A Pilot Study of Diabetes Mellitus Classification from rs-fMRI Data Using Convolutional Neural Networks
Background. As a chronic progressive disease, diabetes mellitus (DM) has a high incidence worldwide, and it impacts on cognitive and learning abilities in the lifetime even in the early stage, may degenerate memory in middle age, and perhaps increases the risk of Alzheimer’s disease. Method. In this...
Ausführliche Beschreibung
Autor*in: |
Yunfei Liu [verfasserIn] Xian Mo [verfasserIn] Hao Yang [verfasserIn] Yan Liu [verfasserIn] Junran Zhang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Übergeordnetes Werk: |
In: Mathematical Problems in Engineering - Hindawi Limited, 2002, (2020) |
---|---|
Übergeordnetes Werk: |
year:2020 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.1155/2020/1903734 |
---|
Katalog-ID: |
DOAJ067090672 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ067090672 | ||
003 | DE-627 | ||
005 | 20230228052746.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1155/2020/1903734 |2 doi | |
035 | |a (DE-627)DOAJ067090672 | ||
035 | |a (DE-599)DOAJdadb32cee2174eb4af05b84ebe7ecbfa | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1-2040 | |
050 | 0 | |a QA1-939 | |
100 | 0 | |a Yunfei Liu |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Pilot Study of Diabetes Mellitus Classification from rs-fMRI Data Using Convolutional Neural Networks |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Background. As a chronic progressive disease, diabetes mellitus (DM) has a high incidence worldwide, and it impacts on cognitive and learning abilities in the lifetime even in the early stage, may degenerate memory in middle age, and perhaps increases the risk of Alzheimer’s disease. Method. In this work, we propose a convolutional neural network (CNN) based classification method to help classify diabetes by distinguishing the brains with abnormal functions from the normal ones on resting-state functional magnetic resonance imaging (rs-fMRI). The proposed classification model is based on the Inception-v4-Residual convolutional neural network architecture. In our workflow, the original rs-fMRI data are first mapped to generate amplitude of low-frequency fluctuation (ALFF) images and then fed into the CNN model to get the classification result to indicate the potential existence of DM. Result. We validate our method on a realistic clinical rs-fMRI dataset, and the achieved average accuracy is 89.95% in fivefold cross-validation. Our model achieves a 0.8690 AUC with 77.50% and 77.51% sensitivity and specificity using our local dataset, respectively. Conclusion. It has the potential to become a novel clinical preliminary screening tool that provides help for the classification of different categories based on functional brain alteration caused by diabetes, benefiting from its accuracy and robustness, as well as efficiency and patient friendliness. | ||
653 | 0 | |a Engineering (General). Civil engineering (General) | |
653 | 0 | |a Mathematics | |
700 | 0 | |a Xian Mo |e verfasserin |4 aut | |
700 | 0 | |a Hao Yang |e verfasserin |4 aut | |
700 | 0 | |a Yan Liu |e verfasserin |4 aut | |
700 | 0 | |a Junran Zhang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Mathematical Problems in Engineering |d Hindawi Limited, 2002 |g (2020) |w (DE-627)320519937 |w (DE-600)2014442-8 |x 1024123X |7 nnns |
773 | 1 | 8 | |g year:2020 |
856 | 4 | 0 | |u https://doi.org/10.1155/2020/1903734 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/dadb32cee2174eb4af05b84ebe7ecbfa |z kostenfrei |
856 | 4 | 0 | |u http://dx.doi.org/10.1155/2020/1903734 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1024-123X |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1563-5147 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_165 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |j 2020 |
author_variant |
y l yl x m xm h y hy y l yl j z jz |
---|---|
matchkey_str |
article:1024123X:2020----::plttdodaeemliucasfctoforfrdtuigov |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
TA |
publishDate |
2020 |
allfields |
10.1155/2020/1903734 doi (DE-627)DOAJ067090672 (DE-599)DOAJdadb32cee2174eb4af05b84ebe7ecbfa DE-627 ger DE-627 rakwb eng TA1-2040 QA1-939 Yunfei Liu verfasserin aut A Pilot Study of Diabetes Mellitus Classification from rs-fMRI Data Using Convolutional Neural Networks 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background. As a chronic progressive disease, diabetes mellitus (DM) has a high incidence worldwide, and it impacts on cognitive and learning abilities in the lifetime even in the early stage, may degenerate memory in middle age, and perhaps increases the risk of Alzheimer’s disease. Method. In this work, we propose a convolutional neural network (CNN) based classification method to help classify diabetes by distinguishing the brains with abnormal functions from the normal ones on resting-state functional magnetic resonance imaging (rs-fMRI). The proposed classification model is based on the Inception-v4-Residual convolutional neural network architecture. In our workflow, the original rs-fMRI data are first mapped to generate amplitude of low-frequency fluctuation (ALFF) images and then fed into the CNN model to get the classification result to indicate the potential existence of DM. Result. We validate our method on a realistic clinical rs-fMRI dataset, and the achieved average accuracy is 89.95% in fivefold cross-validation. Our model achieves a 0.8690 AUC with 77.50% and 77.51% sensitivity and specificity using our local dataset, respectively. Conclusion. It has the potential to become a novel clinical preliminary screening tool that provides help for the classification of different categories based on functional brain alteration caused by diabetes, benefiting from its accuracy and robustness, as well as efficiency and patient friendliness. Engineering (General). Civil engineering (General) Mathematics Xian Mo verfasserin aut Hao Yang verfasserin aut Yan Liu verfasserin aut Junran Zhang verfasserin aut In Mathematical Problems in Engineering Hindawi Limited, 2002 (2020) (DE-627)320519937 (DE-600)2014442-8 1024123X nnns year:2020 https://doi.org/10.1155/2020/1903734 kostenfrei https://doaj.org/article/dadb32cee2174eb4af05b84ebe7ecbfa kostenfrei http://dx.doi.org/10.1155/2020/1903734 kostenfrei https://doaj.org/toc/1024-123X Journal toc kostenfrei https://doaj.org/toc/1563-5147 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2020 |
spelling |
10.1155/2020/1903734 doi (DE-627)DOAJ067090672 (DE-599)DOAJdadb32cee2174eb4af05b84ebe7ecbfa DE-627 ger DE-627 rakwb eng TA1-2040 QA1-939 Yunfei Liu verfasserin aut A Pilot Study of Diabetes Mellitus Classification from rs-fMRI Data Using Convolutional Neural Networks 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background. As a chronic progressive disease, diabetes mellitus (DM) has a high incidence worldwide, and it impacts on cognitive and learning abilities in the lifetime even in the early stage, may degenerate memory in middle age, and perhaps increases the risk of Alzheimer’s disease. Method. In this work, we propose a convolutional neural network (CNN) based classification method to help classify diabetes by distinguishing the brains with abnormal functions from the normal ones on resting-state functional magnetic resonance imaging (rs-fMRI). The proposed classification model is based on the Inception-v4-Residual convolutional neural network architecture. In our workflow, the original rs-fMRI data are first mapped to generate amplitude of low-frequency fluctuation (ALFF) images and then fed into the CNN model to get the classification result to indicate the potential existence of DM. Result. We validate our method on a realistic clinical rs-fMRI dataset, and the achieved average accuracy is 89.95% in fivefold cross-validation. Our model achieves a 0.8690 AUC with 77.50% and 77.51% sensitivity and specificity using our local dataset, respectively. Conclusion. It has the potential to become a novel clinical preliminary screening tool that provides help for the classification of different categories based on functional brain alteration caused by diabetes, benefiting from its accuracy and robustness, as well as efficiency and patient friendliness. Engineering (General). Civil engineering (General) Mathematics Xian Mo verfasserin aut Hao Yang verfasserin aut Yan Liu verfasserin aut Junran Zhang verfasserin aut In Mathematical Problems in Engineering Hindawi Limited, 2002 (2020) (DE-627)320519937 (DE-600)2014442-8 1024123X nnns year:2020 https://doi.org/10.1155/2020/1903734 kostenfrei https://doaj.org/article/dadb32cee2174eb4af05b84ebe7ecbfa kostenfrei http://dx.doi.org/10.1155/2020/1903734 kostenfrei https://doaj.org/toc/1024-123X Journal toc kostenfrei https://doaj.org/toc/1563-5147 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2020 |
allfields_unstemmed |
10.1155/2020/1903734 doi (DE-627)DOAJ067090672 (DE-599)DOAJdadb32cee2174eb4af05b84ebe7ecbfa DE-627 ger DE-627 rakwb eng TA1-2040 QA1-939 Yunfei Liu verfasserin aut A Pilot Study of Diabetes Mellitus Classification from rs-fMRI Data Using Convolutional Neural Networks 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background. As a chronic progressive disease, diabetes mellitus (DM) has a high incidence worldwide, and it impacts on cognitive and learning abilities in the lifetime even in the early stage, may degenerate memory in middle age, and perhaps increases the risk of Alzheimer’s disease. Method. In this work, we propose a convolutional neural network (CNN) based classification method to help classify diabetes by distinguishing the brains with abnormal functions from the normal ones on resting-state functional magnetic resonance imaging (rs-fMRI). The proposed classification model is based on the Inception-v4-Residual convolutional neural network architecture. In our workflow, the original rs-fMRI data are first mapped to generate amplitude of low-frequency fluctuation (ALFF) images and then fed into the CNN model to get the classification result to indicate the potential existence of DM. Result. We validate our method on a realistic clinical rs-fMRI dataset, and the achieved average accuracy is 89.95% in fivefold cross-validation. Our model achieves a 0.8690 AUC with 77.50% and 77.51% sensitivity and specificity using our local dataset, respectively. Conclusion. It has the potential to become a novel clinical preliminary screening tool that provides help for the classification of different categories based on functional brain alteration caused by diabetes, benefiting from its accuracy and robustness, as well as efficiency and patient friendliness. Engineering (General). Civil engineering (General) Mathematics Xian Mo verfasserin aut Hao Yang verfasserin aut Yan Liu verfasserin aut Junran Zhang verfasserin aut In Mathematical Problems in Engineering Hindawi Limited, 2002 (2020) (DE-627)320519937 (DE-600)2014442-8 1024123X nnns year:2020 https://doi.org/10.1155/2020/1903734 kostenfrei https://doaj.org/article/dadb32cee2174eb4af05b84ebe7ecbfa kostenfrei http://dx.doi.org/10.1155/2020/1903734 kostenfrei https://doaj.org/toc/1024-123X Journal toc kostenfrei https://doaj.org/toc/1563-5147 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2020 |
allfieldsGer |
10.1155/2020/1903734 doi (DE-627)DOAJ067090672 (DE-599)DOAJdadb32cee2174eb4af05b84ebe7ecbfa DE-627 ger DE-627 rakwb eng TA1-2040 QA1-939 Yunfei Liu verfasserin aut A Pilot Study of Diabetes Mellitus Classification from rs-fMRI Data Using Convolutional Neural Networks 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background. As a chronic progressive disease, diabetes mellitus (DM) has a high incidence worldwide, and it impacts on cognitive and learning abilities in the lifetime even in the early stage, may degenerate memory in middle age, and perhaps increases the risk of Alzheimer’s disease. Method. In this work, we propose a convolutional neural network (CNN) based classification method to help classify diabetes by distinguishing the brains with abnormal functions from the normal ones on resting-state functional magnetic resonance imaging (rs-fMRI). The proposed classification model is based on the Inception-v4-Residual convolutional neural network architecture. In our workflow, the original rs-fMRI data are first mapped to generate amplitude of low-frequency fluctuation (ALFF) images and then fed into the CNN model to get the classification result to indicate the potential existence of DM. Result. We validate our method on a realistic clinical rs-fMRI dataset, and the achieved average accuracy is 89.95% in fivefold cross-validation. Our model achieves a 0.8690 AUC with 77.50% and 77.51% sensitivity and specificity using our local dataset, respectively. Conclusion. It has the potential to become a novel clinical preliminary screening tool that provides help for the classification of different categories based on functional brain alteration caused by diabetes, benefiting from its accuracy and robustness, as well as efficiency and patient friendliness. Engineering (General). Civil engineering (General) Mathematics Xian Mo verfasserin aut Hao Yang verfasserin aut Yan Liu verfasserin aut Junran Zhang verfasserin aut In Mathematical Problems in Engineering Hindawi Limited, 2002 (2020) (DE-627)320519937 (DE-600)2014442-8 1024123X nnns year:2020 https://doi.org/10.1155/2020/1903734 kostenfrei https://doaj.org/article/dadb32cee2174eb4af05b84ebe7ecbfa kostenfrei http://dx.doi.org/10.1155/2020/1903734 kostenfrei https://doaj.org/toc/1024-123X Journal toc kostenfrei https://doaj.org/toc/1563-5147 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2020 |
allfieldsSound |
10.1155/2020/1903734 doi (DE-627)DOAJ067090672 (DE-599)DOAJdadb32cee2174eb4af05b84ebe7ecbfa DE-627 ger DE-627 rakwb eng TA1-2040 QA1-939 Yunfei Liu verfasserin aut A Pilot Study of Diabetes Mellitus Classification from rs-fMRI Data Using Convolutional Neural Networks 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background. As a chronic progressive disease, diabetes mellitus (DM) has a high incidence worldwide, and it impacts on cognitive and learning abilities in the lifetime even in the early stage, may degenerate memory in middle age, and perhaps increases the risk of Alzheimer’s disease. Method. In this work, we propose a convolutional neural network (CNN) based classification method to help classify diabetes by distinguishing the brains with abnormal functions from the normal ones on resting-state functional magnetic resonance imaging (rs-fMRI). The proposed classification model is based on the Inception-v4-Residual convolutional neural network architecture. In our workflow, the original rs-fMRI data are first mapped to generate amplitude of low-frequency fluctuation (ALFF) images and then fed into the CNN model to get the classification result to indicate the potential existence of DM. Result. We validate our method on a realistic clinical rs-fMRI dataset, and the achieved average accuracy is 89.95% in fivefold cross-validation. Our model achieves a 0.8690 AUC with 77.50% and 77.51% sensitivity and specificity using our local dataset, respectively. Conclusion. It has the potential to become a novel clinical preliminary screening tool that provides help for the classification of different categories based on functional brain alteration caused by diabetes, benefiting from its accuracy and robustness, as well as efficiency and patient friendliness. Engineering (General). Civil engineering (General) Mathematics Xian Mo verfasserin aut Hao Yang verfasserin aut Yan Liu verfasserin aut Junran Zhang verfasserin aut In Mathematical Problems in Engineering Hindawi Limited, 2002 (2020) (DE-627)320519937 (DE-600)2014442-8 1024123X nnns year:2020 https://doi.org/10.1155/2020/1903734 kostenfrei https://doaj.org/article/dadb32cee2174eb4af05b84ebe7ecbfa kostenfrei http://dx.doi.org/10.1155/2020/1903734 kostenfrei https://doaj.org/toc/1024-123X Journal toc kostenfrei https://doaj.org/toc/1563-5147 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2020 |
language |
English |
source |
In Mathematical Problems in Engineering (2020) year:2020 |
sourceStr |
In Mathematical Problems in Engineering (2020) year:2020 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Engineering (General). Civil engineering (General) Mathematics |
isfreeaccess_bool |
true |
container_title |
Mathematical Problems in Engineering |
authorswithroles_txt_mv |
Yunfei Liu @@aut@@ Xian Mo @@aut@@ Hao Yang @@aut@@ Yan Liu @@aut@@ Junran Zhang @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
320519937 |
id |
DOAJ067090672 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ067090672</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230228052746.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1155/2020/1903734</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ067090672</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJdadb32cee2174eb4af05b84ebe7ecbfa</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yunfei Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Pilot Study of Diabetes Mellitus Classification from rs-fMRI Data Using Convolutional Neural Networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background. As a chronic progressive disease, diabetes mellitus (DM) has a high incidence worldwide, and it impacts on cognitive and learning abilities in the lifetime even in the early stage, may degenerate memory in middle age, and perhaps increases the risk of Alzheimer’s disease. Method. In this work, we propose a convolutional neural network (CNN) based classification method to help classify diabetes by distinguishing the brains with abnormal functions from the normal ones on resting-state functional magnetic resonance imaging (rs-fMRI). The proposed classification model is based on the Inception-v4-Residual convolutional neural network architecture. In our workflow, the original rs-fMRI data are first mapped to generate amplitude of low-frequency fluctuation (ALFF) images and then fed into the CNN model to get the classification result to indicate the potential existence of DM. Result. We validate our method on a realistic clinical rs-fMRI dataset, and the achieved average accuracy is 89.95% in fivefold cross-validation. Our model achieves a 0.8690 AUC with 77.50% and 77.51% sensitivity and specificity using our local dataset, respectively. Conclusion. It has the potential to become a novel clinical preliminary screening tool that provides help for the classification of different categories based on functional brain alteration caused by diabetes, benefiting from its accuracy and robustness, as well as efficiency and patient friendliness.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xian Mo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hao Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yan Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Junran Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Mathematical Problems in Engineering</subfield><subfield code="d">Hindawi Limited, 2002</subfield><subfield code="g">(2020)</subfield><subfield code="w">(DE-627)320519937</subfield><subfield code="w">(DE-600)2014442-8</subfield><subfield code="x">1024123X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2020</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1155/2020/1903734</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/dadb32cee2174eb4af05b84ebe7ecbfa</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1155/2020/1903734</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1024-123X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1563-5147</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2020</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Yunfei Liu |
spellingShingle |
Yunfei Liu misc TA1-2040 misc QA1-939 misc Engineering (General). Civil engineering (General) misc Mathematics A Pilot Study of Diabetes Mellitus Classification from rs-fMRI Data Using Convolutional Neural Networks |
authorStr |
Yunfei Liu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320519937 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1-2040 |
illustrated |
Not Illustrated |
issn |
1024123X |
topic_title |
TA1-2040 QA1-939 A Pilot Study of Diabetes Mellitus Classification from rs-fMRI Data Using Convolutional Neural Networks |
topic |
misc TA1-2040 misc QA1-939 misc Engineering (General). Civil engineering (General) misc Mathematics |
topic_unstemmed |
misc TA1-2040 misc QA1-939 misc Engineering (General). Civil engineering (General) misc Mathematics |
topic_browse |
misc TA1-2040 misc QA1-939 misc Engineering (General). Civil engineering (General) misc Mathematics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Mathematical Problems in Engineering |
hierarchy_parent_id |
320519937 |
hierarchy_top_title |
Mathematical Problems in Engineering |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)320519937 (DE-600)2014442-8 |
title |
A Pilot Study of Diabetes Mellitus Classification from rs-fMRI Data Using Convolutional Neural Networks |
ctrlnum |
(DE-627)DOAJ067090672 (DE-599)DOAJdadb32cee2174eb4af05b84ebe7ecbfa |
title_full |
A Pilot Study of Diabetes Mellitus Classification from rs-fMRI Data Using Convolutional Neural Networks |
author_sort |
Yunfei Liu |
journal |
Mathematical Problems in Engineering |
journalStr |
Mathematical Problems in Engineering |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Yunfei Liu Xian Mo Hao Yang Yan Liu Junran Zhang |
class |
TA1-2040 QA1-939 |
format_se |
Elektronische Aufsätze |
author-letter |
Yunfei Liu |
doi_str_mv |
10.1155/2020/1903734 |
author2-role |
verfasserin |
title_sort |
pilot study of diabetes mellitus classification from rs-fmri data using convolutional neural networks |
callnumber |
TA1-2040 |
title_auth |
A Pilot Study of Diabetes Mellitus Classification from rs-fMRI Data Using Convolutional Neural Networks |
abstract |
Background. As a chronic progressive disease, diabetes mellitus (DM) has a high incidence worldwide, and it impacts on cognitive and learning abilities in the lifetime even in the early stage, may degenerate memory in middle age, and perhaps increases the risk of Alzheimer’s disease. Method. In this work, we propose a convolutional neural network (CNN) based classification method to help classify diabetes by distinguishing the brains with abnormal functions from the normal ones on resting-state functional magnetic resonance imaging (rs-fMRI). The proposed classification model is based on the Inception-v4-Residual convolutional neural network architecture. In our workflow, the original rs-fMRI data are first mapped to generate amplitude of low-frequency fluctuation (ALFF) images and then fed into the CNN model to get the classification result to indicate the potential existence of DM. Result. We validate our method on a realistic clinical rs-fMRI dataset, and the achieved average accuracy is 89.95% in fivefold cross-validation. Our model achieves a 0.8690 AUC with 77.50% and 77.51% sensitivity and specificity using our local dataset, respectively. Conclusion. It has the potential to become a novel clinical preliminary screening tool that provides help for the classification of different categories based on functional brain alteration caused by diabetes, benefiting from its accuracy and robustness, as well as efficiency and patient friendliness. |
abstractGer |
Background. As a chronic progressive disease, diabetes mellitus (DM) has a high incidence worldwide, and it impacts on cognitive and learning abilities in the lifetime even in the early stage, may degenerate memory in middle age, and perhaps increases the risk of Alzheimer’s disease. Method. In this work, we propose a convolutional neural network (CNN) based classification method to help classify diabetes by distinguishing the brains with abnormal functions from the normal ones on resting-state functional magnetic resonance imaging (rs-fMRI). The proposed classification model is based on the Inception-v4-Residual convolutional neural network architecture. In our workflow, the original rs-fMRI data are first mapped to generate amplitude of low-frequency fluctuation (ALFF) images and then fed into the CNN model to get the classification result to indicate the potential existence of DM. Result. We validate our method on a realistic clinical rs-fMRI dataset, and the achieved average accuracy is 89.95% in fivefold cross-validation. Our model achieves a 0.8690 AUC with 77.50% and 77.51% sensitivity and specificity using our local dataset, respectively. Conclusion. It has the potential to become a novel clinical preliminary screening tool that provides help for the classification of different categories based on functional brain alteration caused by diabetes, benefiting from its accuracy and robustness, as well as efficiency and patient friendliness. |
abstract_unstemmed |
Background. As a chronic progressive disease, diabetes mellitus (DM) has a high incidence worldwide, and it impacts on cognitive and learning abilities in the lifetime even in the early stage, may degenerate memory in middle age, and perhaps increases the risk of Alzheimer’s disease. Method. In this work, we propose a convolutional neural network (CNN) based classification method to help classify diabetes by distinguishing the brains with abnormal functions from the normal ones on resting-state functional magnetic resonance imaging (rs-fMRI). The proposed classification model is based on the Inception-v4-Residual convolutional neural network architecture. In our workflow, the original rs-fMRI data are first mapped to generate amplitude of low-frequency fluctuation (ALFF) images and then fed into the CNN model to get the classification result to indicate the potential existence of DM. Result. We validate our method on a realistic clinical rs-fMRI dataset, and the achieved average accuracy is 89.95% in fivefold cross-validation. Our model achieves a 0.8690 AUC with 77.50% and 77.51% sensitivity and specificity using our local dataset, respectively. Conclusion. It has the potential to become a novel clinical preliminary screening tool that provides help for the classification of different categories based on functional brain alteration caused by diabetes, benefiting from its accuracy and robustness, as well as efficiency and patient friendliness. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
A Pilot Study of Diabetes Mellitus Classification from rs-fMRI Data Using Convolutional Neural Networks |
url |
https://doi.org/10.1155/2020/1903734 https://doaj.org/article/dadb32cee2174eb4af05b84ebe7ecbfa http://dx.doi.org/10.1155/2020/1903734 https://doaj.org/toc/1024-123X https://doaj.org/toc/1563-5147 |
remote_bool |
true |
author2 |
Xian Mo Hao Yang Yan Liu Junran Zhang |
author2Str |
Xian Mo Hao Yang Yan Liu Junran Zhang |
ppnlink |
320519937 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1155/2020/1903734 |
callnumber-a |
TA1-2040 |
up_date |
2024-07-03T23:30:09.910Z |
_version_ |
1803602530047885312 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ067090672</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230228052746.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1155/2020/1903734</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ067090672</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJdadb32cee2174eb4af05b84ebe7ecbfa</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yunfei Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Pilot Study of Diabetes Mellitus Classification from rs-fMRI Data Using Convolutional Neural Networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background. As a chronic progressive disease, diabetes mellitus (DM) has a high incidence worldwide, and it impacts on cognitive and learning abilities in the lifetime even in the early stage, may degenerate memory in middle age, and perhaps increases the risk of Alzheimer’s disease. Method. In this work, we propose a convolutional neural network (CNN) based classification method to help classify diabetes by distinguishing the brains with abnormal functions from the normal ones on resting-state functional magnetic resonance imaging (rs-fMRI). The proposed classification model is based on the Inception-v4-Residual convolutional neural network architecture. In our workflow, the original rs-fMRI data are first mapped to generate amplitude of low-frequency fluctuation (ALFF) images and then fed into the CNN model to get the classification result to indicate the potential existence of DM. Result. We validate our method on a realistic clinical rs-fMRI dataset, and the achieved average accuracy is 89.95% in fivefold cross-validation. Our model achieves a 0.8690 AUC with 77.50% and 77.51% sensitivity and specificity using our local dataset, respectively. Conclusion. It has the potential to become a novel clinical preliminary screening tool that provides help for the classification of different categories based on functional brain alteration caused by diabetes, benefiting from its accuracy and robustness, as well as efficiency and patient friendliness.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xian Mo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hao Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yan Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Junran Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Mathematical Problems in Engineering</subfield><subfield code="d">Hindawi Limited, 2002</subfield><subfield code="g">(2020)</subfield><subfield code="w">(DE-627)320519937</subfield><subfield code="w">(DE-600)2014442-8</subfield><subfield code="x">1024123X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2020</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1155/2020/1903734</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/dadb32cee2174eb4af05b84ebe7ecbfa</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1155/2020/1903734</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1024-123X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1563-5147</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2020</subfield></datafield></record></collection>
|
score |
7.401121 |