Spatiotemporal Patterns Induced by Hopf Bifurcations in a Homogeneous Diffusive Predator-Prey System
In this paper, we consider a diffusive predator-prey system where the prey exhibits the herd behavior in terms of the square root of the prey population. The model is supposed to impose on homogeneous Neumann boundary conditions in the bounded spatial domain. By using the abstract Hopf bifurcation t...
Ausführliche Beschreibung
Autor*in: |
Meng Lin [verfasserIn] Yanyou Chai [verfasserIn] Xuguang Yang [verfasserIn] Yufeng Wang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Übergeordnetes Werk: |
In: Mathematical Problems in Engineering - Hindawi Limited, 2002, (2019) |
---|---|
Übergeordnetes Werk: |
year:2019 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.1155/2019/3907453 |
---|
Katalog-ID: |
DOAJ066753430 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ066753430 | ||
003 | DE-627 | ||
005 | 20230228051806.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1155/2019/3907453 |2 doi | |
035 | |a (DE-627)DOAJ066753430 | ||
035 | |a (DE-599)DOAJ7e5336699e0d4b41b4238332cf2b1163 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1-2040 | |
050 | 0 | |a QA1-939 | |
100 | 0 | |a Meng Lin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Spatiotemporal Patterns Induced by Hopf Bifurcations in a Homogeneous Diffusive Predator-Prey System |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In this paper, we consider a diffusive predator-prey system where the prey exhibits the herd behavior in terms of the square root of the prey population. The model is supposed to impose on homogeneous Neumann boundary conditions in the bounded spatial domain. By using the abstract Hopf bifurcation theory in infinite dimensional dynamical system, we are capable of proving the existence of both spatial homogeneous and nonhomogeneous periodic solutions driven by Hopf bifurcations bifurcating from the positive constant steady state solutions. Our results allow for the clearer understanding of the mechanism of the spatiotemporal pattern formations of the predator-prey interactions in ecology. | ||
653 | 0 | |a Engineering (General). Civil engineering (General) | |
653 | 0 | |a Mathematics | |
700 | 0 | |a Yanyou Chai |e verfasserin |4 aut | |
700 | 0 | |a Xuguang Yang |e verfasserin |4 aut | |
700 | 0 | |a Yufeng Wang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Mathematical Problems in Engineering |d Hindawi Limited, 2002 |g (2019) |w (DE-627)320519937 |w (DE-600)2014442-8 |x 1024123X |7 nnns |
773 | 1 | 8 | |g year:2019 |
856 | 4 | 0 | |u https://doi.org/10.1155/2019/3907453 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/7e5336699e0d4b41b4238332cf2b1163 |z kostenfrei |
856 | 4 | 0 | |u http://dx.doi.org/10.1155/2019/3907453 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1024-123X |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1563-5147 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_165 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |j 2019 |
author_variant |
m l ml y c yc x y xy y w yw |
---|---|
matchkey_str |
article:1024123X:2019----::ptoeprlatrsnuebhpbfrainiaooeeudfu |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
TA |
publishDate |
2019 |
allfields |
10.1155/2019/3907453 doi (DE-627)DOAJ066753430 (DE-599)DOAJ7e5336699e0d4b41b4238332cf2b1163 DE-627 ger DE-627 rakwb eng TA1-2040 QA1-939 Meng Lin verfasserin aut Spatiotemporal Patterns Induced by Hopf Bifurcations in a Homogeneous Diffusive Predator-Prey System 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, we consider a diffusive predator-prey system where the prey exhibits the herd behavior in terms of the square root of the prey population. The model is supposed to impose on homogeneous Neumann boundary conditions in the bounded spatial domain. By using the abstract Hopf bifurcation theory in infinite dimensional dynamical system, we are capable of proving the existence of both spatial homogeneous and nonhomogeneous periodic solutions driven by Hopf bifurcations bifurcating from the positive constant steady state solutions. Our results allow for the clearer understanding of the mechanism of the spatiotemporal pattern formations of the predator-prey interactions in ecology. Engineering (General). Civil engineering (General) Mathematics Yanyou Chai verfasserin aut Xuguang Yang verfasserin aut Yufeng Wang verfasserin aut In Mathematical Problems in Engineering Hindawi Limited, 2002 (2019) (DE-627)320519937 (DE-600)2014442-8 1024123X nnns year:2019 https://doi.org/10.1155/2019/3907453 kostenfrei https://doaj.org/article/7e5336699e0d4b41b4238332cf2b1163 kostenfrei http://dx.doi.org/10.1155/2019/3907453 kostenfrei https://doaj.org/toc/1024-123X Journal toc kostenfrei https://doaj.org/toc/1563-5147 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2019 |
spelling |
10.1155/2019/3907453 doi (DE-627)DOAJ066753430 (DE-599)DOAJ7e5336699e0d4b41b4238332cf2b1163 DE-627 ger DE-627 rakwb eng TA1-2040 QA1-939 Meng Lin verfasserin aut Spatiotemporal Patterns Induced by Hopf Bifurcations in a Homogeneous Diffusive Predator-Prey System 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, we consider a diffusive predator-prey system where the prey exhibits the herd behavior in terms of the square root of the prey population. The model is supposed to impose on homogeneous Neumann boundary conditions in the bounded spatial domain. By using the abstract Hopf bifurcation theory in infinite dimensional dynamical system, we are capable of proving the existence of both spatial homogeneous and nonhomogeneous periodic solutions driven by Hopf bifurcations bifurcating from the positive constant steady state solutions. Our results allow for the clearer understanding of the mechanism of the spatiotemporal pattern formations of the predator-prey interactions in ecology. Engineering (General). Civil engineering (General) Mathematics Yanyou Chai verfasserin aut Xuguang Yang verfasserin aut Yufeng Wang verfasserin aut In Mathematical Problems in Engineering Hindawi Limited, 2002 (2019) (DE-627)320519937 (DE-600)2014442-8 1024123X nnns year:2019 https://doi.org/10.1155/2019/3907453 kostenfrei https://doaj.org/article/7e5336699e0d4b41b4238332cf2b1163 kostenfrei http://dx.doi.org/10.1155/2019/3907453 kostenfrei https://doaj.org/toc/1024-123X Journal toc kostenfrei https://doaj.org/toc/1563-5147 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2019 |
allfields_unstemmed |
10.1155/2019/3907453 doi (DE-627)DOAJ066753430 (DE-599)DOAJ7e5336699e0d4b41b4238332cf2b1163 DE-627 ger DE-627 rakwb eng TA1-2040 QA1-939 Meng Lin verfasserin aut Spatiotemporal Patterns Induced by Hopf Bifurcations in a Homogeneous Diffusive Predator-Prey System 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, we consider a diffusive predator-prey system where the prey exhibits the herd behavior in terms of the square root of the prey population. The model is supposed to impose on homogeneous Neumann boundary conditions in the bounded spatial domain. By using the abstract Hopf bifurcation theory in infinite dimensional dynamical system, we are capable of proving the existence of both spatial homogeneous and nonhomogeneous periodic solutions driven by Hopf bifurcations bifurcating from the positive constant steady state solutions. Our results allow for the clearer understanding of the mechanism of the spatiotemporal pattern formations of the predator-prey interactions in ecology. Engineering (General). Civil engineering (General) Mathematics Yanyou Chai verfasserin aut Xuguang Yang verfasserin aut Yufeng Wang verfasserin aut In Mathematical Problems in Engineering Hindawi Limited, 2002 (2019) (DE-627)320519937 (DE-600)2014442-8 1024123X nnns year:2019 https://doi.org/10.1155/2019/3907453 kostenfrei https://doaj.org/article/7e5336699e0d4b41b4238332cf2b1163 kostenfrei http://dx.doi.org/10.1155/2019/3907453 kostenfrei https://doaj.org/toc/1024-123X Journal toc kostenfrei https://doaj.org/toc/1563-5147 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2019 |
allfieldsGer |
10.1155/2019/3907453 doi (DE-627)DOAJ066753430 (DE-599)DOAJ7e5336699e0d4b41b4238332cf2b1163 DE-627 ger DE-627 rakwb eng TA1-2040 QA1-939 Meng Lin verfasserin aut Spatiotemporal Patterns Induced by Hopf Bifurcations in a Homogeneous Diffusive Predator-Prey System 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, we consider a diffusive predator-prey system where the prey exhibits the herd behavior in terms of the square root of the prey population. The model is supposed to impose on homogeneous Neumann boundary conditions in the bounded spatial domain. By using the abstract Hopf bifurcation theory in infinite dimensional dynamical system, we are capable of proving the existence of both spatial homogeneous and nonhomogeneous periodic solutions driven by Hopf bifurcations bifurcating from the positive constant steady state solutions. Our results allow for the clearer understanding of the mechanism of the spatiotemporal pattern formations of the predator-prey interactions in ecology. Engineering (General). Civil engineering (General) Mathematics Yanyou Chai verfasserin aut Xuguang Yang verfasserin aut Yufeng Wang verfasserin aut In Mathematical Problems in Engineering Hindawi Limited, 2002 (2019) (DE-627)320519937 (DE-600)2014442-8 1024123X nnns year:2019 https://doi.org/10.1155/2019/3907453 kostenfrei https://doaj.org/article/7e5336699e0d4b41b4238332cf2b1163 kostenfrei http://dx.doi.org/10.1155/2019/3907453 kostenfrei https://doaj.org/toc/1024-123X Journal toc kostenfrei https://doaj.org/toc/1563-5147 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2019 |
allfieldsSound |
10.1155/2019/3907453 doi (DE-627)DOAJ066753430 (DE-599)DOAJ7e5336699e0d4b41b4238332cf2b1163 DE-627 ger DE-627 rakwb eng TA1-2040 QA1-939 Meng Lin verfasserin aut Spatiotemporal Patterns Induced by Hopf Bifurcations in a Homogeneous Diffusive Predator-Prey System 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, we consider a diffusive predator-prey system where the prey exhibits the herd behavior in terms of the square root of the prey population. The model is supposed to impose on homogeneous Neumann boundary conditions in the bounded spatial domain. By using the abstract Hopf bifurcation theory in infinite dimensional dynamical system, we are capable of proving the existence of both spatial homogeneous and nonhomogeneous periodic solutions driven by Hopf bifurcations bifurcating from the positive constant steady state solutions. Our results allow for the clearer understanding of the mechanism of the spatiotemporal pattern formations of the predator-prey interactions in ecology. Engineering (General). Civil engineering (General) Mathematics Yanyou Chai verfasserin aut Xuguang Yang verfasserin aut Yufeng Wang verfasserin aut In Mathematical Problems in Engineering Hindawi Limited, 2002 (2019) (DE-627)320519937 (DE-600)2014442-8 1024123X nnns year:2019 https://doi.org/10.1155/2019/3907453 kostenfrei https://doaj.org/article/7e5336699e0d4b41b4238332cf2b1163 kostenfrei http://dx.doi.org/10.1155/2019/3907453 kostenfrei https://doaj.org/toc/1024-123X Journal toc kostenfrei https://doaj.org/toc/1563-5147 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2019 |
language |
English |
source |
In Mathematical Problems in Engineering (2019) year:2019 |
sourceStr |
In Mathematical Problems in Engineering (2019) year:2019 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Engineering (General). Civil engineering (General) Mathematics |
isfreeaccess_bool |
true |
container_title |
Mathematical Problems in Engineering |
authorswithroles_txt_mv |
Meng Lin @@aut@@ Yanyou Chai @@aut@@ Xuguang Yang @@aut@@ Yufeng Wang @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
320519937 |
id |
DOAJ066753430 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ066753430</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230228051806.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1155/2019/3907453</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ066753430</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7e5336699e0d4b41b4238332cf2b1163</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Meng Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spatiotemporal Patterns Induced by Hopf Bifurcations in a Homogeneous Diffusive Predator-Prey System</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, we consider a diffusive predator-prey system where the prey exhibits the herd behavior in terms of the square root of the prey population. The model is supposed to impose on homogeneous Neumann boundary conditions in the bounded spatial domain. By using the abstract Hopf bifurcation theory in infinite dimensional dynamical system, we are capable of proving the existence of both spatial homogeneous and nonhomogeneous periodic solutions driven by Hopf bifurcations bifurcating from the positive constant steady state solutions. Our results allow for the clearer understanding of the mechanism of the spatiotemporal pattern formations of the predator-prey interactions in ecology.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yanyou Chai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xuguang Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yufeng Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Mathematical Problems in Engineering</subfield><subfield code="d">Hindawi Limited, 2002</subfield><subfield code="g">(2019)</subfield><subfield code="w">(DE-627)320519937</subfield><subfield code="w">(DE-600)2014442-8</subfield><subfield code="x">1024123X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2019</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1155/2019/3907453</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7e5336699e0d4b41b4238332cf2b1163</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1155/2019/3907453</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1024-123X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1563-5147</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2019</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Meng Lin |
spellingShingle |
Meng Lin misc TA1-2040 misc QA1-939 misc Engineering (General). Civil engineering (General) misc Mathematics Spatiotemporal Patterns Induced by Hopf Bifurcations in a Homogeneous Diffusive Predator-Prey System |
authorStr |
Meng Lin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320519937 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1-2040 |
illustrated |
Not Illustrated |
issn |
1024123X |
topic_title |
TA1-2040 QA1-939 Spatiotemporal Patterns Induced by Hopf Bifurcations in a Homogeneous Diffusive Predator-Prey System |
topic |
misc TA1-2040 misc QA1-939 misc Engineering (General). Civil engineering (General) misc Mathematics |
topic_unstemmed |
misc TA1-2040 misc QA1-939 misc Engineering (General). Civil engineering (General) misc Mathematics |
topic_browse |
misc TA1-2040 misc QA1-939 misc Engineering (General). Civil engineering (General) misc Mathematics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Mathematical Problems in Engineering |
hierarchy_parent_id |
320519937 |
hierarchy_top_title |
Mathematical Problems in Engineering |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)320519937 (DE-600)2014442-8 |
title |
Spatiotemporal Patterns Induced by Hopf Bifurcations in a Homogeneous Diffusive Predator-Prey System |
ctrlnum |
(DE-627)DOAJ066753430 (DE-599)DOAJ7e5336699e0d4b41b4238332cf2b1163 |
title_full |
Spatiotemporal Patterns Induced by Hopf Bifurcations in a Homogeneous Diffusive Predator-Prey System |
author_sort |
Meng Lin |
journal |
Mathematical Problems in Engineering |
journalStr |
Mathematical Problems in Engineering |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
author_browse |
Meng Lin Yanyou Chai Xuguang Yang Yufeng Wang |
class |
TA1-2040 QA1-939 |
format_se |
Elektronische Aufsätze |
author-letter |
Meng Lin |
doi_str_mv |
10.1155/2019/3907453 |
author2-role |
verfasserin |
title_sort |
spatiotemporal patterns induced by hopf bifurcations in a homogeneous diffusive predator-prey system |
callnumber |
TA1-2040 |
title_auth |
Spatiotemporal Patterns Induced by Hopf Bifurcations in a Homogeneous Diffusive Predator-Prey System |
abstract |
In this paper, we consider a diffusive predator-prey system where the prey exhibits the herd behavior in terms of the square root of the prey population. The model is supposed to impose on homogeneous Neumann boundary conditions in the bounded spatial domain. By using the abstract Hopf bifurcation theory in infinite dimensional dynamical system, we are capable of proving the existence of both spatial homogeneous and nonhomogeneous periodic solutions driven by Hopf bifurcations bifurcating from the positive constant steady state solutions. Our results allow for the clearer understanding of the mechanism of the spatiotemporal pattern formations of the predator-prey interactions in ecology. |
abstractGer |
In this paper, we consider a diffusive predator-prey system where the prey exhibits the herd behavior in terms of the square root of the prey population. The model is supposed to impose on homogeneous Neumann boundary conditions in the bounded spatial domain. By using the abstract Hopf bifurcation theory in infinite dimensional dynamical system, we are capable of proving the existence of both spatial homogeneous and nonhomogeneous periodic solutions driven by Hopf bifurcations bifurcating from the positive constant steady state solutions. Our results allow for the clearer understanding of the mechanism of the spatiotemporal pattern formations of the predator-prey interactions in ecology. |
abstract_unstemmed |
In this paper, we consider a diffusive predator-prey system where the prey exhibits the herd behavior in terms of the square root of the prey population. The model is supposed to impose on homogeneous Neumann boundary conditions in the bounded spatial domain. By using the abstract Hopf bifurcation theory in infinite dimensional dynamical system, we are capable of proving the existence of both spatial homogeneous and nonhomogeneous periodic solutions driven by Hopf bifurcations bifurcating from the positive constant steady state solutions. Our results allow for the clearer understanding of the mechanism of the spatiotemporal pattern formations of the predator-prey interactions in ecology. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Spatiotemporal Patterns Induced by Hopf Bifurcations in a Homogeneous Diffusive Predator-Prey System |
url |
https://doi.org/10.1155/2019/3907453 https://doaj.org/article/7e5336699e0d4b41b4238332cf2b1163 http://dx.doi.org/10.1155/2019/3907453 https://doaj.org/toc/1024-123X https://doaj.org/toc/1563-5147 |
remote_bool |
true |
author2 |
Yanyou Chai Xuguang Yang Yufeng Wang |
author2Str |
Yanyou Chai Xuguang Yang Yufeng Wang |
ppnlink |
320519937 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1155/2019/3907453 |
callnumber-a |
TA1-2040 |
up_date |
2024-07-03T21:48:46.866Z |
_version_ |
1803596151517085697 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ066753430</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230228051806.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1155/2019/3907453</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ066753430</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7e5336699e0d4b41b4238332cf2b1163</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Meng Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spatiotemporal Patterns Induced by Hopf Bifurcations in a Homogeneous Diffusive Predator-Prey System</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, we consider a diffusive predator-prey system where the prey exhibits the herd behavior in terms of the square root of the prey population. The model is supposed to impose on homogeneous Neumann boundary conditions in the bounded spatial domain. By using the abstract Hopf bifurcation theory in infinite dimensional dynamical system, we are capable of proving the existence of both spatial homogeneous and nonhomogeneous periodic solutions driven by Hopf bifurcations bifurcating from the positive constant steady state solutions. Our results allow for the clearer understanding of the mechanism of the spatiotemporal pattern formations of the predator-prey interactions in ecology.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yanyou Chai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xuguang Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yufeng Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Mathematical Problems in Engineering</subfield><subfield code="d">Hindawi Limited, 2002</subfield><subfield code="g">(2019)</subfield><subfield code="w">(DE-627)320519937</subfield><subfield code="w">(DE-600)2014442-8</subfield><subfield code="x">1024123X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2019</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1155/2019/3907453</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7e5336699e0d4b41b4238332cf2b1163</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1155/2019/3907453</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1024-123X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1563-5147</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2019</subfield></datafield></record></collection>
|
score |
7.3984203 |