Utjecaj derivata imidazola na koroziju bakra
Inhibiting efficiency of non-toxic imidazole derivatives (presented on Figure 1), as copper corrosion inhibitors in w = 3 % NaCl solution, was studied in the present work. Electrochemical investigations performed by potentiodynamic polarization measurements have shown that all studied compounds dec...
Ausführliche Beschreibung
Autor*in: |
Otmačić, H. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch ; Kroatisch |
Erschienen: |
2006 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Kemija u Industriji - Croatian Society of Chemical Engineers, 2017, 55(2006), 06, Seite 253-259 |
---|---|
Übergeordnetes Werk: |
volume:55 ; year:2006 ; number:06 ; pages:253-259 |
Links: |
---|
Katalog-ID: |
DOAJ067329020 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ067329020 | ||
003 | DE-627 | ||
005 | 20230309070204.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2006 xx |||||o 00| ||eng c | ||
035 | |a (DE-627)DOAJ067329020 | ||
035 | |a (DE-599)DOAJca14cd0af92a41f9a286cb9834c67569 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng |a hrv | ||
050 | 0 | |a QD1-999 | |
100 | 0 | |a Otmačić, H. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Utjecaj derivata imidazola na koroziju bakra |
264 | 1 | |c 2006 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Inhibiting efficiency of non-toxic imidazole derivatives (presented on Figure 1), as copper corrosion inhibitors in w = 3 % NaCl solution, was studied in the present work. Electrochemical investigations performed by potentiodynamic polarization measurements have shown that all studied compounds decrease the rate of copper corrosion while their inhibiting efficiency increases with molecular mass (Table 1). Except the molecular mass, the nature of the supstituent significantly influences the inhibiting property. Compounds containing alkyl supstituent show lower inhibiting efficiency than aryl containing imidazoles, but their efficiency is temperature independent while the efficiencies of aryl supstitued imidazoles slightly decrease with the increase of temperature (Fig. 3). Furthermore, alkyl imidazoles influence more on cathodic corrosion reaction, while aryl imidazoles have more influence on anodic corrosion reaction. Additional electrochemical (EQCM and EIS) and spectroscopic investigations have shown that, even between the two most efficient corrosion inhibitors, 1-phenyl-4-methylimidazole and 1-(p-tolyl)-4-methylimidazole, exist important differences in the mechanism of retardation of the corrosion process. The inhibitor that contains the tolyl substituent decreases the corrosion rate of copper due to the formation of thin layer of adsorbate, while in the case of 1-phenyl-4-methylimidazole, formation of thick layer can be followed with time (Fig. 4). From EIS (Electrochemical Impedance Spectroscopy) studies, it was observed that these inhibitors significantly increase absolute impedance of copper which shows that they efficiently protect copper from corrosion. In the case of 1-phenyl-4-methylimidazole absolute impedance increases in time (Fig. 5 and 6) which means that the protective layer is slowly forming on the metal surface. Studies performed in the presence of 1-(p-tolyl)-4-methylimidazole showed that already after short immersion time (Fig. 5) very protective surface film is formed and it remains stable in time (Fig. 6.) Investigations performed by SEM and AFM measurements confirm that 1-phenyl-4-methylimidazole forms three-dimensional protective surface layer while in the presence of 1-(p-tolyl)-4--methylimidazole copper surface is protected by a thin inhibitor film. | ||
650 | 4 | |a Imidazole Derivatives | |
650 | 4 | |a Copper Corrosion | |
653 | 0 | |a Chemistry | |
773 | 0 | 8 | |i In |t Kemija u Industriji |d Croatian Society of Chemical Engineers, 2017 |g 55(2006), 06, Seite 253-259 |w (DE-627)474384195 |w (DE-600)2170074-6 |x 13349090 |7 nnns |
773 | 1 | 8 | |g volume:55 |g year:2006 |g number:06 |g pages:253-259 |
856 | 4 | 0 | |u https://doaj.org/article/ca14cd0af92a41f9a286cb9834c67569 |z kostenfrei |
856 | 4 | 0 | |u http://pierre.fkit.hr/hdki/kui/vol55/broj06/253.pdf |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/0022-9830 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1334-9090 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_647 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 55 |j 2006 |e 06 |h 253-259 |
author_variant |
h o ho |
---|---|
matchkey_str |
article:13349090:2006----::teadrvtiiaoaa |
hierarchy_sort_str |
2006 |
callnumber-subject-code |
QD |
publishDate |
2006 |
allfields |
(DE-627)DOAJ067329020 (DE-599)DOAJca14cd0af92a41f9a286cb9834c67569 DE-627 ger DE-627 rakwb eng hrv QD1-999 Otmačić, H. verfasserin aut Utjecaj derivata imidazola na koroziju bakra 2006 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Inhibiting efficiency of non-toxic imidazole derivatives (presented on Figure 1), as copper corrosion inhibitors in w = 3 % NaCl solution, was studied in the present work. Electrochemical investigations performed by potentiodynamic polarization measurements have shown that all studied compounds decrease the rate of copper corrosion while their inhibiting efficiency increases with molecular mass (Table 1). Except the molecular mass, the nature of the supstituent significantly influences the inhibiting property. Compounds containing alkyl supstituent show lower inhibiting efficiency than aryl containing imidazoles, but their efficiency is temperature independent while the efficiencies of aryl supstitued imidazoles slightly decrease with the increase of temperature (Fig. 3). Furthermore, alkyl imidazoles influence more on cathodic corrosion reaction, while aryl imidazoles have more influence on anodic corrosion reaction. Additional electrochemical (EQCM and EIS) and spectroscopic investigations have shown that, even between the two most efficient corrosion inhibitors, 1-phenyl-4-methylimidazole and 1-(p-tolyl)-4-methylimidazole, exist important differences in the mechanism of retardation of the corrosion process. The inhibitor that contains the tolyl substituent decreases the corrosion rate of copper due to the formation of thin layer of adsorbate, while in the case of 1-phenyl-4-methylimidazole, formation of thick layer can be followed with time (Fig. 4). From EIS (Electrochemical Impedance Spectroscopy) studies, it was observed that these inhibitors significantly increase absolute impedance of copper which shows that they efficiently protect copper from corrosion. In the case of 1-phenyl-4-methylimidazole absolute impedance increases in time (Fig. 5 and 6) which means that the protective layer is slowly forming on the metal surface. Studies performed in the presence of 1-(p-tolyl)-4-methylimidazole showed that already after short immersion time (Fig. 5) very protective surface film is formed and it remains stable in time (Fig. 6.) Investigations performed by SEM and AFM measurements confirm that 1-phenyl-4-methylimidazole forms three-dimensional protective surface layer while in the presence of 1-(p-tolyl)-4--methylimidazole copper surface is protected by a thin inhibitor film. Imidazole Derivatives Copper Corrosion Chemistry In Kemija u Industriji Croatian Society of Chemical Engineers, 2017 55(2006), 06, Seite 253-259 (DE-627)474384195 (DE-600)2170074-6 13349090 nnns volume:55 year:2006 number:06 pages:253-259 https://doaj.org/article/ca14cd0af92a41f9a286cb9834c67569 kostenfrei http://pierre.fkit.hr/hdki/kui/vol55/broj06/253.pdf kostenfrei https://doaj.org/toc/0022-9830 Journal toc kostenfrei https://doaj.org/toc/1334-9090 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 55 2006 06 253-259 |
spelling |
(DE-627)DOAJ067329020 (DE-599)DOAJca14cd0af92a41f9a286cb9834c67569 DE-627 ger DE-627 rakwb eng hrv QD1-999 Otmačić, H. verfasserin aut Utjecaj derivata imidazola na koroziju bakra 2006 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Inhibiting efficiency of non-toxic imidazole derivatives (presented on Figure 1), as copper corrosion inhibitors in w = 3 % NaCl solution, was studied in the present work. Electrochemical investigations performed by potentiodynamic polarization measurements have shown that all studied compounds decrease the rate of copper corrosion while their inhibiting efficiency increases with molecular mass (Table 1). Except the molecular mass, the nature of the supstituent significantly influences the inhibiting property. Compounds containing alkyl supstituent show lower inhibiting efficiency than aryl containing imidazoles, but their efficiency is temperature independent while the efficiencies of aryl supstitued imidazoles slightly decrease with the increase of temperature (Fig. 3). Furthermore, alkyl imidazoles influence more on cathodic corrosion reaction, while aryl imidazoles have more influence on anodic corrosion reaction. Additional electrochemical (EQCM and EIS) and spectroscopic investigations have shown that, even between the two most efficient corrosion inhibitors, 1-phenyl-4-methylimidazole and 1-(p-tolyl)-4-methylimidazole, exist important differences in the mechanism of retardation of the corrosion process. The inhibitor that contains the tolyl substituent decreases the corrosion rate of copper due to the formation of thin layer of adsorbate, while in the case of 1-phenyl-4-methylimidazole, formation of thick layer can be followed with time (Fig. 4). From EIS (Electrochemical Impedance Spectroscopy) studies, it was observed that these inhibitors significantly increase absolute impedance of copper which shows that they efficiently protect copper from corrosion. In the case of 1-phenyl-4-methylimidazole absolute impedance increases in time (Fig. 5 and 6) which means that the protective layer is slowly forming on the metal surface. Studies performed in the presence of 1-(p-tolyl)-4-methylimidazole showed that already after short immersion time (Fig. 5) very protective surface film is formed and it remains stable in time (Fig. 6.) Investigations performed by SEM and AFM measurements confirm that 1-phenyl-4-methylimidazole forms three-dimensional protective surface layer while in the presence of 1-(p-tolyl)-4--methylimidazole copper surface is protected by a thin inhibitor film. Imidazole Derivatives Copper Corrosion Chemistry In Kemija u Industriji Croatian Society of Chemical Engineers, 2017 55(2006), 06, Seite 253-259 (DE-627)474384195 (DE-600)2170074-6 13349090 nnns volume:55 year:2006 number:06 pages:253-259 https://doaj.org/article/ca14cd0af92a41f9a286cb9834c67569 kostenfrei http://pierre.fkit.hr/hdki/kui/vol55/broj06/253.pdf kostenfrei https://doaj.org/toc/0022-9830 Journal toc kostenfrei https://doaj.org/toc/1334-9090 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 55 2006 06 253-259 |
allfields_unstemmed |
(DE-627)DOAJ067329020 (DE-599)DOAJca14cd0af92a41f9a286cb9834c67569 DE-627 ger DE-627 rakwb eng hrv QD1-999 Otmačić, H. verfasserin aut Utjecaj derivata imidazola na koroziju bakra 2006 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Inhibiting efficiency of non-toxic imidazole derivatives (presented on Figure 1), as copper corrosion inhibitors in w = 3 % NaCl solution, was studied in the present work. Electrochemical investigations performed by potentiodynamic polarization measurements have shown that all studied compounds decrease the rate of copper corrosion while their inhibiting efficiency increases with molecular mass (Table 1). Except the molecular mass, the nature of the supstituent significantly influences the inhibiting property. Compounds containing alkyl supstituent show lower inhibiting efficiency than aryl containing imidazoles, but their efficiency is temperature independent while the efficiencies of aryl supstitued imidazoles slightly decrease with the increase of temperature (Fig. 3). Furthermore, alkyl imidazoles influence more on cathodic corrosion reaction, while aryl imidazoles have more influence on anodic corrosion reaction. Additional electrochemical (EQCM and EIS) and spectroscopic investigations have shown that, even between the two most efficient corrosion inhibitors, 1-phenyl-4-methylimidazole and 1-(p-tolyl)-4-methylimidazole, exist important differences in the mechanism of retardation of the corrosion process. The inhibitor that contains the tolyl substituent decreases the corrosion rate of copper due to the formation of thin layer of adsorbate, while in the case of 1-phenyl-4-methylimidazole, formation of thick layer can be followed with time (Fig. 4). From EIS (Electrochemical Impedance Spectroscopy) studies, it was observed that these inhibitors significantly increase absolute impedance of copper which shows that they efficiently protect copper from corrosion. In the case of 1-phenyl-4-methylimidazole absolute impedance increases in time (Fig. 5 and 6) which means that the protective layer is slowly forming on the metal surface. Studies performed in the presence of 1-(p-tolyl)-4-methylimidazole showed that already after short immersion time (Fig. 5) very protective surface film is formed and it remains stable in time (Fig. 6.) Investigations performed by SEM and AFM measurements confirm that 1-phenyl-4-methylimidazole forms three-dimensional protective surface layer while in the presence of 1-(p-tolyl)-4--methylimidazole copper surface is protected by a thin inhibitor film. Imidazole Derivatives Copper Corrosion Chemistry In Kemija u Industriji Croatian Society of Chemical Engineers, 2017 55(2006), 06, Seite 253-259 (DE-627)474384195 (DE-600)2170074-6 13349090 nnns volume:55 year:2006 number:06 pages:253-259 https://doaj.org/article/ca14cd0af92a41f9a286cb9834c67569 kostenfrei http://pierre.fkit.hr/hdki/kui/vol55/broj06/253.pdf kostenfrei https://doaj.org/toc/0022-9830 Journal toc kostenfrei https://doaj.org/toc/1334-9090 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 55 2006 06 253-259 |
allfieldsGer |
(DE-627)DOAJ067329020 (DE-599)DOAJca14cd0af92a41f9a286cb9834c67569 DE-627 ger DE-627 rakwb eng hrv QD1-999 Otmačić, H. verfasserin aut Utjecaj derivata imidazola na koroziju bakra 2006 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Inhibiting efficiency of non-toxic imidazole derivatives (presented on Figure 1), as copper corrosion inhibitors in w = 3 % NaCl solution, was studied in the present work. Electrochemical investigations performed by potentiodynamic polarization measurements have shown that all studied compounds decrease the rate of copper corrosion while their inhibiting efficiency increases with molecular mass (Table 1). Except the molecular mass, the nature of the supstituent significantly influences the inhibiting property. Compounds containing alkyl supstituent show lower inhibiting efficiency than aryl containing imidazoles, but their efficiency is temperature independent while the efficiencies of aryl supstitued imidazoles slightly decrease with the increase of temperature (Fig. 3). Furthermore, alkyl imidazoles influence more on cathodic corrosion reaction, while aryl imidazoles have more influence on anodic corrosion reaction. Additional electrochemical (EQCM and EIS) and spectroscopic investigations have shown that, even between the two most efficient corrosion inhibitors, 1-phenyl-4-methylimidazole and 1-(p-tolyl)-4-methylimidazole, exist important differences in the mechanism of retardation of the corrosion process. The inhibitor that contains the tolyl substituent decreases the corrosion rate of copper due to the formation of thin layer of adsorbate, while in the case of 1-phenyl-4-methylimidazole, formation of thick layer can be followed with time (Fig. 4). From EIS (Electrochemical Impedance Spectroscopy) studies, it was observed that these inhibitors significantly increase absolute impedance of copper which shows that they efficiently protect copper from corrosion. In the case of 1-phenyl-4-methylimidazole absolute impedance increases in time (Fig. 5 and 6) which means that the protective layer is slowly forming on the metal surface. Studies performed in the presence of 1-(p-tolyl)-4-methylimidazole showed that already after short immersion time (Fig. 5) very protective surface film is formed and it remains stable in time (Fig. 6.) Investigations performed by SEM and AFM measurements confirm that 1-phenyl-4-methylimidazole forms three-dimensional protective surface layer while in the presence of 1-(p-tolyl)-4--methylimidazole copper surface is protected by a thin inhibitor film. Imidazole Derivatives Copper Corrosion Chemistry In Kemija u Industriji Croatian Society of Chemical Engineers, 2017 55(2006), 06, Seite 253-259 (DE-627)474384195 (DE-600)2170074-6 13349090 nnns volume:55 year:2006 number:06 pages:253-259 https://doaj.org/article/ca14cd0af92a41f9a286cb9834c67569 kostenfrei http://pierre.fkit.hr/hdki/kui/vol55/broj06/253.pdf kostenfrei https://doaj.org/toc/0022-9830 Journal toc kostenfrei https://doaj.org/toc/1334-9090 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 55 2006 06 253-259 |
allfieldsSound |
(DE-627)DOAJ067329020 (DE-599)DOAJca14cd0af92a41f9a286cb9834c67569 DE-627 ger DE-627 rakwb eng hrv QD1-999 Otmačić, H. verfasserin aut Utjecaj derivata imidazola na koroziju bakra 2006 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Inhibiting efficiency of non-toxic imidazole derivatives (presented on Figure 1), as copper corrosion inhibitors in w = 3 % NaCl solution, was studied in the present work. Electrochemical investigations performed by potentiodynamic polarization measurements have shown that all studied compounds decrease the rate of copper corrosion while their inhibiting efficiency increases with molecular mass (Table 1). Except the molecular mass, the nature of the supstituent significantly influences the inhibiting property. Compounds containing alkyl supstituent show lower inhibiting efficiency than aryl containing imidazoles, but their efficiency is temperature independent while the efficiencies of aryl supstitued imidazoles slightly decrease with the increase of temperature (Fig. 3). Furthermore, alkyl imidazoles influence more on cathodic corrosion reaction, while aryl imidazoles have more influence on anodic corrosion reaction. Additional electrochemical (EQCM and EIS) and spectroscopic investigations have shown that, even between the two most efficient corrosion inhibitors, 1-phenyl-4-methylimidazole and 1-(p-tolyl)-4-methylimidazole, exist important differences in the mechanism of retardation of the corrosion process. The inhibitor that contains the tolyl substituent decreases the corrosion rate of copper due to the formation of thin layer of adsorbate, while in the case of 1-phenyl-4-methylimidazole, formation of thick layer can be followed with time (Fig. 4). From EIS (Electrochemical Impedance Spectroscopy) studies, it was observed that these inhibitors significantly increase absolute impedance of copper which shows that they efficiently protect copper from corrosion. In the case of 1-phenyl-4-methylimidazole absolute impedance increases in time (Fig. 5 and 6) which means that the protective layer is slowly forming on the metal surface. Studies performed in the presence of 1-(p-tolyl)-4-methylimidazole showed that already after short immersion time (Fig. 5) very protective surface film is formed and it remains stable in time (Fig. 6.) Investigations performed by SEM and AFM measurements confirm that 1-phenyl-4-methylimidazole forms three-dimensional protective surface layer while in the presence of 1-(p-tolyl)-4--methylimidazole copper surface is protected by a thin inhibitor film. Imidazole Derivatives Copper Corrosion Chemistry In Kemija u Industriji Croatian Society of Chemical Engineers, 2017 55(2006), 06, Seite 253-259 (DE-627)474384195 (DE-600)2170074-6 13349090 nnns volume:55 year:2006 number:06 pages:253-259 https://doaj.org/article/ca14cd0af92a41f9a286cb9834c67569 kostenfrei http://pierre.fkit.hr/hdki/kui/vol55/broj06/253.pdf kostenfrei https://doaj.org/toc/0022-9830 Journal toc kostenfrei https://doaj.org/toc/1334-9090 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 55 2006 06 253-259 |
language |
English |
source |
In Kemija u Industriji 55(2006), 06, Seite 253-259 volume:55 year:2006 number:06 pages:253-259 |
sourceStr |
In Kemija u Industriji 55(2006), 06, Seite 253-259 volume:55 year:2006 number:06 pages:253-259 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Imidazole Derivatives Copper Corrosion Chemistry |
isfreeaccess_bool |
true |
container_title |
Kemija u Industriji |
authorswithroles_txt_mv |
Otmačić, H. @@aut@@ |
publishDateDaySort_date |
2006-01-01T00:00:00Z |
hierarchy_top_id |
474384195 |
id |
DOAJ067329020 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ067329020</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309070204.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2006 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ067329020</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJca14cd0af92a41f9a286cb9834c67569</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">hrv</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Otmačić, H.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Utjecaj derivata imidazola na koroziju bakra</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2006</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Inhibiting efficiency of non-toxic imidazole derivatives (presented on Figure 1), as copper corrosion inhibitors in w = 3 % NaCl solution, was studied in the present work. Electrochemical investigations performed by potentiodynamic polarization measurements have shown that all studied compounds decrease the rate of copper corrosion while their inhibiting efficiency increases with molecular mass (Table 1). Except the molecular mass, the nature of the supstituent significantly influences the inhibiting property. Compounds containing alkyl supstituent show lower inhibiting efficiency than aryl containing imidazoles, but their efficiency is temperature independent while the efficiencies of aryl supstitued imidazoles slightly decrease with the increase of temperature (Fig. 3). Furthermore, alkyl imidazoles influence more on cathodic corrosion reaction, while aryl imidazoles have more influence on anodic corrosion reaction. Additional electrochemical (EQCM and EIS) and spectroscopic investigations have shown that, even between the two most efficient corrosion inhibitors, 1-phenyl-4-methylimidazole and 1-(p-tolyl)-4-methylimidazole, exist important differences in the mechanism of retardation of the corrosion process. The inhibitor that contains the tolyl substituent decreases the corrosion rate of copper due to the formation of thin layer of adsorbate, while in the case of 1-phenyl-4-methylimidazole, formation of thick layer can be followed with time (Fig. 4). From EIS (Electrochemical Impedance Spectroscopy) studies, it was observed that these inhibitors significantly increase absolute impedance of copper which shows that they efficiently protect copper from corrosion. In the case of 1-phenyl-4-methylimidazole absolute impedance increases in time (Fig. 5 and 6) which means that the protective layer is slowly forming on the metal surface. Studies performed in the presence of 1-(p-tolyl)-4-methylimidazole showed that already after short immersion time (Fig. 5) very protective surface film is formed and it remains stable in time (Fig. 6.) Investigations performed by SEM and AFM measurements confirm that 1-phenyl-4-methylimidazole forms three-dimensional protective surface layer while in the presence of 1-(p-tolyl)-4--methylimidazole copper surface is protected by a thin inhibitor film.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Imidazole Derivatives</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Copper Corrosion</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Kemija u Industriji</subfield><subfield code="d">Croatian Society of Chemical Engineers, 2017</subfield><subfield code="g">55(2006), 06, Seite 253-259</subfield><subfield code="w">(DE-627)474384195</subfield><subfield code="w">(DE-600)2170074-6</subfield><subfield code="x">13349090</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:2006</subfield><subfield code="g">number:06</subfield><subfield code="g">pages:253-259</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ca14cd0af92a41f9a286cb9834c67569</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://pierre.fkit.hr/hdki/kui/vol55/broj06/253.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0022-9830</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1334-9090</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">2006</subfield><subfield code="e">06</subfield><subfield code="h">253-259</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Otmačić, H. |
spellingShingle |
Otmačić, H. misc QD1-999 misc Imidazole Derivatives misc Copper Corrosion misc Chemistry Utjecaj derivata imidazola na koroziju bakra |
authorStr |
Otmačić, H. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)474384195 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QD1-999 |
illustrated |
Not Illustrated |
issn |
13349090 |
topic_title |
QD1-999 Utjecaj derivata imidazola na koroziju bakra Imidazole Derivatives Copper Corrosion |
topic |
misc QD1-999 misc Imidazole Derivatives misc Copper Corrosion misc Chemistry |
topic_unstemmed |
misc QD1-999 misc Imidazole Derivatives misc Copper Corrosion misc Chemistry |
topic_browse |
misc QD1-999 misc Imidazole Derivatives misc Copper Corrosion misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Kemija u Industriji |
hierarchy_parent_id |
474384195 |
hierarchy_top_title |
Kemija u Industriji |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)474384195 (DE-600)2170074-6 |
title |
Utjecaj derivata imidazola na koroziju bakra |
ctrlnum |
(DE-627)DOAJ067329020 (DE-599)DOAJca14cd0af92a41f9a286cb9834c67569 |
title_full |
Utjecaj derivata imidazola na koroziju bakra |
author_sort |
Otmačić, H. |
journal |
Kemija u Industriji |
journalStr |
Kemija u Industriji |
callnumber-first-code |
Q |
lang_code |
eng hrv |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2006 |
contenttype_str_mv |
txt |
container_start_page |
253 |
author_browse |
Otmačić, H. |
container_volume |
55 |
class |
QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Otmačić, H. |
title_sort |
utjecaj derivata imidazola na koroziju bakra |
callnumber |
QD1-999 |
title_auth |
Utjecaj derivata imidazola na koroziju bakra |
abstract |
Inhibiting efficiency of non-toxic imidazole derivatives (presented on Figure 1), as copper corrosion inhibitors in w = 3 % NaCl solution, was studied in the present work. Electrochemical investigations performed by potentiodynamic polarization measurements have shown that all studied compounds decrease the rate of copper corrosion while their inhibiting efficiency increases with molecular mass (Table 1). Except the molecular mass, the nature of the supstituent significantly influences the inhibiting property. Compounds containing alkyl supstituent show lower inhibiting efficiency than aryl containing imidazoles, but their efficiency is temperature independent while the efficiencies of aryl supstitued imidazoles slightly decrease with the increase of temperature (Fig. 3). Furthermore, alkyl imidazoles influence more on cathodic corrosion reaction, while aryl imidazoles have more influence on anodic corrosion reaction. Additional electrochemical (EQCM and EIS) and spectroscopic investigations have shown that, even between the two most efficient corrosion inhibitors, 1-phenyl-4-methylimidazole and 1-(p-tolyl)-4-methylimidazole, exist important differences in the mechanism of retardation of the corrosion process. The inhibitor that contains the tolyl substituent decreases the corrosion rate of copper due to the formation of thin layer of adsorbate, while in the case of 1-phenyl-4-methylimidazole, formation of thick layer can be followed with time (Fig. 4). From EIS (Electrochemical Impedance Spectroscopy) studies, it was observed that these inhibitors significantly increase absolute impedance of copper which shows that they efficiently protect copper from corrosion. In the case of 1-phenyl-4-methylimidazole absolute impedance increases in time (Fig. 5 and 6) which means that the protective layer is slowly forming on the metal surface. Studies performed in the presence of 1-(p-tolyl)-4-methylimidazole showed that already after short immersion time (Fig. 5) very protective surface film is formed and it remains stable in time (Fig. 6.) Investigations performed by SEM and AFM measurements confirm that 1-phenyl-4-methylimidazole forms three-dimensional protective surface layer while in the presence of 1-(p-tolyl)-4--methylimidazole copper surface is protected by a thin inhibitor film. |
abstractGer |
Inhibiting efficiency of non-toxic imidazole derivatives (presented on Figure 1), as copper corrosion inhibitors in w = 3 % NaCl solution, was studied in the present work. Electrochemical investigations performed by potentiodynamic polarization measurements have shown that all studied compounds decrease the rate of copper corrosion while their inhibiting efficiency increases with molecular mass (Table 1). Except the molecular mass, the nature of the supstituent significantly influences the inhibiting property. Compounds containing alkyl supstituent show lower inhibiting efficiency than aryl containing imidazoles, but their efficiency is temperature independent while the efficiencies of aryl supstitued imidazoles slightly decrease with the increase of temperature (Fig. 3). Furthermore, alkyl imidazoles influence more on cathodic corrosion reaction, while aryl imidazoles have more influence on anodic corrosion reaction. Additional electrochemical (EQCM and EIS) and spectroscopic investigations have shown that, even between the two most efficient corrosion inhibitors, 1-phenyl-4-methylimidazole and 1-(p-tolyl)-4-methylimidazole, exist important differences in the mechanism of retardation of the corrosion process. The inhibitor that contains the tolyl substituent decreases the corrosion rate of copper due to the formation of thin layer of adsorbate, while in the case of 1-phenyl-4-methylimidazole, formation of thick layer can be followed with time (Fig. 4). From EIS (Electrochemical Impedance Spectroscopy) studies, it was observed that these inhibitors significantly increase absolute impedance of copper which shows that they efficiently protect copper from corrosion. In the case of 1-phenyl-4-methylimidazole absolute impedance increases in time (Fig. 5 and 6) which means that the protective layer is slowly forming on the metal surface. Studies performed in the presence of 1-(p-tolyl)-4-methylimidazole showed that already after short immersion time (Fig. 5) very protective surface film is formed and it remains stable in time (Fig. 6.) Investigations performed by SEM and AFM measurements confirm that 1-phenyl-4-methylimidazole forms three-dimensional protective surface layer while in the presence of 1-(p-tolyl)-4--methylimidazole copper surface is protected by a thin inhibitor film. |
abstract_unstemmed |
Inhibiting efficiency of non-toxic imidazole derivatives (presented on Figure 1), as copper corrosion inhibitors in w = 3 % NaCl solution, was studied in the present work. Electrochemical investigations performed by potentiodynamic polarization measurements have shown that all studied compounds decrease the rate of copper corrosion while their inhibiting efficiency increases with molecular mass (Table 1). Except the molecular mass, the nature of the supstituent significantly influences the inhibiting property. Compounds containing alkyl supstituent show lower inhibiting efficiency than aryl containing imidazoles, but their efficiency is temperature independent while the efficiencies of aryl supstitued imidazoles slightly decrease with the increase of temperature (Fig. 3). Furthermore, alkyl imidazoles influence more on cathodic corrosion reaction, while aryl imidazoles have more influence on anodic corrosion reaction. Additional electrochemical (EQCM and EIS) and spectroscopic investigations have shown that, even between the two most efficient corrosion inhibitors, 1-phenyl-4-methylimidazole and 1-(p-tolyl)-4-methylimidazole, exist important differences in the mechanism of retardation of the corrosion process. The inhibitor that contains the tolyl substituent decreases the corrosion rate of copper due to the formation of thin layer of adsorbate, while in the case of 1-phenyl-4-methylimidazole, formation of thick layer can be followed with time (Fig. 4). From EIS (Electrochemical Impedance Spectroscopy) studies, it was observed that these inhibitors significantly increase absolute impedance of copper which shows that they efficiently protect copper from corrosion. In the case of 1-phenyl-4-methylimidazole absolute impedance increases in time (Fig. 5 and 6) which means that the protective layer is slowly forming on the metal surface. Studies performed in the presence of 1-(p-tolyl)-4-methylimidazole showed that already after short immersion time (Fig. 5) very protective surface film is formed and it remains stable in time (Fig. 6.) Investigations performed by SEM and AFM measurements confirm that 1-phenyl-4-methylimidazole forms three-dimensional protective surface layer while in the presence of 1-(p-tolyl)-4--methylimidazole copper surface is protected by a thin inhibitor film. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
06 |
title_short |
Utjecaj derivata imidazola na koroziju bakra |
url |
https://doaj.org/article/ca14cd0af92a41f9a286cb9834c67569 http://pierre.fkit.hr/hdki/kui/vol55/broj06/253.pdf https://doaj.org/toc/0022-9830 https://doaj.org/toc/1334-9090 |
remote_bool |
true |
ppnlink |
474384195 |
callnumber-subject |
QD - Chemistry |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
callnumber-a |
QD1-999 |
up_date |
2024-07-04T00:28:01.761Z |
_version_ |
1803606170547519488 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ067329020</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309070204.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2006 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ067329020</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJca14cd0af92a41f9a286cb9834c67569</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">hrv</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Otmačić, H.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Utjecaj derivata imidazola na koroziju bakra</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2006</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Inhibiting efficiency of non-toxic imidazole derivatives (presented on Figure 1), as copper corrosion inhibitors in w = 3 % NaCl solution, was studied in the present work. Electrochemical investigations performed by potentiodynamic polarization measurements have shown that all studied compounds decrease the rate of copper corrosion while their inhibiting efficiency increases with molecular mass (Table 1). Except the molecular mass, the nature of the supstituent significantly influences the inhibiting property. Compounds containing alkyl supstituent show lower inhibiting efficiency than aryl containing imidazoles, but their efficiency is temperature independent while the efficiencies of aryl supstitued imidazoles slightly decrease with the increase of temperature (Fig. 3). Furthermore, alkyl imidazoles influence more on cathodic corrosion reaction, while aryl imidazoles have more influence on anodic corrosion reaction. Additional electrochemical (EQCM and EIS) and spectroscopic investigations have shown that, even between the two most efficient corrosion inhibitors, 1-phenyl-4-methylimidazole and 1-(p-tolyl)-4-methylimidazole, exist important differences in the mechanism of retardation of the corrosion process. The inhibitor that contains the tolyl substituent decreases the corrosion rate of copper due to the formation of thin layer of adsorbate, while in the case of 1-phenyl-4-methylimidazole, formation of thick layer can be followed with time (Fig. 4). From EIS (Electrochemical Impedance Spectroscopy) studies, it was observed that these inhibitors significantly increase absolute impedance of copper which shows that they efficiently protect copper from corrosion. In the case of 1-phenyl-4-methylimidazole absolute impedance increases in time (Fig. 5 and 6) which means that the protective layer is slowly forming on the metal surface. Studies performed in the presence of 1-(p-tolyl)-4-methylimidazole showed that already after short immersion time (Fig. 5) very protective surface film is formed and it remains stable in time (Fig. 6.) Investigations performed by SEM and AFM measurements confirm that 1-phenyl-4-methylimidazole forms three-dimensional protective surface layer while in the presence of 1-(p-tolyl)-4--methylimidazole copper surface is protected by a thin inhibitor film.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Imidazole Derivatives</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Copper Corrosion</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Kemija u Industriji</subfield><subfield code="d">Croatian Society of Chemical Engineers, 2017</subfield><subfield code="g">55(2006), 06, Seite 253-259</subfield><subfield code="w">(DE-627)474384195</subfield><subfield code="w">(DE-600)2170074-6</subfield><subfield code="x">13349090</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:2006</subfield><subfield code="g">number:06</subfield><subfield code="g">pages:253-259</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ca14cd0af92a41f9a286cb9834c67569</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://pierre.fkit.hr/hdki/kui/vol55/broj06/253.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0022-9830</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1334-9090</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">2006</subfield><subfield code="e">06</subfield><subfield code="h">253-259</subfield></datafield></record></collection>
|
score |
7.399102 |