A Combinatorial Approach to Obtain the Yield Probability Distribution along a Linearly-Loaded Cantilever Beam
The substantial key to initiate an explicit statistical formula for a physically specified continua is to consider a derivative expression, in order to identify the definitive configuration of the continua itself. Moreover, this statistical formula is to reflect the whole distribution of the formula...
Ausführliche Beschreibung
Autor*in: |
Baghdad Science Journal [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Arabisch ; Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Baghdad Science Journal - College of Science for Women, University of Baghdad, 2017, 13(2016), 3 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2016 ; number:3 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.21123/bsj.13.3.614-624 |
---|
Katalog-ID: |
DOAJ067675123 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ067675123 | ||
003 | DE-627 | ||
005 | 20230502220440.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2016 xx |||||o 00| ||ara c | ||
024 | 7 | |a 10.21123/bsj.13.3.614-624 |2 doi | |
035 | |a (DE-627)DOAJ067675123 | ||
035 | |a (DE-599)DOAJb7e23a97f4144dceab3c1c027695f4f2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a ara |a eng | ||
100 | 0 | |a Baghdad Science Journal |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Combinatorial Approach to Obtain the Yield Probability Distribution along a Linearly-Loaded Cantilever Beam |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The substantial key to initiate an explicit statistical formula for a physically specified continua is to consider a derivative expression, in order to identify the definitive configuration of the continua itself. Moreover, this statistical formula is to reflect the whole distribution of the formula of which the considered continua is the most likely to be dependent. However, a somewhat mathematically and physically tedious path to arrive at the required statistical formula is needed. The procedure in the present research is to establish, modify, and implement an optimized amalgamation between Airy stress function for elastically-deformed media and the multi-canonical joint probability density functions for multivariate distribution completion, so that the developed distribution is to exhibit a sophisticated illustration of yield probability distribution along a cantilever beam whose structure is subjected to a linearly-distributed load. This combinatorial approach is to clarify the intensity of the stresses exerted onto the beam, to standardize the terms of stresses and their affection and to convert them into a more significant depiction of a probability distribution. | ||
650 | 4 | |a "Multivariate Joint Probability Density Functions, Multi-Canonical Probability Functions, Airy Stress Function, Stress Analyses, Yield Probability Functions." | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
773 | 0 | 8 | |i In |t Baghdad Science Journal |d College of Science for Women, University of Baghdad, 2017 |g 13(2016), 3 |w (DE-627)756826632 |w (DE-600)2727652-1 |x 24117986 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2016 |g number:3 |
856 | 4 | 0 | |u https://doi.org/10.21123/bsj.13.3.614-624 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/b7e23a97f4144dceab3c1c027695f4f2 |z kostenfrei |
856 | 4 | 0 | |u http://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/2306 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2078-8665 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2411-7986 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2016 |e 3 |
author_variant |
b s j bsj |
---|---|
matchkey_str |
article:24117986:2016----::cmiaoilprahobanhyedrbbltdsrbtoaogl |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.21123/bsj.13.3.614-624 doi (DE-627)DOAJ067675123 (DE-599)DOAJb7e23a97f4144dceab3c1c027695f4f2 DE-627 ger DE-627 rakwb ara eng Baghdad Science Journal verfasserin aut A Combinatorial Approach to Obtain the Yield Probability Distribution along a Linearly-Loaded Cantilever Beam 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The substantial key to initiate an explicit statistical formula for a physically specified continua is to consider a derivative expression, in order to identify the definitive configuration of the continua itself. Moreover, this statistical formula is to reflect the whole distribution of the formula of which the considered continua is the most likely to be dependent. However, a somewhat mathematically and physically tedious path to arrive at the required statistical formula is needed. The procedure in the present research is to establish, modify, and implement an optimized amalgamation between Airy stress function for elastically-deformed media and the multi-canonical joint probability density functions for multivariate distribution completion, so that the developed distribution is to exhibit a sophisticated illustration of yield probability distribution along a cantilever beam whose structure is subjected to a linearly-distributed load. This combinatorial approach is to clarify the intensity of the stresses exerted onto the beam, to standardize the terms of stresses and their affection and to convert them into a more significant depiction of a probability distribution. "Multivariate Joint Probability Density Functions, Multi-Canonical Probability Functions, Airy Stress Function, Stress Analyses, Yield Probability Functions." Science Q In Baghdad Science Journal College of Science for Women, University of Baghdad, 2017 13(2016), 3 (DE-627)756826632 (DE-600)2727652-1 24117986 nnns volume:13 year:2016 number:3 https://doi.org/10.21123/bsj.13.3.614-624 kostenfrei https://doaj.org/article/b7e23a97f4144dceab3c1c027695f4f2 kostenfrei http://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/2306 kostenfrei https://doaj.org/toc/2078-8665 Journal toc kostenfrei https://doaj.org/toc/2411-7986 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2016 3 |
spelling |
10.21123/bsj.13.3.614-624 doi (DE-627)DOAJ067675123 (DE-599)DOAJb7e23a97f4144dceab3c1c027695f4f2 DE-627 ger DE-627 rakwb ara eng Baghdad Science Journal verfasserin aut A Combinatorial Approach to Obtain the Yield Probability Distribution along a Linearly-Loaded Cantilever Beam 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The substantial key to initiate an explicit statistical formula for a physically specified continua is to consider a derivative expression, in order to identify the definitive configuration of the continua itself. Moreover, this statistical formula is to reflect the whole distribution of the formula of which the considered continua is the most likely to be dependent. However, a somewhat mathematically and physically tedious path to arrive at the required statistical formula is needed. The procedure in the present research is to establish, modify, and implement an optimized amalgamation between Airy stress function for elastically-deformed media and the multi-canonical joint probability density functions for multivariate distribution completion, so that the developed distribution is to exhibit a sophisticated illustration of yield probability distribution along a cantilever beam whose structure is subjected to a linearly-distributed load. This combinatorial approach is to clarify the intensity of the stresses exerted onto the beam, to standardize the terms of stresses and their affection and to convert them into a more significant depiction of a probability distribution. "Multivariate Joint Probability Density Functions, Multi-Canonical Probability Functions, Airy Stress Function, Stress Analyses, Yield Probability Functions." Science Q In Baghdad Science Journal College of Science for Women, University of Baghdad, 2017 13(2016), 3 (DE-627)756826632 (DE-600)2727652-1 24117986 nnns volume:13 year:2016 number:3 https://doi.org/10.21123/bsj.13.3.614-624 kostenfrei https://doaj.org/article/b7e23a97f4144dceab3c1c027695f4f2 kostenfrei http://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/2306 kostenfrei https://doaj.org/toc/2078-8665 Journal toc kostenfrei https://doaj.org/toc/2411-7986 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2016 3 |
allfields_unstemmed |
10.21123/bsj.13.3.614-624 doi (DE-627)DOAJ067675123 (DE-599)DOAJb7e23a97f4144dceab3c1c027695f4f2 DE-627 ger DE-627 rakwb ara eng Baghdad Science Journal verfasserin aut A Combinatorial Approach to Obtain the Yield Probability Distribution along a Linearly-Loaded Cantilever Beam 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The substantial key to initiate an explicit statistical formula for a physically specified continua is to consider a derivative expression, in order to identify the definitive configuration of the continua itself. Moreover, this statistical formula is to reflect the whole distribution of the formula of which the considered continua is the most likely to be dependent. However, a somewhat mathematically and physically tedious path to arrive at the required statistical formula is needed. The procedure in the present research is to establish, modify, and implement an optimized amalgamation between Airy stress function for elastically-deformed media and the multi-canonical joint probability density functions for multivariate distribution completion, so that the developed distribution is to exhibit a sophisticated illustration of yield probability distribution along a cantilever beam whose structure is subjected to a linearly-distributed load. This combinatorial approach is to clarify the intensity of the stresses exerted onto the beam, to standardize the terms of stresses and their affection and to convert them into a more significant depiction of a probability distribution. "Multivariate Joint Probability Density Functions, Multi-Canonical Probability Functions, Airy Stress Function, Stress Analyses, Yield Probability Functions." Science Q In Baghdad Science Journal College of Science for Women, University of Baghdad, 2017 13(2016), 3 (DE-627)756826632 (DE-600)2727652-1 24117986 nnns volume:13 year:2016 number:3 https://doi.org/10.21123/bsj.13.3.614-624 kostenfrei https://doaj.org/article/b7e23a97f4144dceab3c1c027695f4f2 kostenfrei http://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/2306 kostenfrei https://doaj.org/toc/2078-8665 Journal toc kostenfrei https://doaj.org/toc/2411-7986 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2016 3 |
allfieldsGer |
10.21123/bsj.13.3.614-624 doi (DE-627)DOAJ067675123 (DE-599)DOAJb7e23a97f4144dceab3c1c027695f4f2 DE-627 ger DE-627 rakwb ara eng Baghdad Science Journal verfasserin aut A Combinatorial Approach to Obtain the Yield Probability Distribution along a Linearly-Loaded Cantilever Beam 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The substantial key to initiate an explicit statistical formula for a physically specified continua is to consider a derivative expression, in order to identify the definitive configuration of the continua itself. Moreover, this statistical formula is to reflect the whole distribution of the formula of which the considered continua is the most likely to be dependent. However, a somewhat mathematically and physically tedious path to arrive at the required statistical formula is needed. The procedure in the present research is to establish, modify, and implement an optimized amalgamation between Airy stress function for elastically-deformed media and the multi-canonical joint probability density functions for multivariate distribution completion, so that the developed distribution is to exhibit a sophisticated illustration of yield probability distribution along a cantilever beam whose structure is subjected to a linearly-distributed load. This combinatorial approach is to clarify the intensity of the stresses exerted onto the beam, to standardize the terms of stresses and their affection and to convert them into a more significant depiction of a probability distribution. "Multivariate Joint Probability Density Functions, Multi-Canonical Probability Functions, Airy Stress Function, Stress Analyses, Yield Probability Functions." Science Q In Baghdad Science Journal College of Science for Women, University of Baghdad, 2017 13(2016), 3 (DE-627)756826632 (DE-600)2727652-1 24117986 nnns volume:13 year:2016 number:3 https://doi.org/10.21123/bsj.13.3.614-624 kostenfrei https://doaj.org/article/b7e23a97f4144dceab3c1c027695f4f2 kostenfrei http://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/2306 kostenfrei https://doaj.org/toc/2078-8665 Journal toc kostenfrei https://doaj.org/toc/2411-7986 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2016 3 |
allfieldsSound |
10.21123/bsj.13.3.614-624 doi (DE-627)DOAJ067675123 (DE-599)DOAJb7e23a97f4144dceab3c1c027695f4f2 DE-627 ger DE-627 rakwb ara eng Baghdad Science Journal verfasserin aut A Combinatorial Approach to Obtain the Yield Probability Distribution along a Linearly-Loaded Cantilever Beam 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The substantial key to initiate an explicit statistical formula for a physically specified continua is to consider a derivative expression, in order to identify the definitive configuration of the continua itself. Moreover, this statistical formula is to reflect the whole distribution of the formula of which the considered continua is the most likely to be dependent. However, a somewhat mathematically and physically tedious path to arrive at the required statistical formula is needed. The procedure in the present research is to establish, modify, and implement an optimized amalgamation between Airy stress function for elastically-deformed media and the multi-canonical joint probability density functions for multivariate distribution completion, so that the developed distribution is to exhibit a sophisticated illustration of yield probability distribution along a cantilever beam whose structure is subjected to a linearly-distributed load. This combinatorial approach is to clarify the intensity of the stresses exerted onto the beam, to standardize the terms of stresses and their affection and to convert them into a more significant depiction of a probability distribution. "Multivariate Joint Probability Density Functions, Multi-Canonical Probability Functions, Airy Stress Function, Stress Analyses, Yield Probability Functions." Science Q In Baghdad Science Journal College of Science for Women, University of Baghdad, 2017 13(2016), 3 (DE-627)756826632 (DE-600)2727652-1 24117986 nnns volume:13 year:2016 number:3 https://doi.org/10.21123/bsj.13.3.614-624 kostenfrei https://doaj.org/article/b7e23a97f4144dceab3c1c027695f4f2 kostenfrei http://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/2306 kostenfrei https://doaj.org/toc/2078-8665 Journal toc kostenfrei https://doaj.org/toc/2411-7986 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2016 3 |
language |
Arabic English |
source |
In Baghdad Science Journal 13(2016), 3 volume:13 year:2016 number:3 |
sourceStr |
In Baghdad Science Journal 13(2016), 3 volume:13 year:2016 number:3 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
"Multivariate Joint Probability Density Functions, Multi-Canonical Probability Functions, Airy Stress Function, Stress Analyses, Yield Probability Functions." Science Q |
isfreeaccess_bool |
true |
container_title |
Baghdad Science Journal |
authorswithroles_txt_mv |
Baghdad Science Journal @@aut@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
756826632 |
id |
DOAJ067675123 |
language_de |
arabisch englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ067675123</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502220440.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2016 xx |||||o 00| ||ara c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.21123/bsj.13.3.614-624</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ067675123</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb7e23a97f4144dceab3c1c027695f4f2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">ara</subfield><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Baghdad Science Journal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Combinatorial Approach to Obtain the Yield Probability Distribution along a Linearly-Loaded Cantilever Beam</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The substantial key to initiate an explicit statistical formula for a physically specified continua is to consider a derivative expression, in order to identify the definitive configuration of the continua itself. Moreover, this statistical formula is to reflect the whole distribution of the formula of which the considered continua is the most likely to be dependent. However, a somewhat mathematically and physically tedious path to arrive at the required statistical formula is needed. The procedure in the present research is to establish, modify, and implement an optimized amalgamation between Airy stress function for elastically-deformed media and the multi-canonical joint probability density functions for multivariate distribution completion, so that the developed distribution is to exhibit a sophisticated illustration of yield probability distribution along a cantilever beam whose structure is subjected to a linearly-distributed load. This combinatorial approach is to clarify the intensity of the stresses exerted onto the beam, to standardize the terms of stresses and their affection and to convert them into a more significant depiction of a probability distribution.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">"Multivariate Joint Probability Density Functions, Multi-Canonical Probability Functions, Airy Stress Function, Stress Analyses, Yield Probability Functions."</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Baghdad Science Journal</subfield><subfield code="d">College of Science for Women, University of Baghdad, 2017</subfield><subfield code="g">13(2016), 3</subfield><subfield code="w">(DE-627)756826632</subfield><subfield code="w">(DE-600)2727652-1</subfield><subfield code="x">24117986</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.21123/bsj.13.3.614-624</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b7e23a97f4144dceab3c1c027695f4f2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/2306</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2078-8665</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2411-7986</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2016</subfield><subfield code="e">3</subfield></datafield></record></collection>
|
author |
Baghdad Science Journal |
spellingShingle |
Baghdad Science Journal misc "Multivariate Joint Probability Density Functions, Multi-Canonical Probability Functions, Airy Stress Function, Stress Analyses, Yield Probability Functions." misc Science misc Q A Combinatorial Approach to Obtain the Yield Probability Distribution along a Linearly-Loaded Cantilever Beam |
authorStr |
Baghdad Science Journal |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)756826632 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
24117986 |
topic_title |
A Combinatorial Approach to Obtain the Yield Probability Distribution along a Linearly-Loaded Cantilever Beam "Multivariate Joint Probability Density Functions, Multi-Canonical Probability Functions, Airy Stress Function, Stress Analyses, Yield Probability Functions." |
topic |
misc "Multivariate Joint Probability Density Functions, Multi-Canonical Probability Functions, Airy Stress Function, Stress Analyses, Yield Probability Functions." misc Science misc Q |
topic_unstemmed |
misc "Multivariate Joint Probability Density Functions, Multi-Canonical Probability Functions, Airy Stress Function, Stress Analyses, Yield Probability Functions." misc Science misc Q |
topic_browse |
misc "Multivariate Joint Probability Density Functions, Multi-Canonical Probability Functions, Airy Stress Function, Stress Analyses, Yield Probability Functions." misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Baghdad Science Journal |
hierarchy_parent_id |
756826632 |
hierarchy_top_title |
Baghdad Science Journal |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)756826632 (DE-600)2727652-1 |
title |
A Combinatorial Approach to Obtain the Yield Probability Distribution along a Linearly-Loaded Cantilever Beam |
ctrlnum |
(DE-627)DOAJ067675123 (DE-599)DOAJb7e23a97f4144dceab3c1c027695f4f2 |
title_full |
A Combinatorial Approach to Obtain the Yield Probability Distribution along a Linearly-Loaded Cantilever Beam |
author_sort |
Baghdad Science Journal |
journal |
Baghdad Science Journal |
journalStr |
Baghdad Science Journal |
lang_code |
ara eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
author_browse |
Baghdad Science Journal |
container_volume |
13 |
format_se |
Elektronische Aufsätze |
author-letter |
Baghdad Science Journal |
doi_str_mv |
10.21123/bsj.13.3.614-624 |
title_sort |
combinatorial approach to obtain the yield probability distribution along a linearly-loaded cantilever beam |
title_auth |
A Combinatorial Approach to Obtain the Yield Probability Distribution along a Linearly-Loaded Cantilever Beam |
abstract |
The substantial key to initiate an explicit statistical formula for a physically specified continua is to consider a derivative expression, in order to identify the definitive configuration of the continua itself. Moreover, this statistical formula is to reflect the whole distribution of the formula of which the considered continua is the most likely to be dependent. However, a somewhat mathematically and physically tedious path to arrive at the required statistical formula is needed. The procedure in the present research is to establish, modify, and implement an optimized amalgamation between Airy stress function for elastically-deformed media and the multi-canonical joint probability density functions for multivariate distribution completion, so that the developed distribution is to exhibit a sophisticated illustration of yield probability distribution along a cantilever beam whose structure is subjected to a linearly-distributed load. This combinatorial approach is to clarify the intensity of the stresses exerted onto the beam, to standardize the terms of stresses and their affection and to convert them into a more significant depiction of a probability distribution. |
abstractGer |
The substantial key to initiate an explicit statistical formula for a physically specified continua is to consider a derivative expression, in order to identify the definitive configuration of the continua itself. Moreover, this statistical formula is to reflect the whole distribution of the formula of which the considered continua is the most likely to be dependent. However, a somewhat mathematically and physically tedious path to arrive at the required statistical formula is needed. The procedure in the present research is to establish, modify, and implement an optimized amalgamation between Airy stress function for elastically-deformed media and the multi-canonical joint probability density functions for multivariate distribution completion, so that the developed distribution is to exhibit a sophisticated illustration of yield probability distribution along a cantilever beam whose structure is subjected to a linearly-distributed load. This combinatorial approach is to clarify the intensity of the stresses exerted onto the beam, to standardize the terms of stresses and their affection and to convert them into a more significant depiction of a probability distribution. |
abstract_unstemmed |
The substantial key to initiate an explicit statistical formula for a physically specified continua is to consider a derivative expression, in order to identify the definitive configuration of the continua itself. Moreover, this statistical formula is to reflect the whole distribution of the formula of which the considered continua is the most likely to be dependent. However, a somewhat mathematically and physically tedious path to arrive at the required statistical formula is needed. The procedure in the present research is to establish, modify, and implement an optimized amalgamation between Airy stress function for elastically-deformed media and the multi-canonical joint probability density functions for multivariate distribution completion, so that the developed distribution is to exhibit a sophisticated illustration of yield probability distribution along a cantilever beam whose structure is subjected to a linearly-distributed load. This combinatorial approach is to clarify the intensity of the stresses exerted onto the beam, to standardize the terms of stresses and their affection and to convert them into a more significant depiction of a probability distribution. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3 |
title_short |
A Combinatorial Approach to Obtain the Yield Probability Distribution along a Linearly-Loaded Cantilever Beam |
url |
https://doi.org/10.21123/bsj.13.3.614-624 https://doaj.org/article/b7e23a97f4144dceab3c1c027695f4f2 http://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/2306 https://doaj.org/toc/2078-8665 https://doaj.org/toc/2411-7986 |
remote_bool |
true |
ppnlink |
756826632 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.21123/bsj.13.3.614-624 |
up_date |
2024-07-03T13:26:00.638Z |
_version_ |
1803564519934394368 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ067675123</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502220440.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2016 xx |||||o 00| ||ara c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.21123/bsj.13.3.614-624</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ067675123</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb7e23a97f4144dceab3c1c027695f4f2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">ara</subfield><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Baghdad Science Journal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Combinatorial Approach to Obtain the Yield Probability Distribution along a Linearly-Loaded Cantilever Beam</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The substantial key to initiate an explicit statistical formula for a physically specified continua is to consider a derivative expression, in order to identify the definitive configuration of the continua itself. Moreover, this statistical formula is to reflect the whole distribution of the formula of which the considered continua is the most likely to be dependent. However, a somewhat mathematically and physically tedious path to arrive at the required statistical formula is needed. The procedure in the present research is to establish, modify, and implement an optimized amalgamation between Airy stress function for elastically-deformed media and the multi-canonical joint probability density functions for multivariate distribution completion, so that the developed distribution is to exhibit a sophisticated illustration of yield probability distribution along a cantilever beam whose structure is subjected to a linearly-distributed load. This combinatorial approach is to clarify the intensity of the stresses exerted onto the beam, to standardize the terms of stresses and their affection and to convert them into a more significant depiction of a probability distribution.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">"Multivariate Joint Probability Density Functions, Multi-Canonical Probability Functions, Airy Stress Function, Stress Analyses, Yield Probability Functions."</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Baghdad Science Journal</subfield><subfield code="d">College of Science for Women, University of Baghdad, 2017</subfield><subfield code="g">13(2016), 3</subfield><subfield code="w">(DE-627)756826632</subfield><subfield code="w">(DE-600)2727652-1</subfield><subfield code="x">24117986</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.21123/bsj.13.3.614-624</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b7e23a97f4144dceab3c1c027695f4f2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/2306</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2078-8665</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2411-7986</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2016</subfield><subfield code="e">3</subfield></datafield></record></collection>
|
score |
7.401354 |