2.06 <span class="inline-formula"<µm</span<. The Orbiting Carbon Observatory-2 (OCO-2) mission covers these bands with fine spectral resolution but limited spatial coverage, which hampers the monitoring of localized anthropogenic <span class="inline-formula"<CO<sub<2</sub<</span< emission. The future European <span class="inline-formula"<CO<sub<2</sub<</span< monitoring constellation, currently undergoing feasibility studies at the European Space Agency (ESA), is targeting a moderate spectral resolution of 0.1, 0.3, and 0.3–0.55 <span class="inline-formula"<nm</span< in the three spectral bands with a high signal-to-noise ratio (SNR) as well as a spatial resolution of 4 <span class="inline-formula"<km<sup<2</sup<</span< and an across-track swath width <span class="inline-formula"<>250</span< <span class="inline-formula"<km</span<. This spectral and radiometric sizing is deemed to be favorable for large-swath imaging of point sources of <span class="inline-formula"<CO<sub<2</sub<</span< emission. To assess this choice, we use real and synthetic OCO-2 satellite observations, which we spectrally degrade to the envisaged lower spectral resolution. We evaluate the corresponding <span class="inline-formula"<CO<sub<2</sub<</span< retrieval accuracy by taking the Total Carbon Column Observing Network (TCCON) observations as reference. Here, a lower spectral resolution enhances the scatter error of the retrieved <span class="inline-formula"<CO<sub<2</sub<</span< column mixing ratio (<span class="inline-formula"<XCO<sub<2</sub<</span<) but has little effect on the station-to-station variation in the biases. We show that the scatter error gradually increases with decreasing spectral resolution. Part of the scatter error increase can be attributed to the retrieval noise error which can be compensated for by a future instrument with improved SNR. Moreover, we consider the effect of the reduced spectral resolution on the capability to capture regional <span class="inline-formula"<XCO<sub<2</sub<</span< variations and <span class="inline-formula"<XCO<sub<2</sub<</span< plumes from selected OCO-2 orbits. The investigation using measurements from the Greenhouse gases Observing SATellite (GOSAT) and synthetic measurements confirms our finding and indicates that one major source of uncertainties regarding <span class="inline-formula"<CO<sub<2</sub<</span< retrieval is the insufficient information on aerosol properties that can be inferred from the observations. We hence recommend the implementation of simultaneous, co-located measurements that have a larger information content on aerosols with an auxiliary instrument in the future European observing system.</p< |
abstractGer |
<p<In light of the proposed space segment of Europe's future <span class="inline-formula"<CO<sub<2</sub<</span< monitoring system, we investigate the spectral resolution of the <span class="inline-formula"<CO<sub<2</sub<</span< spectrometer, which measures earthshine radiance in the three relevant spectral bands at 0.76, 1.61, and 2.06 <span class="inline-formula"<µm</span<. The Orbiting Carbon Observatory-2 (OCO-2) mission covers these bands with fine spectral resolution but limited spatial coverage, which hampers the monitoring of localized anthropogenic <span class="inline-formula"<CO<sub<2</sub<</span< emission. The future European <span class="inline-formula"<CO<sub<2</sub<</span< monitoring constellation, currently undergoing feasibility studies at the European Space Agency (ESA), is targeting a moderate spectral resolution of 0.1, 0.3, and 0.3–0.55 <span class="inline-formula"<nm</span< in the three spectral bands with a high signal-to-noise ratio (SNR) as well as a spatial resolution of 4 <span class="inline-formula"<km<sup<2</sup<</span< and an across-track swath width <span class="inline-formula"<>250</span< <span class="inline-formula"<km</span<. This spectral and radiometric sizing is deemed to be favorable for large-swath imaging of point sources of <span class="inline-formula"<CO<sub<2</sub<</span< emission. To assess this choice, we use real and synthetic OCO-2 satellite observations, which we spectrally degrade to the envisaged lower spectral resolution. We evaluate the corresponding <span class="inline-formula"<CO<sub<2</sub<</span< retrieval accuracy by taking the Total Carbon Column Observing Network (TCCON) observations as reference. Here, a lower spectral resolution enhances the scatter error of the retrieved <span class="inline-formula"<CO<sub<2</sub<</span< column mixing ratio (<span class="inline-formula"<XCO<sub<2</sub<</span<) but has little effect on the station-to-station variation in the biases. We show that the scatter error gradually increases with decreasing spectral resolution. Part of the scatter error increase can be attributed to the retrieval noise error which can be compensated for by a future instrument with improved SNR. Moreover, we consider the effect of the reduced spectral resolution on the capability to capture regional <span class="inline-formula"<XCO<sub<2</sub<</span< variations and <span class="inline-formula"<XCO<sub<2</sub<</span< plumes from selected OCO-2 orbits. The investigation using measurements from the Greenhouse gases Observing SATellite (GOSAT) and synthetic measurements confirms our finding and indicates that one major source of uncertainties regarding <span class="inline-formula"<CO<sub<2</sub<</span< retrieval is the insufficient information on aerosol properties that can be inferred from the observations. We hence recommend the implementation of simultaneous, co-located measurements that have a larger information content on aerosols with an auxiliary instrument in the future European observing system.</p< |
abstract_unstemmed |
<p<In light of the proposed space segment of Europe's future <span class="inline-formula"<CO<sub<2</sub<</span< monitoring system, we investigate the spectral resolution of the <span class="inline-formula"<CO<sub<2</sub<</span< spectrometer, which measures earthshine radiance in the three relevant spectral bands at 0.76, 1.61, and 2.06 <span class="inline-formula"<µm</span<. The Orbiting Carbon Observatory-2 (OCO-2) mission covers these bands with fine spectral resolution but limited spatial coverage, which hampers the monitoring of localized anthropogenic <span class="inline-formula"<CO<sub<2</sub<</span< emission. The future European <span class="inline-formula"<CO<sub<2</sub<</span< monitoring constellation, currently undergoing feasibility studies at the European Space Agency (ESA), is targeting a moderate spectral resolution of 0.1, 0.3, and 0.3–0.55 <span class="inline-formula"<nm</span< in the three spectral bands with a high signal-to-noise ratio (SNR) as well as a spatial resolution of 4 <span class="inline-formula"<km<sup<2</sup<</span< and an across-track swath width <span class="inline-formula"<>250</span< <span class="inline-formula"<km</span<. This spectral and radiometric sizing is deemed to be favorable for large-swath imaging of point sources of <span class="inline-formula"<CO<sub<2</sub<</span< emission. To assess this choice, we use real and synthetic OCO-2 satellite observations, which we spectrally degrade to the envisaged lower spectral resolution. We evaluate the corresponding <span class="inline-formula"<CO<sub<2</sub<</span< retrieval accuracy by taking the Total Carbon Column Observing Network (TCCON) observations as reference. Here, a lower spectral resolution enhances the scatter error of the retrieved <span class="inline-formula"<CO<sub<2</sub<</span< column mixing ratio (<span class="inline-formula"<XCO<sub<2</sub<</span<) but has little effect on the station-to-station variation in the biases. We show that the scatter error gradually increases with decreasing spectral resolution. Part of the scatter error increase can be attributed to the retrieval noise error which can be compensated for by a future instrument with improved SNR. Moreover, we consider the effect of the reduced spectral resolution on the capability to capture regional <span class="inline-formula"<XCO<sub<2</sub<</span< variations and <span class="inline-formula"<XCO<sub<2</sub<</span< plumes from selected OCO-2 orbits. The investigation using measurements from the Greenhouse gases Observing SATellite (GOSAT) and synthetic measurements confirms our finding and indicates that one major source of uncertainties regarding <span class="inline-formula"<CO<sub<2</sub<</span< retrieval is the insufficient information on aerosol properties that can be inferred from the observations. We hence recommend the implementation of simultaneous, co-located measurements that have a larger information content on aerosols with an auxiliary instrument in the future European observing system.</p< |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_267 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
XCO<sub<2</sub< observations using satellite measurements with moderate spectral resolution: investigation using GOSAT and OCO-2 measurements |
url |
https://doi.org/10.5194/amt-13-713-2020 https://doaj.org/article/ab282c291d394d39a6e4a0f467c76f45 https://www.atmos-meas-tech.net/13/713/2020/amt-13-713-2020.pdf https://doaj.org/toc/1867-1381 https://doaj.org/toc/1867-8548 |
remote_bool |
true |
author2 |
J. aan de Brugh Y. Meijer B. Sierk O. Hasekamp A. Butz J. Landgraf |
author2Str |
J. aan de Brugh Y. Meijer B. Sierk O. Hasekamp A. Butz J. Landgraf |
ppnlink |
605214441 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.5194/amt-13-713-2020 |
callnumber-a |
TA170-171 |
up_date |
2024-07-03T20:22:39.920Z |
_version_ |
1803590733578371072 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ066496330</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309061507.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.5194/amt-13-713-2020</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ066496330</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJab282c291d394d39a6e4a0f467c76f45</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA170-171</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA715-787</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">L. Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">XCO<sub<2</sub< observations using satellite measurements with moderate spectral resolution: investigation using GOSAT and OCO-2 measurements</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a"><p<In light of the proposed space segment of Europe's future <span class="inline-formula"<CO<sub<2</sub<</span< monitoring system, we investigate the spectral resolution of the <span class="inline-formula"<CO<sub<2</sub<</span< spectrometer, which measures earthshine radiance in the three relevant spectral bands at 0.76, 1.61, and 2.06 <span class="inline-formula"<µm</span<. The Orbiting Carbon Observatory-2 (OCO-2) mission covers these bands with fine spectral resolution but limited spatial coverage, which hampers the monitoring of localized anthropogenic <span class="inline-formula"<CO<sub<2</sub<</span< emission. The future European <span class="inline-formula"<CO<sub<2</sub<</span< monitoring constellation, currently undergoing feasibility studies at the European Space Agency (ESA), is targeting a moderate spectral resolution of 0.1, 0.3, and 0.3–0.55 <span class="inline-formula"<nm</span< in the three spectral bands with a high signal-to-noise ratio (SNR) as well as a spatial resolution of 4 <span class="inline-formula"<km<sup<2</sup<</span< and an across-track swath width <span class="inline-formula"<&gt;250</span< <span class="inline-formula"<km</span<. This spectral and radiometric sizing is deemed to be favorable for large-swath imaging of point sources of <span class="inline-formula"<CO<sub<2</sub<</span< emission. To assess this choice, we use real and synthetic OCO-2 satellite observations, which we spectrally degrade to the envisaged lower spectral resolution. We evaluate the corresponding <span class="inline-formula"<CO<sub<2</sub<</span< retrieval accuracy by taking the Total Carbon Column Observing Network (TCCON) observations as reference. Here, a lower spectral resolution enhances the scatter error of the retrieved <span class="inline-formula"<CO<sub<2</sub<</span< column mixing ratio (<span class="inline-formula"<XCO<sub<2</sub<</span<) but has little effect on the station-to-station variation in the biases. We show that the scatter error gradually increases with decreasing spectral resolution. Part of the scatter error increase can be attributed to the retrieval noise error which can be compensated for by a future instrument with improved SNR. Moreover, we consider the effect of the reduced spectral resolution on the capability to capture regional <span class="inline-formula"<XCO<sub<2</sub<</span< variations and <span class="inline-formula"<XCO<sub<2</sub<</span< plumes from selected OCO-2 orbits. The investigation using measurements from the Greenhouse gases Observing SATellite (GOSAT) and synthetic measurements confirms our finding and indicates that one major source of uncertainties regarding <span class="inline-formula"<CO<sub<2</sub<</span< retrieval is the insufficient information on aerosol properties that can be inferred from the observations. We hence recommend the implementation of simultaneous, co-located measurements that have a larger information content on aerosols with an auxiliary instrument in the future European observing system.</p<</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Earthwork. Foundations</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">J. aan de Brugh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Y. Meijer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">B. Sierk</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">O. Hasekamp</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">A. Butz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">J. Landgraf</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Atmospheric Measurement Techniques</subfield><subfield code="d">Copernicus Publications, 2009</subfield><subfield code="g">13(2020), Seite 713-729</subfield><subfield code="w">(DE-627)605214441</subfield><subfield code="w">(DE-600)2505596-3</subfield><subfield code="x">18678548</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:713-729</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.5194/amt-13-713-2020</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ab282c291d394d39a6e4a0f467c76f45</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.atmos-meas-tech.net/13/713/2020/amt-13-713-2020.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1867-1381</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1867-8548</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2020</subfield><subfield code="h">713-729</subfield></datafield></record></collection>
|
score |
7.4023523 |