Data-driven smart eco-cities and sustainable integrated districts: A best-evidence synthesis approach to an extensive literature review
Abstract As materializations of trends toward developing and implementing urban socio-technical and enviro-economic experiments for transition, eco-cities have recently received strong government and institutional support in many countries around the world due to their ability to function as an inno...
Ausführliche Beschreibung
Autor*in: |
Simon Elias Bibri [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: European Journal of Futures Research - SpringerOpen, 2014, 9(2021), 1, Seite 43 |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2021 ; number:1 ; pages:43 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.1186/s40309-021-00181-4 |
---|
Katalog-ID: |
DOAJ067622208 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ067622208 | ||
003 | DE-627 | ||
005 | 20230309071516.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s40309-021-00181-4 |2 doi | |
035 | |a (DE-627)DOAJ067622208 | ||
035 | |a (DE-599)DOAJe424975094954881bd51bb815c028557 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a H1-99 | |
100 | 0 | |a Simon Elias Bibri |e verfasserin |4 aut | |
245 | 1 | 0 | |a Data-driven smart eco-cities and sustainable integrated districts: A best-evidence synthesis approach to an extensive literature review |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract As materializations of trends toward developing and implementing urban socio-technical and enviro-economic experiments for transition, eco-cities have recently received strong government and institutional support in many countries around the world due to their ability to function as an innovative strategic niche where to test and introduce various reforms. There are many models of the eco-city based mainly on either following the principles of urban ecology or combining the strategies of sustainable cities and the solutions of smart cities. The most prominent among these models are sustainable integrated districts and data-driven smart eco-cities. The latter model represents the unprecedented transformative changes the eco-city is currently undergoing in light of the recent paradigm shift in science and technology brought on by big data science and analytics. This is motivated by the growing need to tackle the problematicity surrounding eco-cities in terms of their planning, development, and governance approaches and practices. Employing a combination of both best-evidence synthesis and narrative approaches, this paper provides a comprehensive state-of-the-art and thematic literature review on sustainable integrated districts and data-driven smart eco-cities. The latter new area is a significant gap in and of itself that this paper seeks to fill together with to what extent the integration of eco-urbanism and smart urbanism is addressed in the era of big data, what driving factors are behind it, and what forms and directions it takes. This study reveals that eco-city district developments are increasingly embracing compact city strategies and becoming a common expansion route for growing cities to achieve urban ecology or urban sustainability. It also shows that the new eco-city projects are increasingly capitalizing on data-driven smart technologies to implement environmental, economic, and social reforms. This is being accomplished by combining the strengths of eco-cities and smart cities and harnessing the synergies of their strategies and solutions in ways that enable eco-cities to improve their performance with respect to sustainability as to its tripartite composition. This in turn means that big data technologies will change eco-urbanism in fundamental and irreversible ways in terms of how eco-cities will be monitored, understood, analyzed, planned, designed, and governed. However, smart urbanism poses significant risks and drawbacks that need to be addressed and overcome in order to achieve the desired outcomes of ecological sustainability in its broader sense. One of the key critical questions raised in this regard pertains to the very potentiality of the technocratic governance of data-driven smart eco-cities and the associated negative implications and hidden pitfalls. In addition, by shedding light on the increasing adoption and uptake of big data technologies in eco-urbanism, this study seeks to assist policymakers and planners in assessing the pros and cons of smart urbanism when effectuating ecologically sustainable urban transformations in the era of big data, as well as to stimulate prospective research and further critical debates on this topic. | ||
650 | 4 | |a Eco-cities | |
650 | 4 | |a Smart eco-cities | |
650 | 4 | |a Data-driven smart eco-cities | |
650 | 4 | |a Sustainable integrated districts | |
650 | 4 | |a Urban planning | |
650 | 4 | |a Urban management | |
653 | 0 | |a Political science | |
653 | 0 | |a J | |
653 | 0 | |a Social sciences (General) | |
773 | 0 | 8 | |i In |t European Journal of Futures Research |d SpringerOpen, 2014 |g 9(2021), 1, Seite 43 |w (DE-627)769223966 |w (DE-600)2735107-5 |x 21952248 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2021 |g number:1 |g pages:43 |
856 | 4 | 0 | |u https://doi.org/10.1186/s40309-021-00181-4 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/e424975094954881bd51bb815c028557 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1186/s40309-021-00181-4 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2195-4194 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2195-2248 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_26 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2086 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2021 |e 1 |h 43 |
author_variant |
s e b seb |
---|---|
matchkey_str |
article:21952248:2021----::aarvnmreoiisnssanbenertdititaetvdneyteiapoc |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
H |
publishDate |
2021 |
allfields |
10.1186/s40309-021-00181-4 doi (DE-627)DOAJ067622208 (DE-599)DOAJe424975094954881bd51bb815c028557 DE-627 ger DE-627 rakwb eng H1-99 Simon Elias Bibri verfasserin aut Data-driven smart eco-cities and sustainable integrated districts: A best-evidence synthesis approach to an extensive literature review 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract As materializations of trends toward developing and implementing urban socio-technical and enviro-economic experiments for transition, eco-cities have recently received strong government and institutional support in many countries around the world due to their ability to function as an innovative strategic niche where to test and introduce various reforms. There are many models of the eco-city based mainly on either following the principles of urban ecology or combining the strategies of sustainable cities and the solutions of smart cities. The most prominent among these models are sustainable integrated districts and data-driven smart eco-cities. The latter model represents the unprecedented transformative changes the eco-city is currently undergoing in light of the recent paradigm shift in science and technology brought on by big data science and analytics. This is motivated by the growing need to tackle the problematicity surrounding eco-cities in terms of their planning, development, and governance approaches and practices. Employing a combination of both best-evidence synthesis and narrative approaches, this paper provides a comprehensive state-of-the-art and thematic literature review on sustainable integrated districts and data-driven smart eco-cities. The latter new area is a significant gap in and of itself that this paper seeks to fill together with to what extent the integration of eco-urbanism and smart urbanism is addressed in the era of big data, what driving factors are behind it, and what forms and directions it takes. This study reveals that eco-city district developments are increasingly embracing compact city strategies and becoming a common expansion route for growing cities to achieve urban ecology or urban sustainability. It also shows that the new eco-city projects are increasingly capitalizing on data-driven smart technologies to implement environmental, economic, and social reforms. This is being accomplished by combining the strengths of eco-cities and smart cities and harnessing the synergies of their strategies and solutions in ways that enable eco-cities to improve their performance with respect to sustainability as to its tripartite composition. This in turn means that big data technologies will change eco-urbanism in fundamental and irreversible ways in terms of how eco-cities will be monitored, understood, analyzed, planned, designed, and governed. However, smart urbanism poses significant risks and drawbacks that need to be addressed and overcome in order to achieve the desired outcomes of ecological sustainability in its broader sense. One of the key critical questions raised in this regard pertains to the very potentiality of the technocratic governance of data-driven smart eco-cities and the associated negative implications and hidden pitfalls. In addition, by shedding light on the increasing adoption and uptake of big data technologies in eco-urbanism, this study seeks to assist policymakers and planners in assessing the pros and cons of smart urbanism when effectuating ecologically sustainable urban transformations in the era of big data, as well as to stimulate prospective research and further critical debates on this topic. Eco-cities Smart eco-cities Data-driven smart eco-cities Sustainable integrated districts Urban planning Urban management Political science J Social sciences (General) In European Journal of Futures Research SpringerOpen, 2014 9(2021), 1, Seite 43 (DE-627)769223966 (DE-600)2735107-5 21952248 nnns volume:9 year:2021 number:1 pages:43 https://doi.org/10.1186/s40309-021-00181-4 kostenfrei https://doaj.org/article/e424975094954881bd51bb815c028557 kostenfrei https://doi.org/10.1186/s40309-021-00181-4 kostenfrei https://doaj.org/toc/2195-4194 Journal toc kostenfrei https://doaj.org/toc/2195-2248 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_26 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2086 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 1 43 |
spelling |
10.1186/s40309-021-00181-4 doi (DE-627)DOAJ067622208 (DE-599)DOAJe424975094954881bd51bb815c028557 DE-627 ger DE-627 rakwb eng H1-99 Simon Elias Bibri verfasserin aut Data-driven smart eco-cities and sustainable integrated districts: A best-evidence synthesis approach to an extensive literature review 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract As materializations of trends toward developing and implementing urban socio-technical and enviro-economic experiments for transition, eco-cities have recently received strong government and institutional support in many countries around the world due to their ability to function as an innovative strategic niche where to test and introduce various reforms. There are many models of the eco-city based mainly on either following the principles of urban ecology or combining the strategies of sustainable cities and the solutions of smart cities. The most prominent among these models are sustainable integrated districts and data-driven smart eco-cities. The latter model represents the unprecedented transformative changes the eco-city is currently undergoing in light of the recent paradigm shift in science and technology brought on by big data science and analytics. This is motivated by the growing need to tackle the problematicity surrounding eco-cities in terms of their planning, development, and governance approaches and practices. Employing a combination of both best-evidence synthesis and narrative approaches, this paper provides a comprehensive state-of-the-art and thematic literature review on sustainable integrated districts and data-driven smart eco-cities. The latter new area is a significant gap in and of itself that this paper seeks to fill together with to what extent the integration of eco-urbanism and smart urbanism is addressed in the era of big data, what driving factors are behind it, and what forms and directions it takes. This study reveals that eco-city district developments are increasingly embracing compact city strategies and becoming a common expansion route for growing cities to achieve urban ecology or urban sustainability. It also shows that the new eco-city projects are increasingly capitalizing on data-driven smart technologies to implement environmental, economic, and social reforms. This is being accomplished by combining the strengths of eco-cities and smart cities and harnessing the synergies of their strategies and solutions in ways that enable eco-cities to improve their performance with respect to sustainability as to its tripartite composition. This in turn means that big data technologies will change eco-urbanism in fundamental and irreversible ways in terms of how eco-cities will be monitored, understood, analyzed, planned, designed, and governed. However, smart urbanism poses significant risks and drawbacks that need to be addressed and overcome in order to achieve the desired outcomes of ecological sustainability in its broader sense. One of the key critical questions raised in this regard pertains to the very potentiality of the technocratic governance of data-driven smart eco-cities and the associated negative implications and hidden pitfalls. In addition, by shedding light on the increasing adoption and uptake of big data technologies in eco-urbanism, this study seeks to assist policymakers and planners in assessing the pros and cons of smart urbanism when effectuating ecologically sustainable urban transformations in the era of big data, as well as to stimulate prospective research and further critical debates on this topic. Eco-cities Smart eco-cities Data-driven smart eco-cities Sustainable integrated districts Urban planning Urban management Political science J Social sciences (General) In European Journal of Futures Research SpringerOpen, 2014 9(2021), 1, Seite 43 (DE-627)769223966 (DE-600)2735107-5 21952248 nnns volume:9 year:2021 number:1 pages:43 https://doi.org/10.1186/s40309-021-00181-4 kostenfrei https://doaj.org/article/e424975094954881bd51bb815c028557 kostenfrei https://doi.org/10.1186/s40309-021-00181-4 kostenfrei https://doaj.org/toc/2195-4194 Journal toc kostenfrei https://doaj.org/toc/2195-2248 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_26 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2086 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 1 43 |
allfields_unstemmed |
10.1186/s40309-021-00181-4 doi (DE-627)DOAJ067622208 (DE-599)DOAJe424975094954881bd51bb815c028557 DE-627 ger DE-627 rakwb eng H1-99 Simon Elias Bibri verfasserin aut Data-driven smart eco-cities and sustainable integrated districts: A best-evidence synthesis approach to an extensive literature review 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract As materializations of trends toward developing and implementing urban socio-technical and enviro-economic experiments for transition, eco-cities have recently received strong government and institutional support in many countries around the world due to their ability to function as an innovative strategic niche where to test and introduce various reforms. There are many models of the eco-city based mainly on either following the principles of urban ecology or combining the strategies of sustainable cities and the solutions of smart cities. The most prominent among these models are sustainable integrated districts and data-driven smart eco-cities. The latter model represents the unprecedented transformative changes the eco-city is currently undergoing in light of the recent paradigm shift in science and technology brought on by big data science and analytics. This is motivated by the growing need to tackle the problematicity surrounding eco-cities in terms of their planning, development, and governance approaches and practices. Employing a combination of both best-evidence synthesis and narrative approaches, this paper provides a comprehensive state-of-the-art and thematic literature review on sustainable integrated districts and data-driven smart eco-cities. The latter new area is a significant gap in and of itself that this paper seeks to fill together with to what extent the integration of eco-urbanism and smart urbanism is addressed in the era of big data, what driving factors are behind it, and what forms and directions it takes. This study reveals that eco-city district developments are increasingly embracing compact city strategies and becoming a common expansion route for growing cities to achieve urban ecology or urban sustainability. It also shows that the new eco-city projects are increasingly capitalizing on data-driven smart technologies to implement environmental, economic, and social reforms. This is being accomplished by combining the strengths of eco-cities and smart cities and harnessing the synergies of their strategies and solutions in ways that enable eco-cities to improve their performance with respect to sustainability as to its tripartite composition. This in turn means that big data technologies will change eco-urbanism in fundamental and irreversible ways in terms of how eco-cities will be monitored, understood, analyzed, planned, designed, and governed. However, smart urbanism poses significant risks and drawbacks that need to be addressed and overcome in order to achieve the desired outcomes of ecological sustainability in its broader sense. One of the key critical questions raised in this regard pertains to the very potentiality of the technocratic governance of data-driven smart eco-cities and the associated negative implications and hidden pitfalls. In addition, by shedding light on the increasing adoption and uptake of big data technologies in eco-urbanism, this study seeks to assist policymakers and planners in assessing the pros and cons of smart urbanism when effectuating ecologically sustainable urban transformations in the era of big data, as well as to stimulate prospective research and further critical debates on this topic. Eco-cities Smart eco-cities Data-driven smart eco-cities Sustainable integrated districts Urban planning Urban management Political science J Social sciences (General) In European Journal of Futures Research SpringerOpen, 2014 9(2021), 1, Seite 43 (DE-627)769223966 (DE-600)2735107-5 21952248 nnns volume:9 year:2021 number:1 pages:43 https://doi.org/10.1186/s40309-021-00181-4 kostenfrei https://doaj.org/article/e424975094954881bd51bb815c028557 kostenfrei https://doi.org/10.1186/s40309-021-00181-4 kostenfrei https://doaj.org/toc/2195-4194 Journal toc kostenfrei https://doaj.org/toc/2195-2248 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_26 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2086 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 1 43 |
allfieldsGer |
10.1186/s40309-021-00181-4 doi (DE-627)DOAJ067622208 (DE-599)DOAJe424975094954881bd51bb815c028557 DE-627 ger DE-627 rakwb eng H1-99 Simon Elias Bibri verfasserin aut Data-driven smart eco-cities and sustainable integrated districts: A best-evidence synthesis approach to an extensive literature review 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract As materializations of trends toward developing and implementing urban socio-technical and enviro-economic experiments for transition, eco-cities have recently received strong government and institutional support in many countries around the world due to their ability to function as an innovative strategic niche where to test and introduce various reforms. There are many models of the eco-city based mainly on either following the principles of urban ecology or combining the strategies of sustainable cities and the solutions of smart cities. The most prominent among these models are sustainable integrated districts and data-driven smart eco-cities. The latter model represents the unprecedented transformative changes the eco-city is currently undergoing in light of the recent paradigm shift in science and technology brought on by big data science and analytics. This is motivated by the growing need to tackle the problematicity surrounding eco-cities in terms of their planning, development, and governance approaches and practices. Employing a combination of both best-evidence synthesis and narrative approaches, this paper provides a comprehensive state-of-the-art and thematic literature review on sustainable integrated districts and data-driven smart eco-cities. The latter new area is a significant gap in and of itself that this paper seeks to fill together with to what extent the integration of eco-urbanism and smart urbanism is addressed in the era of big data, what driving factors are behind it, and what forms and directions it takes. This study reveals that eco-city district developments are increasingly embracing compact city strategies and becoming a common expansion route for growing cities to achieve urban ecology or urban sustainability. It also shows that the new eco-city projects are increasingly capitalizing on data-driven smart technologies to implement environmental, economic, and social reforms. This is being accomplished by combining the strengths of eco-cities and smart cities and harnessing the synergies of their strategies and solutions in ways that enable eco-cities to improve their performance with respect to sustainability as to its tripartite composition. This in turn means that big data technologies will change eco-urbanism in fundamental and irreversible ways in terms of how eco-cities will be monitored, understood, analyzed, planned, designed, and governed. However, smart urbanism poses significant risks and drawbacks that need to be addressed and overcome in order to achieve the desired outcomes of ecological sustainability in its broader sense. One of the key critical questions raised in this regard pertains to the very potentiality of the technocratic governance of data-driven smart eco-cities and the associated negative implications and hidden pitfalls. In addition, by shedding light on the increasing adoption and uptake of big data technologies in eco-urbanism, this study seeks to assist policymakers and planners in assessing the pros and cons of smart urbanism when effectuating ecologically sustainable urban transformations in the era of big data, as well as to stimulate prospective research and further critical debates on this topic. Eco-cities Smart eco-cities Data-driven smart eco-cities Sustainable integrated districts Urban planning Urban management Political science J Social sciences (General) In European Journal of Futures Research SpringerOpen, 2014 9(2021), 1, Seite 43 (DE-627)769223966 (DE-600)2735107-5 21952248 nnns volume:9 year:2021 number:1 pages:43 https://doi.org/10.1186/s40309-021-00181-4 kostenfrei https://doaj.org/article/e424975094954881bd51bb815c028557 kostenfrei https://doi.org/10.1186/s40309-021-00181-4 kostenfrei https://doaj.org/toc/2195-4194 Journal toc kostenfrei https://doaj.org/toc/2195-2248 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_26 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2086 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 1 43 |
allfieldsSound |
10.1186/s40309-021-00181-4 doi (DE-627)DOAJ067622208 (DE-599)DOAJe424975094954881bd51bb815c028557 DE-627 ger DE-627 rakwb eng H1-99 Simon Elias Bibri verfasserin aut Data-driven smart eco-cities and sustainable integrated districts: A best-evidence synthesis approach to an extensive literature review 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract As materializations of trends toward developing and implementing urban socio-technical and enviro-economic experiments for transition, eco-cities have recently received strong government and institutional support in many countries around the world due to their ability to function as an innovative strategic niche where to test and introduce various reforms. There are many models of the eco-city based mainly on either following the principles of urban ecology or combining the strategies of sustainable cities and the solutions of smart cities. The most prominent among these models are sustainable integrated districts and data-driven smart eco-cities. The latter model represents the unprecedented transformative changes the eco-city is currently undergoing in light of the recent paradigm shift in science and technology brought on by big data science and analytics. This is motivated by the growing need to tackle the problematicity surrounding eco-cities in terms of their planning, development, and governance approaches and practices. Employing a combination of both best-evidence synthesis and narrative approaches, this paper provides a comprehensive state-of-the-art and thematic literature review on sustainable integrated districts and data-driven smart eco-cities. The latter new area is a significant gap in and of itself that this paper seeks to fill together with to what extent the integration of eco-urbanism and smart urbanism is addressed in the era of big data, what driving factors are behind it, and what forms and directions it takes. This study reveals that eco-city district developments are increasingly embracing compact city strategies and becoming a common expansion route for growing cities to achieve urban ecology or urban sustainability. It also shows that the new eco-city projects are increasingly capitalizing on data-driven smart technologies to implement environmental, economic, and social reforms. This is being accomplished by combining the strengths of eco-cities and smart cities and harnessing the synergies of their strategies and solutions in ways that enable eco-cities to improve their performance with respect to sustainability as to its tripartite composition. This in turn means that big data technologies will change eco-urbanism in fundamental and irreversible ways in terms of how eco-cities will be monitored, understood, analyzed, planned, designed, and governed. However, smart urbanism poses significant risks and drawbacks that need to be addressed and overcome in order to achieve the desired outcomes of ecological sustainability in its broader sense. One of the key critical questions raised in this regard pertains to the very potentiality of the technocratic governance of data-driven smart eco-cities and the associated negative implications and hidden pitfalls. In addition, by shedding light on the increasing adoption and uptake of big data technologies in eco-urbanism, this study seeks to assist policymakers and planners in assessing the pros and cons of smart urbanism when effectuating ecologically sustainable urban transformations in the era of big data, as well as to stimulate prospective research and further critical debates on this topic. Eco-cities Smart eco-cities Data-driven smart eco-cities Sustainable integrated districts Urban planning Urban management Political science J Social sciences (General) In European Journal of Futures Research SpringerOpen, 2014 9(2021), 1, Seite 43 (DE-627)769223966 (DE-600)2735107-5 21952248 nnns volume:9 year:2021 number:1 pages:43 https://doi.org/10.1186/s40309-021-00181-4 kostenfrei https://doaj.org/article/e424975094954881bd51bb815c028557 kostenfrei https://doi.org/10.1186/s40309-021-00181-4 kostenfrei https://doaj.org/toc/2195-4194 Journal toc kostenfrei https://doaj.org/toc/2195-2248 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_26 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2086 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 1 43 |
language |
English |
source |
In European Journal of Futures Research 9(2021), 1, Seite 43 volume:9 year:2021 number:1 pages:43 |
sourceStr |
In European Journal of Futures Research 9(2021), 1, Seite 43 volume:9 year:2021 number:1 pages:43 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Eco-cities Smart eco-cities Data-driven smart eco-cities Sustainable integrated districts Urban planning Urban management Political science J Social sciences (General) |
isfreeaccess_bool |
true |
container_title |
European Journal of Futures Research |
authorswithroles_txt_mv |
Simon Elias Bibri @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
769223966 |
id |
DOAJ067622208 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ067622208</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309071516.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40309-021-00181-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ067622208</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe424975094954881bd51bb815c028557</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">H1-99</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Simon Elias Bibri</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data-driven smart eco-cities and sustainable integrated districts: A best-evidence synthesis approach to an extensive literature review</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract As materializations of trends toward developing and implementing urban socio-technical and enviro-economic experiments for transition, eco-cities have recently received strong government and institutional support in many countries around the world due to their ability to function as an innovative strategic niche where to test and introduce various reforms. There are many models of the eco-city based mainly on either following the principles of urban ecology or combining the strategies of sustainable cities and the solutions of smart cities. The most prominent among these models are sustainable integrated districts and data-driven smart eco-cities. The latter model represents the unprecedented transformative changes the eco-city is currently undergoing in light of the recent paradigm shift in science and technology brought on by big data science and analytics. This is motivated by the growing need to tackle the problematicity surrounding eco-cities in terms of their planning, development, and governance approaches and practices. Employing a combination of both best-evidence synthesis and narrative approaches, this paper provides a comprehensive state-of-the-art and thematic literature review on sustainable integrated districts and data-driven smart eco-cities. The latter new area is a significant gap in and of itself that this paper seeks to fill together with to what extent the integration of eco-urbanism and smart urbanism is addressed in the era of big data, what driving factors are behind it, and what forms and directions it takes. This study reveals that eco-city district developments are increasingly embracing compact city strategies and becoming a common expansion route for growing cities to achieve urban ecology or urban sustainability. It also shows that the new eco-city projects are increasingly capitalizing on data-driven smart technologies to implement environmental, economic, and social reforms. This is being accomplished by combining the strengths of eco-cities and smart cities and harnessing the synergies of their strategies and solutions in ways that enable eco-cities to improve their performance with respect to sustainability as to its tripartite composition. This in turn means that big data technologies will change eco-urbanism in fundamental and irreversible ways in terms of how eco-cities will be monitored, understood, analyzed, planned, designed, and governed. However, smart urbanism poses significant risks and drawbacks that need to be addressed and overcome in order to achieve the desired outcomes of ecological sustainability in its broader sense. One of the key critical questions raised in this regard pertains to the very potentiality of the technocratic governance of data-driven smart eco-cities and the associated negative implications and hidden pitfalls. In addition, by shedding light on the increasing adoption and uptake of big data technologies in eco-urbanism, this study seeks to assist policymakers and planners in assessing the pros and cons of smart urbanism when effectuating ecologically sustainable urban transformations in the era of big data, as well as to stimulate prospective research and further critical debates on this topic.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eco-cities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Smart eco-cities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data-driven smart eco-cities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sustainable integrated districts</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Urban planning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Urban management</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Political science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">J</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Social sciences (General)</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">European Journal of Futures Research</subfield><subfield code="d">SpringerOpen, 2014</subfield><subfield code="g">9(2021), 1, Seite 43</subfield><subfield code="w">(DE-627)769223966</subfield><subfield code="w">(DE-600)2735107-5</subfield><subfield code="x">21952248</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:43</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s40309-021-00181-4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e424975094954881bd51bb815c028557</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s40309-021-00181-4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2195-4194</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2195-2248</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="h">43</subfield></datafield></record></collection>
|
callnumber-first |
H - Social Science |
author |
Simon Elias Bibri |
spellingShingle |
Simon Elias Bibri misc H1-99 misc Eco-cities misc Smart eco-cities misc Data-driven smart eco-cities misc Sustainable integrated districts misc Urban planning misc Urban management misc Political science misc J misc Social sciences (General) Data-driven smart eco-cities and sustainable integrated districts: A best-evidence synthesis approach to an extensive literature review |
authorStr |
Simon Elias Bibri |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)769223966 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
H1-99 |
illustrated |
Not Illustrated |
issn |
21952248 |
topic_title |
H1-99 Data-driven smart eco-cities and sustainable integrated districts: A best-evidence synthesis approach to an extensive literature review Eco-cities Smart eco-cities Data-driven smart eco-cities Sustainable integrated districts Urban planning Urban management |
topic |
misc H1-99 misc Eco-cities misc Smart eco-cities misc Data-driven smart eco-cities misc Sustainable integrated districts misc Urban planning misc Urban management misc Political science misc J misc Social sciences (General) |
topic_unstemmed |
misc H1-99 misc Eco-cities misc Smart eco-cities misc Data-driven smart eco-cities misc Sustainable integrated districts misc Urban planning misc Urban management misc Political science misc J misc Social sciences (General) |
topic_browse |
misc H1-99 misc Eco-cities misc Smart eco-cities misc Data-driven smart eco-cities misc Sustainable integrated districts misc Urban planning misc Urban management misc Political science misc J misc Social sciences (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
European Journal of Futures Research |
hierarchy_parent_id |
769223966 |
hierarchy_top_title |
European Journal of Futures Research |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)769223966 (DE-600)2735107-5 |
title |
Data-driven smart eco-cities and sustainable integrated districts: A best-evidence synthesis approach to an extensive literature review |
ctrlnum |
(DE-627)DOAJ067622208 (DE-599)DOAJe424975094954881bd51bb815c028557 |
title_full |
Data-driven smart eco-cities and sustainable integrated districts: A best-evidence synthesis approach to an extensive literature review |
author_sort |
Simon Elias Bibri |
journal |
European Journal of Futures Research |
journalStr |
European Journal of Futures Research |
callnumber-first-code |
H |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
43 |
author_browse |
Simon Elias Bibri |
container_volume |
9 |
class |
H1-99 |
format_se |
Elektronische Aufsätze |
author-letter |
Simon Elias Bibri |
doi_str_mv |
10.1186/s40309-021-00181-4 |
title_sort |
data-driven smart eco-cities and sustainable integrated districts: a best-evidence synthesis approach to an extensive literature review |
callnumber |
H1-99 |
title_auth |
Data-driven smart eco-cities and sustainable integrated districts: A best-evidence synthesis approach to an extensive literature review |
abstract |
Abstract As materializations of trends toward developing and implementing urban socio-technical and enviro-economic experiments for transition, eco-cities have recently received strong government and institutional support in many countries around the world due to their ability to function as an innovative strategic niche where to test and introduce various reforms. There are many models of the eco-city based mainly on either following the principles of urban ecology or combining the strategies of sustainable cities and the solutions of smart cities. The most prominent among these models are sustainable integrated districts and data-driven smart eco-cities. The latter model represents the unprecedented transformative changes the eco-city is currently undergoing in light of the recent paradigm shift in science and technology brought on by big data science and analytics. This is motivated by the growing need to tackle the problematicity surrounding eco-cities in terms of their planning, development, and governance approaches and practices. Employing a combination of both best-evidence synthesis and narrative approaches, this paper provides a comprehensive state-of-the-art and thematic literature review on sustainable integrated districts and data-driven smart eco-cities. The latter new area is a significant gap in and of itself that this paper seeks to fill together with to what extent the integration of eco-urbanism and smart urbanism is addressed in the era of big data, what driving factors are behind it, and what forms and directions it takes. This study reveals that eco-city district developments are increasingly embracing compact city strategies and becoming a common expansion route for growing cities to achieve urban ecology or urban sustainability. It also shows that the new eco-city projects are increasingly capitalizing on data-driven smart technologies to implement environmental, economic, and social reforms. This is being accomplished by combining the strengths of eco-cities and smart cities and harnessing the synergies of their strategies and solutions in ways that enable eco-cities to improve their performance with respect to sustainability as to its tripartite composition. This in turn means that big data technologies will change eco-urbanism in fundamental and irreversible ways in terms of how eco-cities will be monitored, understood, analyzed, planned, designed, and governed. However, smart urbanism poses significant risks and drawbacks that need to be addressed and overcome in order to achieve the desired outcomes of ecological sustainability in its broader sense. One of the key critical questions raised in this regard pertains to the very potentiality of the technocratic governance of data-driven smart eco-cities and the associated negative implications and hidden pitfalls. In addition, by shedding light on the increasing adoption and uptake of big data technologies in eco-urbanism, this study seeks to assist policymakers and planners in assessing the pros and cons of smart urbanism when effectuating ecologically sustainable urban transformations in the era of big data, as well as to stimulate prospective research and further critical debates on this topic. |
abstractGer |
Abstract As materializations of trends toward developing and implementing urban socio-technical and enviro-economic experiments for transition, eco-cities have recently received strong government and institutional support in many countries around the world due to their ability to function as an innovative strategic niche where to test and introduce various reforms. There are many models of the eco-city based mainly on either following the principles of urban ecology or combining the strategies of sustainable cities and the solutions of smart cities. The most prominent among these models are sustainable integrated districts and data-driven smart eco-cities. The latter model represents the unprecedented transformative changes the eco-city is currently undergoing in light of the recent paradigm shift in science and technology brought on by big data science and analytics. This is motivated by the growing need to tackle the problematicity surrounding eco-cities in terms of their planning, development, and governance approaches and practices. Employing a combination of both best-evidence synthesis and narrative approaches, this paper provides a comprehensive state-of-the-art and thematic literature review on sustainable integrated districts and data-driven smart eco-cities. The latter new area is a significant gap in and of itself that this paper seeks to fill together with to what extent the integration of eco-urbanism and smart urbanism is addressed in the era of big data, what driving factors are behind it, and what forms and directions it takes. This study reveals that eco-city district developments are increasingly embracing compact city strategies and becoming a common expansion route for growing cities to achieve urban ecology or urban sustainability. It also shows that the new eco-city projects are increasingly capitalizing on data-driven smart technologies to implement environmental, economic, and social reforms. This is being accomplished by combining the strengths of eco-cities and smart cities and harnessing the synergies of their strategies and solutions in ways that enable eco-cities to improve their performance with respect to sustainability as to its tripartite composition. This in turn means that big data technologies will change eco-urbanism in fundamental and irreversible ways in terms of how eco-cities will be monitored, understood, analyzed, planned, designed, and governed. However, smart urbanism poses significant risks and drawbacks that need to be addressed and overcome in order to achieve the desired outcomes of ecological sustainability in its broader sense. One of the key critical questions raised in this regard pertains to the very potentiality of the technocratic governance of data-driven smart eco-cities and the associated negative implications and hidden pitfalls. In addition, by shedding light on the increasing adoption and uptake of big data technologies in eco-urbanism, this study seeks to assist policymakers and planners in assessing the pros and cons of smart urbanism when effectuating ecologically sustainable urban transformations in the era of big data, as well as to stimulate prospective research and further critical debates on this topic. |
abstract_unstemmed |
Abstract As materializations of trends toward developing and implementing urban socio-technical and enviro-economic experiments for transition, eco-cities have recently received strong government and institutional support in many countries around the world due to their ability to function as an innovative strategic niche where to test and introduce various reforms. There are many models of the eco-city based mainly on either following the principles of urban ecology or combining the strategies of sustainable cities and the solutions of smart cities. The most prominent among these models are sustainable integrated districts and data-driven smart eco-cities. The latter model represents the unprecedented transformative changes the eco-city is currently undergoing in light of the recent paradigm shift in science and technology brought on by big data science and analytics. This is motivated by the growing need to tackle the problematicity surrounding eco-cities in terms of their planning, development, and governance approaches and practices. Employing a combination of both best-evidence synthesis and narrative approaches, this paper provides a comprehensive state-of-the-art and thematic literature review on sustainable integrated districts and data-driven smart eco-cities. The latter new area is a significant gap in and of itself that this paper seeks to fill together with to what extent the integration of eco-urbanism and smart urbanism is addressed in the era of big data, what driving factors are behind it, and what forms and directions it takes. This study reveals that eco-city district developments are increasingly embracing compact city strategies and becoming a common expansion route for growing cities to achieve urban ecology or urban sustainability. It also shows that the new eco-city projects are increasingly capitalizing on data-driven smart technologies to implement environmental, economic, and social reforms. This is being accomplished by combining the strengths of eco-cities and smart cities and harnessing the synergies of their strategies and solutions in ways that enable eco-cities to improve their performance with respect to sustainability as to its tripartite composition. This in turn means that big data technologies will change eco-urbanism in fundamental and irreversible ways in terms of how eco-cities will be monitored, understood, analyzed, planned, designed, and governed. However, smart urbanism poses significant risks and drawbacks that need to be addressed and overcome in order to achieve the desired outcomes of ecological sustainability in its broader sense. One of the key critical questions raised in this regard pertains to the very potentiality of the technocratic governance of data-driven smart eco-cities and the associated negative implications and hidden pitfalls. In addition, by shedding light on the increasing adoption and uptake of big data technologies in eco-urbanism, this study seeks to assist policymakers and planners in assessing the pros and cons of smart urbanism when effectuating ecologically sustainable urban transformations in the era of big data, as well as to stimulate prospective research and further critical debates on this topic. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_26 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2086 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Data-driven smart eco-cities and sustainable integrated districts: A best-evidence synthesis approach to an extensive literature review |
url |
https://doi.org/10.1186/s40309-021-00181-4 https://doaj.org/article/e424975094954881bd51bb815c028557 https://doaj.org/toc/2195-4194 https://doaj.org/toc/2195-2248 |
remote_bool |
true |
ppnlink |
769223966 |
callnumber-subject |
H - Social Science |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s40309-021-00181-4 |
callnumber-a |
H1-99 |
up_date |
2024-07-04T01:39:06.685Z |
_version_ |
1803610642644467712 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ067622208</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309071516.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40309-021-00181-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ067622208</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe424975094954881bd51bb815c028557</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">H1-99</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Simon Elias Bibri</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data-driven smart eco-cities and sustainable integrated districts: A best-evidence synthesis approach to an extensive literature review</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract As materializations of trends toward developing and implementing urban socio-technical and enviro-economic experiments for transition, eco-cities have recently received strong government and institutional support in many countries around the world due to their ability to function as an innovative strategic niche where to test and introduce various reforms. There are many models of the eco-city based mainly on either following the principles of urban ecology or combining the strategies of sustainable cities and the solutions of smart cities. The most prominent among these models are sustainable integrated districts and data-driven smart eco-cities. The latter model represents the unprecedented transformative changes the eco-city is currently undergoing in light of the recent paradigm shift in science and technology brought on by big data science and analytics. This is motivated by the growing need to tackle the problematicity surrounding eco-cities in terms of their planning, development, and governance approaches and practices. Employing a combination of both best-evidence synthesis and narrative approaches, this paper provides a comprehensive state-of-the-art and thematic literature review on sustainable integrated districts and data-driven smart eco-cities. The latter new area is a significant gap in and of itself that this paper seeks to fill together with to what extent the integration of eco-urbanism and smart urbanism is addressed in the era of big data, what driving factors are behind it, and what forms and directions it takes. This study reveals that eco-city district developments are increasingly embracing compact city strategies and becoming a common expansion route for growing cities to achieve urban ecology or urban sustainability. It also shows that the new eco-city projects are increasingly capitalizing on data-driven smart technologies to implement environmental, economic, and social reforms. This is being accomplished by combining the strengths of eco-cities and smart cities and harnessing the synergies of their strategies and solutions in ways that enable eco-cities to improve their performance with respect to sustainability as to its tripartite composition. This in turn means that big data technologies will change eco-urbanism in fundamental and irreversible ways in terms of how eco-cities will be monitored, understood, analyzed, planned, designed, and governed. However, smart urbanism poses significant risks and drawbacks that need to be addressed and overcome in order to achieve the desired outcomes of ecological sustainability in its broader sense. One of the key critical questions raised in this regard pertains to the very potentiality of the technocratic governance of data-driven smart eco-cities and the associated negative implications and hidden pitfalls. In addition, by shedding light on the increasing adoption and uptake of big data technologies in eco-urbanism, this study seeks to assist policymakers and planners in assessing the pros and cons of smart urbanism when effectuating ecologically sustainable urban transformations in the era of big data, as well as to stimulate prospective research and further critical debates on this topic.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eco-cities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Smart eco-cities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data-driven smart eco-cities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sustainable integrated districts</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Urban planning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Urban management</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Political science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">J</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Social sciences (General)</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">European Journal of Futures Research</subfield><subfield code="d">SpringerOpen, 2014</subfield><subfield code="g">9(2021), 1, Seite 43</subfield><subfield code="w">(DE-627)769223966</subfield><subfield code="w">(DE-600)2735107-5</subfield><subfield code="x">21952248</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:43</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s40309-021-00181-4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e424975094954881bd51bb815c028557</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s40309-021-00181-4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2195-4194</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2195-2248</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="h">43</subfield></datafield></record></collection>
|
score |
7.3996277 |