Long Short-Term Memory Networks and Bayesian Optimization for Predicting the Time-Weighted Average Pressure of Shield Supporting Cycles
Characteristic parameters of shield supporting in fully mechanized mining, especially time-weighted average pressure (TWAP), are crucial for the analysis and prediction of roof weightings in longwall panels. Despite the leap-forward development of underground data collection and transmission, mining...
Ausführliche Beschreibung
Autor*in: |
Wanzi Yan [verfasserIn] Junhui Wang [verfasserIn] Jingyi Cheng [verfasserIn] Zhijun Wan [verfasserIn] Keke Xing [verfasserIn] Kuidong Gao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Übergeordnetes Werk: |
In: Geofluids - Hindawi-Wiley, 2017, (2021) |
---|---|
Übergeordnetes Werk: |
year:2021 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.1155/2021/8895844 |
---|
Katalog-ID: |
DOAJ067733662 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ067733662 | ||
003 | DE-627 | ||
005 | 20230309072035.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1155/2021/8895844 |2 doi | |
035 | |a (DE-627)DOAJ067733662 | ||
035 | |a (DE-599)DOAJb500061e17c443be88b6407c108027dc | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QE1-996.5 | |
100 | 0 | |a Wanzi Yan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Long Short-Term Memory Networks and Bayesian Optimization for Predicting the Time-Weighted Average Pressure of Shield Supporting Cycles |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Characteristic parameters of shield supporting in fully mechanized mining, especially time-weighted average pressure (TWAP), are crucial for the analysis and prediction of roof weightings in longwall panels. Despite the leap-forward development of underground data collection and transmission, mining and regional correlation analysis of massive shield data remains challenging. In this study, a hybrid machine learning model integrating the long short-term memory (LSTM) networks and the Bayesian optimization (BO) algorithm was developed to predict TWAP based on the setting pressure (SP), revised setting pressure (RSP), final pressure (FP), number of yielding (NY), TWAP in the last supporting cycle (TWAP (last)), and loading rate in each period. Statistical measures including the mean square error and mean absolute error were used to validate and compare the prediction performances of the BP model, the LSTM model, and the BO-LSTM model. Furthermore, sensitivity studies were carried out to evaluate the importance of input parameters. The results show that the BO-LSTM model is robust in predicting TWAP. FP and TWAP (last) are the most important input parameters in TWAP prediction, followed by RSP and NY. Moreover, the total importance scores of loading rates reach 0.229, indicating the necessity of including these parameters into the dataset. The proposed BO-LSTM model is capable of predicting TWAP which serves for shield-roof status intelligent perception. | ||
653 | 0 | |a Geology | |
700 | 0 | |a Junhui Wang |e verfasserin |4 aut | |
700 | 0 | |a Jingyi Cheng |e verfasserin |4 aut | |
700 | 0 | |a Zhijun Wan |e verfasserin |4 aut | |
700 | 0 | |a Keke Xing |e verfasserin |4 aut | |
700 | 0 | |a Kuidong Gao |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Geofluids |d Hindawi-Wiley, 2017 |g (2021) |w (DE-627)328185639 |w (DE-600)2045012-6 |x 14688123 |7 nnns |
773 | 1 | 8 | |g year:2021 |
856 | 4 | 0 | |u https://doi.org/10.1155/2021/8895844 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/b500061e17c443be88b6407c108027dc |z kostenfrei |
856 | 4 | 0 | |u http://dx.doi.org/10.1155/2021/8895844 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1468-8115 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1468-8123 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_381 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |j 2021 |
author_variant |
w y wy j w jw j c jc z w zw k x kx k g kg |
---|---|
matchkey_str |
article:14688123:2021----::oghrtrmmrntokadaeinpiiainopeitnteieegtdvrgp |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
QE |
publishDate |
2021 |
allfields |
10.1155/2021/8895844 doi (DE-627)DOAJ067733662 (DE-599)DOAJb500061e17c443be88b6407c108027dc DE-627 ger DE-627 rakwb eng QE1-996.5 Wanzi Yan verfasserin aut Long Short-Term Memory Networks and Bayesian Optimization for Predicting the Time-Weighted Average Pressure of Shield Supporting Cycles 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Characteristic parameters of shield supporting in fully mechanized mining, especially time-weighted average pressure (TWAP), are crucial for the analysis and prediction of roof weightings in longwall panels. Despite the leap-forward development of underground data collection and transmission, mining and regional correlation analysis of massive shield data remains challenging. In this study, a hybrid machine learning model integrating the long short-term memory (LSTM) networks and the Bayesian optimization (BO) algorithm was developed to predict TWAP based on the setting pressure (SP), revised setting pressure (RSP), final pressure (FP), number of yielding (NY), TWAP in the last supporting cycle (TWAP (last)), and loading rate in each period. Statistical measures including the mean square error and mean absolute error were used to validate and compare the prediction performances of the BP model, the LSTM model, and the BO-LSTM model. Furthermore, sensitivity studies were carried out to evaluate the importance of input parameters. The results show that the BO-LSTM model is robust in predicting TWAP. FP and TWAP (last) are the most important input parameters in TWAP prediction, followed by RSP and NY. Moreover, the total importance scores of loading rates reach 0.229, indicating the necessity of including these parameters into the dataset. The proposed BO-LSTM model is capable of predicting TWAP which serves for shield-roof status intelligent perception. Geology Junhui Wang verfasserin aut Jingyi Cheng verfasserin aut Zhijun Wan verfasserin aut Keke Xing verfasserin aut Kuidong Gao verfasserin aut In Geofluids Hindawi-Wiley, 2017 (2021) (DE-627)328185639 (DE-600)2045012-6 14688123 nnns year:2021 https://doi.org/10.1155/2021/8895844 kostenfrei https://doaj.org/article/b500061e17c443be88b6407c108027dc kostenfrei http://dx.doi.org/10.1155/2021/8895844 kostenfrei https://doaj.org/toc/1468-8115 Journal toc kostenfrei https://doaj.org/toc/1468-8123 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_381 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2088 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2021 |
spelling |
10.1155/2021/8895844 doi (DE-627)DOAJ067733662 (DE-599)DOAJb500061e17c443be88b6407c108027dc DE-627 ger DE-627 rakwb eng QE1-996.5 Wanzi Yan verfasserin aut Long Short-Term Memory Networks and Bayesian Optimization for Predicting the Time-Weighted Average Pressure of Shield Supporting Cycles 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Characteristic parameters of shield supporting in fully mechanized mining, especially time-weighted average pressure (TWAP), are crucial for the analysis and prediction of roof weightings in longwall panels. Despite the leap-forward development of underground data collection and transmission, mining and regional correlation analysis of massive shield data remains challenging. In this study, a hybrid machine learning model integrating the long short-term memory (LSTM) networks and the Bayesian optimization (BO) algorithm was developed to predict TWAP based on the setting pressure (SP), revised setting pressure (RSP), final pressure (FP), number of yielding (NY), TWAP in the last supporting cycle (TWAP (last)), and loading rate in each period. Statistical measures including the mean square error and mean absolute error were used to validate and compare the prediction performances of the BP model, the LSTM model, and the BO-LSTM model. Furthermore, sensitivity studies were carried out to evaluate the importance of input parameters. The results show that the BO-LSTM model is robust in predicting TWAP. FP and TWAP (last) are the most important input parameters in TWAP prediction, followed by RSP and NY. Moreover, the total importance scores of loading rates reach 0.229, indicating the necessity of including these parameters into the dataset. The proposed BO-LSTM model is capable of predicting TWAP which serves for shield-roof status intelligent perception. Geology Junhui Wang verfasserin aut Jingyi Cheng verfasserin aut Zhijun Wan verfasserin aut Keke Xing verfasserin aut Kuidong Gao verfasserin aut In Geofluids Hindawi-Wiley, 2017 (2021) (DE-627)328185639 (DE-600)2045012-6 14688123 nnns year:2021 https://doi.org/10.1155/2021/8895844 kostenfrei https://doaj.org/article/b500061e17c443be88b6407c108027dc kostenfrei http://dx.doi.org/10.1155/2021/8895844 kostenfrei https://doaj.org/toc/1468-8115 Journal toc kostenfrei https://doaj.org/toc/1468-8123 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_381 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2088 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2021 |
allfields_unstemmed |
10.1155/2021/8895844 doi (DE-627)DOAJ067733662 (DE-599)DOAJb500061e17c443be88b6407c108027dc DE-627 ger DE-627 rakwb eng QE1-996.5 Wanzi Yan verfasserin aut Long Short-Term Memory Networks and Bayesian Optimization for Predicting the Time-Weighted Average Pressure of Shield Supporting Cycles 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Characteristic parameters of shield supporting in fully mechanized mining, especially time-weighted average pressure (TWAP), are crucial for the analysis and prediction of roof weightings in longwall panels. Despite the leap-forward development of underground data collection and transmission, mining and regional correlation analysis of massive shield data remains challenging. In this study, a hybrid machine learning model integrating the long short-term memory (LSTM) networks and the Bayesian optimization (BO) algorithm was developed to predict TWAP based on the setting pressure (SP), revised setting pressure (RSP), final pressure (FP), number of yielding (NY), TWAP in the last supporting cycle (TWAP (last)), and loading rate in each period. Statistical measures including the mean square error and mean absolute error were used to validate and compare the prediction performances of the BP model, the LSTM model, and the BO-LSTM model. Furthermore, sensitivity studies were carried out to evaluate the importance of input parameters. The results show that the BO-LSTM model is robust in predicting TWAP. FP and TWAP (last) are the most important input parameters in TWAP prediction, followed by RSP and NY. Moreover, the total importance scores of loading rates reach 0.229, indicating the necessity of including these parameters into the dataset. The proposed BO-LSTM model is capable of predicting TWAP which serves for shield-roof status intelligent perception. Geology Junhui Wang verfasserin aut Jingyi Cheng verfasserin aut Zhijun Wan verfasserin aut Keke Xing verfasserin aut Kuidong Gao verfasserin aut In Geofluids Hindawi-Wiley, 2017 (2021) (DE-627)328185639 (DE-600)2045012-6 14688123 nnns year:2021 https://doi.org/10.1155/2021/8895844 kostenfrei https://doaj.org/article/b500061e17c443be88b6407c108027dc kostenfrei http://dx.doi.org/10.1155/2021/8895844 kostenfrei https://doaj.org/toc/1468-8115 Journal toc kostenfrei https://doaj.org/toc/1468-8123 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_381 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2088 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2021 |
allfieldsGer |
10.1155/2021/8895844 doi (DE-627)DOAJ067733662 (DE-599)DOAJb500061e17c443be88b6407c108027dc DE-627 ger DE-627 rakwb eng QE1-996.5 Wanzi Yan verfasserin aut Long Short-Term Memory Networks and Bayesian Optimization for Predicting the Time-Weighted Average Pressure of Shield Supporting Cycles 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Characteristic parameters of shield supporting in fully mechanized mining, especially time-weighted average pressure (TWAP), are crucial for the analysis and prediction of roof weightings in longwall panels. Despite the leap-forward development of underground data collection and transmission, mining and regional correlation analysis of massive shield data remains challenging. In this study, a hybrid machine learning model integrating the long short-term memory (LSTM) networks and the Bayesian optimization (BO) algorithm was developed to predict TWAP based on the setting pressure (SP), revised setting pressure (RSP), final pressure (FP), number of yielding (NY), TWAP in the last supporting cycle (TWAP (last)), and loading rate in each period. Statistical measures including the mean square error and mean absolute error were used to validate and compare the prediction performances of the BP model, the LSTM model, and the BO-LSTM model. Furthermore, sensitivity studies were carried out to evaluate the importance of input parameters. The results show that the BO-LSTM model is robust in predicting TWAP. FP and TWAP (last) are the most important input parameters in TWAP prediction, followed by RSP and NY. Moreover, the total importance scores of loading rates reach 0.229, indicating the necessity of including these parameters into the dataset. The proposed BO-LSTM model is capable of predicting TWAP which serves for shield-roof status intelligent perception. Geology Junhui Wang verfasserin aut Jingyi Cheng verfasserin aut Zhijun Wan verfasserin aut Keke Xing verfasserin aut Kuidong Gao verfasserin aut In Geofluids Hindawi-Wiley, 2017 (2021) (DE-627)328185639 (DE-600)2045012-6 14688123 nnns year:2021 https://doi.org/10.1155/2021/8895844 kostenfrei https://doaj.org/article/b500061e17c443be88b6407c108027dc kostenfrei http://dx.doi.org/10.1155/2021/8895844 kostenfrei https://doaj.org/toc/1468-8115 Journal toc kostenfrei https://doaj.org/toc/1468-8123 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_381 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2088 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2021 |
allfieldsSound |
10.1155/2021/8895844 doi (DE-627)DOAJ067733662 (DE-599)DOAJb500061e17c443be88b6407c108027dc DE-627 ger DE-627 rakwb eng QE1-996.5 Wanzi Yan verfasserin aut Long Short-Term Memory Networks and Bayesian Optimization for Predicting the Time-Weighted Average Pressure of Shield Supporting Cycles 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Characteristic parameters of shield supporting in fully mechanized mining, especially time-weighted average pressure (TWAP), are crucial for the analysis and prediction of roof weightings in longwall panels. Despite the leap-forward development of underground data collection and transmission, mining and regional correlation analysis of massive shield data remains challenging. In this study, a hybrid machine learning model integrating the long short-term memory (LSTM) networks and the Bayesian optimization (BO) algorithm was developed to predict TWAP based on the setting pressure (SP), revised setting pressure (RSP), final pressure (FP), number of yielding (NY), TWAP in the last supporting cycle (TWAP (last)), and loading rate in each period. Statistical measures including the mean square error and mean absolute error were used to validate and compare the prediction performances of the BP model, the LSTM model, and the BO-LSTM model. Furthermore, sensitivity studies were carried out to evaluate the importance of input parameters. The results show that the BO-LSTM model is robust in predicting TWAP. FP and TWAP (last) are the most important input parameters in TWAP prediction, followed by RSP and NY. Moreover, the total importance scores of loading rates reach 0.229, indicating the necessity of including these parameters into the dataset. The proposed BO-LSTM model is capable of predicting TWAP which serves for shield-roof status intelligent perception. Geology Junhui Wang verfasserin aut Jingyi Cheng verfasserin aut Zhijun Wan verfasserin aut Keke Xing verfasserin aut Kuidong Gao verfasserin aut In Geofluids Hindawi-Wiley, 2017 (2021) (DE-627)328185639 (DE-600)2045012-6 14688123 nnns year:2021 https://doi.org/10.1155/2021/8895844 kostenfrei https://doaj.org/article/b500061e17c443be88b6407c108027dc kostenfrei http://dx.doi.org/10.1155/2021/8895844 kostenfrei https://doaj.org/toc/1468-8115 Journal toc kostenfrei https://doaj.org/toc/1468-8123 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_381 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2088 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2021 |
language |
English |
source |
In Geofluids (2021) year:2021 |
sourceStr |
In Geofluids (2021) year:2021 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Geology |
isfreeaccess_bool |
true |
container_title |
Geofluids |
authorswithroles_txt_mv |
Wanzi Yan @@aut@@ Junhui Wang @@aut@@ Jingyi Cheng @@aut@@ Zhijun Wan @@aut@@ Keke Xing @@aut@@ Kuidong Gao @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
328185639 |
id |
DOAJ067733662 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ067733662</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309072035.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1155/2021/8895844</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ067733662</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb500061e17c443be88b6407c108027dc</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QE1-996.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Wanzi Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Long Short-Term Memory Networks and Bayesian Optimization for Predicting the Time-Weighted Average Pressure of Shield Supporting Cycles</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Characteristic parameters of shield supporting in fully mechanized mining, especially time-weighted average pressure (TWAP), are crucial for the analysis and prediction of roof weightings in longwall panels. Despite the leap-forward development of underground data collection and transmission, mining and regional correlation analysis of massive shield data remains challenging. In this study, a hybrid machine learning model integrating the long short-term memory (LSTM) networks and the Bayesian optimization (BO) algorithm was developed to predict TWAP based on the setting pressure (SP), revised setting pressure (RSP), final pressure (FP), number of yielding (NY), TWAP in the last supporting cycle (TWAP (last)), and loading rate in each period. Statistical measures including the mean square error and mean absolute error were used to validate and compare the prediction performances of the BP model, the LSTM model, and the BO-LSTM model. Furthermore, sensitivity studies were carried out to evaluate the importance of input parameters. The results show that the BO-LSTM model is robust in predicting TWAP. FP and TWAP (last) are the most important input parameters in TWAP prediction, followed by RSP and NY. Moreover, the total importance scores of loading rates reach 0.229, indicating the necessity of including these parameters into the dataset. The proposed BO-LSTM model is capable of predicting TWAP which serves for shield-roof status intelligent perception.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Geology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Junhui Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jingyi Cheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhijun Wan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Keke Xing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kuidong Gao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Geofluids</subfield><subfield code="d">Hindawi-Wiley, 2017</subfield><subfield code="g">(2021)</subfield><subfield code="w">(DE-627)328185639</subfield><subfield code="w">(DE-600)2045012-6</subfield><subfield code="x">14688123</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2021</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1155/2021/8895844</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b500061e17c443be88b6407c108027dc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1155/2021/8895844</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1468-8115</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1468-8123</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2021</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Wanzi Yan |
spellingShingle |
Wanzi Yan misc QE1-996.5 misc Geology Long Short-Term Memory Networks and Bayesian Optimization for Predicting the Time-Weighted Average Pressure of Shield Supporting Cycles |
authorStr |
Wanzi Yan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)328185639 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QE1-996 |
illustrated |
Not Illustrated |
issn |
14688123 |
topic_title |
QE1-996.5 Long Short-Term Memory Networks and Bayesian Optimization for Predicting the Time-Weighted Average Pressure of Shield Supporting Cycles |
topic |
misc QE1-996.5 misc Geology |
topic_unstemmed |
misc QE1-996.5 misc Geology |
topic_browse |
misc QE1-996.5 misc Geology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Geofluids |
hierarchy_parent_id |
328185639 |
hierarchy_top_title |
Geofluids |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)328185639 (DE-600)2045012-6 |
title |
Long Short-Term Memory Networks and Bayesian Optimization for Predicting the Time-Weighted Average Pressure of Shield Supporting Cycles |
ctrlnum |
(DE-627)DOAJ067733662 (DE-599)DOAJb500061e17c443be88b6407c108027dc |
title_full |
Long Short-Term Memory Networks and Bayesian Optimization for Predicting the Time-Weighted Average Pressure of Shield Supporting Cycles |
author_sort |
Wanzi Yan |
journal |
Geofluids |
journalStr |
Geofluids |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Wanzi Yan Junhui Wang Jingyi Cheng Zhijun Wan Keke Xing Kuidong Gao |
class |
QE1-996.5 |
format_se |
Elektronische Aufsätze |
author-letter |
Wanzi Yan |
doi_str_mv |
10.1155/2021/8895844 |
author2-role |
verfasserin |
title_sort |
long short-term memory networks and bayesian optimization for predicting the time-weighted average pressure of shield supporting cycles |
callnumber |
QE1-996.5 |
title_auth |
Long Short-Term Memory Networks and Bayesian Optimization for Predicting the Time-Weighted Average Pressure of Shield Supporting Cycles |
abstract |
Characteristic parameters of shield supporting in fully mechanized mining, especially time-weighted average pressure (TWAP), are crucial for the analysis and prediction of roof weightings in longwall panels. Despite the leap-forward development of underground data collection and transmission, mining and regional correlation analysis of massive shield data remains challenging. In this study, a hybrid machine learning model integrating the long short-term memory (LSTM) networks and the Bayesian optimization (BO) algorithm was developed to predict TWAP based on the setting pressure (SP), revised setting pressure (RSP), final pressure (FP), number of yielding (NY), TWAP in the last supporting cycle (TWAP (last)), and loading rate in each period. Statistical measures including the mean square error and mean absolute error were used to validate and compare the prediction performances of the BP model, the LSTM model, and the BO-LSTM model. Furthermore, sensitivity studies were carried out to evaluate the importance of input parameters. The results show that the BO-LSTM model is robust in predicting TWAP. FP and TWAP (last) are the most important input parameters in TWAP prediction, followed by RSP and NY. Moreover, the total importance scores of loading rates reach 0.229, indicating the necessity of including these parameters into the dataset. The proposed BO-LSTM model is capable of predicting TWAP which serves for shield-roof status intelligent perception. |
abstractGer |
Characteristic parameters of shield supporting in fully mechanized mining, especially time-weighted average pressure (TWAP), are crucial for the analysis and prediction of roof weightings in longwall panels. Despite the leap-forward development of underground data collection and transmission, mining and regional correlation analysis of massive shield data remains challenging. In this study, a hybrid machine learning model integrating the long short-term memory (LSTM) networks and the Bayesian optimization (BO) algorithm was developed to predict TWAP based on the setting pressure (SP), revised setting pressure (RSP), final pressure (FP), number of yielding (NY), TWAP in the last supporting cycle (TWAP (last)), and loading rate in each period. Statistical measures including the mean square error and mean absolute error were used to validate and compare the prediction performances of the BP model, the LSTM model, and the BO-LSTM model. Furthermore, sensitivity studies were carried out to evaluate the importance of input parameters. The results show that the BO-LSTM model is robust in predicting TWAP. FP and TWAP (last) are the most important input parameters in TWAP prediction, followed by RSP and NY. Moreover, the total importance scores of loading rates reach 0.229, indicating the necessity of including these parameters into the dataset. The proposed BO-LSTM model is capable of predicting TWAP which serves for shield-roof status intelligent perception. |
abstract_unstemmed |
Characteristic parameters of shield supporting in fully mechanized mining, especially time-weighted average pressure (TWAP), are crucial for the analysis and prediction of roof weightings in longwall panels. Despite the leap-forward development of underground data collection and transmission, mining and regional correlation analysis of massive shield data remains challenging. In this study, a hybrid machine learning model integrating the long short-term memory (LSTM) networks and the Bayesian optimization (BO) algorithm was developed to predict TWAP based on the setting pressure (SP), revised setting pressure (RSP), final pressure (FP), number of yielding (NY), TWAP in the last supporting cycle (TWAP (last)), and loading rate in each period. Statistical measures including the mean square error and mean absolute error were used to validate and compare the prediction performances of the BP model, the LSTM model, and the BO-LSTM model. Furthermore, sensitivity studies were carried out to evaluate the importance of input parameters. The results show that the BO-LSTM model is robust in predicting TWAP. FP and TWAP (last) are the most important input parameters in TWAP prediction, followed by RSP and NY. Moreover, the total importance scores of loading rates reach 0.229, indicating the necessity of including these parameters into the dataset. The proposed BO-LSTM model is capable of predicting TWAP which serves for shield-roof status intelligent perception. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_381 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2088 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Long Short-Term Memory Networks and Bayesian Optimization for Predicting the Time-Weighted Average Pressure of Shield Supporting Cycles |
url |
https://doi.org/10.1155/2021/8895844 https://doaj.org/article/b500061e17c443be88b6407c108027dc http://dx.doi.org/10.1155/2021/8895844 https://doaj.org/toc/1468-8115 https://doaj.org/toc/1468-8123 |
remote_bool |
true |
author2 |
Junhui Wang Jingyi Cheng Zhijun Wan Keke Xing Kuidong Gao |
author2Str |
Junhui Wang Jingyi Cheng Zhijun Wan Keke Xing Kuidong Gao |
ppnlink |
328185639 |
callnumber-subject |
QE - Geology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1155/2021/8895844 |
callnumber-a |
QE1-996.5 |
up_date |
2024-07-03T13:46:25.418Z |
_version_ |
1803565804207210497 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ067733662</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309072035.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1155/2021/8895844</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ067733662</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb500061e17c443be88b6407c108027dc</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QE1-996.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Wanzi Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Long Short-Term Memory Networks and Bayesian Optimization for Predicting the Time-Weighted Average Pressure of Shield Supporting Cycles</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Characteristic parameters of shield supporting in fully mechanized mining, especially time-weighted average pressure (TWAP), are crucial for the analysis and prediction of roof weightings in longwall panels. Despite the leap-forward development of underground data collection and transmission, mining and regional correlation analysis of massive shield data remains challenging. In this study, a hybrid machine learning model integrating the long short-term memory (LSTM) networks and the Bayesian optimization (BO) algorithm was developed to predict TWAP based on the setting pressure (SP), revised setting pressure (RSP), final pressure (FP), number of yielding (NY), TWAP in the last supporting cycle (TWAP (last)), and loading rate in each period. Statistical measures including the mean square error and mean absolute error were used to validate and compare the prediction performances of the BP model, the LSTM model, and the BO-LSTM model. Furthermore, sensitivity studies were carried out to evaluate the importance of input parameters. The results show that the BO-LSTM model is robust in predicting TWAP. FP and TWAP (last) are the most important input parameters in TWAP prediction, followed by RSP and NY. Moreover, the total importance scores of loading rates reach 0.229, indicating the necessity of including these parameters into the dataset. The proposed BO-LSTM model is capable of predicting TWAP which serves for shield-roof status intelligent perception.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Geology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Junhui Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jingyi Cheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhijun Wan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Keke Xing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kuidong Gao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Geofluids</subfield><subfield code="d">Hindawi-Wiley, 2017</subfield><subfield code="g">(2021)</subfield><subfield code="w">(DE-627)328185639</subfield><subfield code="w">(DE-600)2045012-6</subfield><subfield code="x">14688123</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2021</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1155/2021/8895844</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b500061e17c443be88b6407c108027dc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1155/2021/8895844</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1468-8115</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1468-8123</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2021</subfield></datafield></record></collection>
|
score |
7.4008284 |