Increasing the production of gas condensate by using ammonium carbonate salts
The work is devoted to the problem of increasing gas condensate production in gas condensate fields. It was found that ammonium carbonate salts, in the absence of calcium chloride type waters, interact with carbonate rocks, increase the permeability of reservoirs. Solutions of ammonium carbonate sal...
Ausführliche Beschreibung
Autor*in: |
Dmytrenko Viktoriia [verfasserIn] Zezekalо Ivan [verfasserIn] Vynnykov Yuriy [verfasserIn] Hristov Nikolay [verfasserIn] Meracheva Gergana [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch ; Französisch |
Erschienen: |
2021 |
---|
Übergeordnetes Werk: |
In: E3S Web of Conferences - EDP Sciences, 2013, 280, p 07011(2021) |
---|---|
Übergeordnetes Werk: |
volume:280, p 07011 ; year:2021 |
Links: |
---|
DOI / URN: |
10.1051/e3sconf/202128007011 |
---|
Katalog-ID: |
DOAJ06813293X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ06813293X | ||
003 | DE-627 | ||
005 | 20230309073812.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1051/e3sconf/202128007011 |2 doi | |
035 | |a (DE-627)DOAJ06813293X | ||
035 | |a (DE-599)DOAJe45fcccb7420437d875d9213b2cc4ebb | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng |a fre | ||
050 | 0 | |a GE1-350 | |
100 | 0 | |a Dmytrenko Viktoriia |e verfasserin |4 aut | |
245 | 1 | 0 | |a Increasing the production of gas condensate by using ammonium carbonate salts |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The work is devoted to the problem of increasing gas condensate production in gas condensate fields. It was found that ammonium carbonate salts, in the absence of calcium chloride type waters, interact with carbonate rocks, increase the permeability of reservoirs. Solutions of ammonium carbonate salts when interacting with formation water of the calcium chloride type form chemically precipitated chalk in the pore space, while the permeability of carbonate rocks decreases. A set of experimental studies was carried out to study the displacing and washing properties of ammonium carbonate salts. It was found that ammonium carbonate salts have high displacing properties, the displacement ratio of kerosene by NH4HCO3 solution is 0.75-0.80, while reservoir water – 0.55-0.58. According to the results of laboratory studies of the displacing and washing characteristics of ammonium carbonate salts, conclusions were made about the effect of bicarbonate solution (ammonium carbonate salts) on the production characteristics of a well in reservoir conditions at temperatures of 80-100 °C and above. Industrial tests of ammonium carbonate salts showed an increase in gas flow by 30-50% at wells № 23 of Opishnia, № 115 of Mashivka, № 3 of Tymofiivka gas condensate fields. The effect of formation treatment with ammonium carbonate salts is achieved due to clearing of well bottom zone and increasing the formation permeability. At wells № 56, 108 of Yablunivka and № 58 of Tymofiivka gas condensate fields, an increase in the condensate ratio was observed by 22-35%. The effectiveness of this treatment is associated with the simultaneous bottomhole zone cleaning from asphalt-resinous contaminants and permeability increase, as well as with the hydrophilization of the pore space and mobility increase of condensate precipitated as a result of carbon dioxide effect, which was rejected as a result of decomposition of ammonium carbonate. Thus, experimental and industrial tests in Opishnia, Mashivka, Tymofiivka, Yablunivka gas condensate fields of Poltava region confirmed the effectiveness of using ammonium carbonate to increase hydrocarbon production. The prospect of further research is aimed at developing a technology for increasing the production of liquid hydrocarbons by using ammonium carbonate salts. | ||
653 | 0 | |a Environmental sciences | |
700 | 0 | |a Zezekalо Ivan |e verfasserin |4 aut | |
700 | 0 | |a Vynnykov Yuriy |e verfasserin |4 aut | |
700 | 0 | |a Hristov Nikolay |e verfasserin |4 aut | |
700 | 0 | |a Meracheva Gergana |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t E3S Web of Conferences |d EDP Sciences, 2013 |g 280, p 07011(2021) |w (DE-627)778372081 |w (DE-600)2755680-3 |x 22671242 |7 nnns |
773 | 1 | 8 | |g volume:280, p 07011 |g year:2021 |
856 | 4 | 0 | |u https://doi.org/10.1051/e3sconf/202128007011 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/e45fcccb7420437d875d9213b2cc4ebb |z kostenfrei |
856 | 4 | 0 | |u https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/56/e3sconf_icsf2021_07011.pdf |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2267-1242 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 280, p 07011 |j 2021 |
author_variant |
d v dv z i zi v y vy h n hn m g mg |
---|---|
matchkey_str |
article:22671242:2021----::nraighpoutoogsodnaeysnam |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
GE |
publishDate |
2021 |
allfields |
10.1051/e3sconf/202128007011 doi (DE-627)DOAJ06813293X (DE-599)DOAJe45fcccb7420437d875d9213b2cc4ebb DE-627 ger DE-627 rakwb eng fre GE1-350 Dmytrenko Viktoriia verfasserin aut Increasing the production of gas condensate by using ammonium carbonate salts 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The work is devoted to the problem of increasing gas condensate production in gas condensate fields. It was found that ammonium carbonate salts, in the absence of calcium chloride type waters, interact with carbonate rocks, increase the permeability of reservoirs. Solutions of ammonium carbonate salts when interacting with formation water of the calcium chloride type form chemically precipitated chalk in the pore space, while the permeability of carbonate rocks decreases. A set of experimental studies was carried out to study the displacing and washing properties of ammonium carbonate salts. It was found that ammonium carbonate salts have high displacing properties, the displacement ratio of kerosene by NH4HCO3 solution is 0.75-0.80, while reservoir water – 0.55-0.58. According to the results of laboratory studies of the displacing and washing characteristics of ammonium carbonate salts, conclusions were made about the effect of bicarbonate solution (ammonium carbonate salts) on the production characteristics of a well in reservoir conditions at temperatures of 80-100 °C and above. Industrial tests of ammonium carbonate salts showed an increase in gas flow by 30-50% at wells № 23 of Opishnia, № 115 of Mashivka, № 3 of Tymofiivka gas condensate fields. The effect of formation treatment with ammonium carbonate salts is achieved due to clearing of well bottom zone and increasing the formation permeability. At wells № 56, 108 of Yablunivka and № 58 of Tymofiivka gas condensate fields, an increase in the condensate ratio was observed by 22-35%. The effectiveness of this treatment is associated with the simultaneous bottomhole zone cleaning from asphalt-resinous contaminants and permeability increase, as well as with the hydrophilization of the pore space and mobility increase of condensate precipitated as a result of carbon dioxide effect, which was rejected as a result of decomposition of ammonium carbonate. Thus, experimental and industrial tests in Opishnia, Mashivka, Tymofiivka, Yablunivka gas condensate fields of Poltava region confirmed the effectiveness of using ammonium carbonate to increase hydrocarbon production. The prospect of further research is aimed at developing a technology for increasing the production of liquid hydrocarbons by using ammonium carbonate salts. Environmental sciences Zezekalо Ivan verfasserin aut Vynnykov Yuriy verfasserin aut Hristov Nikolay verfasserin aut Meracheva Gergana verfasserin aut In E3S Web of Conferences EDP Sciences, 2013 280, p 07011(2021) (DE-627)778372081 (DE-600)2755680-3 22671242 nnns volume:280, p 07011 year:2021 https://doi.org/10.1051/e3sconf/202128007011 kostenfrei https://doaj.org/article/e45fcccb7420437d875d9213b2cc4ebb kostenfrei https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/56/e3sconf_icsf2021_07011.pdf kostenfrei https://doaj.org/toc/2267-1242 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 280, p 07011 2021 |
spelling |
10.1051/e3sconf/202128007011 doi (DE-627)DOAJ06813293X (DE-599)DOAJe45fcccb7420437d875d9213b2cc4ebb DE-627 ger DE-627 rakwb eng fre GE1-350 Dmytrenko Viktoriia verfasserin aut Increasing the production of gas condensate by using ammonium carbonate salts 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The work is devoted to the problem of increasing gas condensate production in gas condensate fields. It was found that ammonium carbonate salts, in the absence of calcium chloride type waters, interact with carbonate rocks, increase the permeability of reservoirs. Solutions of ammonium carbonate salts when interacting with formation water of the calcium chloride type form chemically precipitated chalk in the pore space, while the permeability of carbonate rocks decreases. A set of experimental studies was carried out to study the displacing and washing properties of ammonium carbonate salts. It was found that ammonium carbonate salts have high displacing properties, the displacement ratio of kerosene by NH4HCO3 solution is 0.75-0.80, while reservoir water – 0.55-0.58. According to the results of laboratory studies of the displacing and washing characteristics of ammonium carbonate salts, conclusions were made about the effect of bicarbonate solution (ammonium carbonate salts) on the production characteristics of a well in reservoir conditions at temperatures of 80-100 °C and above. Industrial tests of ammonium carbonate salts showed an increase in gas flow by 30-50% at wells № 23 of Opishnia, № 115 of Mashivka, № 3 of Tymofiivka gas condensate fields. The effect of formation treatment with ammonium carbonate salts is achieved due to clearing of well bottom zone and increasing the formation permeability. At wells № 56, 108 of Yablunivka and № 58 of Tymofiivka gas condensate fields, an increase in the condensate ratio was observed by 22-35%. The effectiveness of this treatment is associated with the simultaneous bottomhole zone cleaning from asphalt-resinous contaminants and permeability increase, as well as with the hydrophilization of the pore space and mobility increase of condensate precipitated as a result of carbon dioxide effect, which was rejected as a result of decomposition of ammonium carbonate. Thus, experimental and industrial tests in Opishnia, Mashivka, Tymofiivka, Yablunivka gas condensate fields of Poltava region confirmed the effectiveness of using ammonium carbonate to increase hydrocarbon production. The prospect of further research is aimed at developing a technology for increasing the production of liquid hydrocarbons by using ammonium carbonate salts. Environmental sciences Zezekalо Ivan verfasserin aut Vynnykov Yuriy verfasserin aut Hristov Nikolay verfasserin aut Meracheva Gergana verfasserin aut In E3S Web of Conferences EDP Sciences, 2013 280, p 07011(2021) (DE-627)778372081 (DE-600)2755680-3 22671242 nnns volume:280, p 07011 year:2021 https://doi.org/10.1051/e3sconf/202128007011 kostenfrei https://doaj.org/article/e45fcccb7420437d875d9213b2cc4ebb kostenfrei https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/56/e3sconf_icsf2021_07011.pdf kostenfrei https://doaj.org/toc/2267-1242 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 280, p 07011 2021 |
allfields_unstemmed |
10.1051/e3sconf/202128007011 doi (DE-627)DOAJ06813293X (DE-599)DOAJe45fcccb7420437d875d9213b2cc4ebb DE-627 ger DE-627 rakwb eng fre GE1-350 Dmytrenko Viktoriia verfasserin aut Increasing the production of gas condensate by using ammonium carbonate salts 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The work is devoted to the problem of increasing gas condensate production in gas condensate fields. It was found that ammonium carbonate salts, in the absence of calcium chloride type waters, interact with carbonate rocks, increase the permeability of reservoirs. Solutions of ammonium carbonate salts when interacting with formation water of the calcium chloride type form chemically precipitated chalk in the pore space, while the permeability of carbonate rocks decreases. A set of experimental studies was carried out to study the displacing and washing properties of ammonium carbonate salts. It was found that ammonium carbonate salts have high displacing properties, the displacement ratio of kerosene by NH4HCO3 solution is 0.75-0.80, while reservoir water – 0.55-0.58. According to the results of laboratory studies of the displacing and washing characteristics of ammonium carbonate salts, conclusions were made about the effect of bicarbonate solution (ammonium carbonate salts) on the production characteristics of a well in reservoir conditions at temperatures of 80-100 °C and above. Industrial tests of ammonium carbonate salts showed an increase in gas flow by 30-50% at wells № 23 of Opishnia, № 115 of Mashivka, № 3 of Tymofiivka gas condensate fields. The effect of formation treatment with ammonium carbonate salts is achieved due to clearing of well bottom zone and increasing the formation permeability. At wells № 56, 108 of Yablunivka and № 58 of Tymofiivka gas condensate fields, an increase in the condensate ratio was observed by 22-35%. The effectiveness of this treatment is associated with the simultaneous bottomhole zone cleaning from asphalt-resinous contaminants and permeability increase, as well as with the hydrophilization of the pore space and mobility increase of condensate precipitated as a result of carbon dioxide effect, which was rejected as a result of decomposition of ammonium carbonate. Thus, experimental and industrial tests in Opishnia, Mashivka, Tymofiivka, Yablunivka gas condensate fields of Poltava region confirmed the effectiveness of using ammonium carbonate to increase hydrocarbon production. The prospect of further research is aimed at developing a technology for increasing the production of liquid hydrocarbons by using ammonium carbonate salts. Environmental sciences Zezekalо Ivan verfasserin aut Vynnykov Yuriy verfasserin aut Hristov Nikolay verfasserin aut Meracheva Gergana verfasserin aut In E3S Web of Conferences EDP Sciences, 2013 280, p 07011(2021) (DE-627)778372081 (DE-600)2755680-3 22671242 nnns volume:280, p 07011 year:2021 https://doi.org/10.1051/e3sconf/202128007011 kostenfrei https://doaj.org/article/e45fcccb7420437d875d9213b2cc4ebb kostenfrei https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/56/e3sconf_icsf2021_07011.pdf kostenfrei https://doaj.org/toc/2267-1242 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 280, p 07011 2021 |
allfieldsGer |
10.1051/e3sconf/202128007011 doi (DE-627)DOAJ06813293X (DE-599)DOAJe45fcccb7420437d875d9213b2cc4ebb DE-627 ger DE-627 rakwb eng fre GE1-350 Dmytrenko Viktoriia verfasserin aut Increasing the production of gas condensate by using ammonium carbonate salts 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The work is devoted to the problem of increasing gas condensate production in gas condensate fields. It was found that ammonium carbonate salts, in the absence of calcium chloride type waters, interact with carbonate rocks, increase the permeability of reservoirs. Solutions of ammonium carbonate salts when interacting with formation water of the calcium chloride type form chemically precipitated chalk in the pore space, while the permeability of carbonate rocks decreases. A set of experimental studies was carried out to study the displacing and washing properties of ammonium carbonate salts. It was found that ammonium carbonate salts have high displacing properties, the displacement ratio of kerosene by NH4HCO3 solution is 0.75-0.80, while reservoir water – 0.55-0.58. According to the results of laboratory studies of the displacing and washing characteristics of ammonium carbonate salts, conclusions were made about the effect of bicarbonate solution (ammonium carbonate salts) on the production characteristics of a well in reservoir conditions at temperatures of 80-100 °C and above. Industrial tests of ammonium carbonate salts showed an increase in gas flow by 30-50% at wells № 23 of Opishnia, № 115 of Mashivka, № 3 of Tymofiivka gas condensate fields. The effect of formation treatment with ammonium carbonate salts is achieved due to clearing of well bottom zone and increasing the formation permeability. At wells № 56, 108 of Yablunivka and № 58 of Tymofiivka gas condensate fields, an increase in the condensate ratio was observed by 22-35%. The effectiveness of this treatment is associated with the simultaneous bottomhole zone cleaning from asphalt-resinous contaminants and permeability increase, as well as with the hydrophilization of the pore space and mobility increase of condensate precipitated as a result of carbon dioxide effect, which was rejected as a result of decomposition of ammonium carbonate. Thus, experimental and industrial tests in Opishnia, Mashivka, Tymofiivka, Yablunivka gas condensate fields of Poltava region confirmed the effectiveness of using ammonium carbonate to increase hydrocarbon production. The prospect of further research is aimed at developing a technology for increasing the production of liquid hydrocarbons by using ammonium carbonate salts. Environmental sciences Zezekalо Ivan verfasserin aut Vynnykov Yuriy verfasserin aut Hristov Nikolay verfasserin aut Meracheva Gergana verfasserin aut In E3S Web of Conferences EDP Sciences, 2013 280, p 07011(2021) (DE-627)778372081 (DE-600)2755680-3 22671242 nnns volume:280, p 07011 year:2021 https://doi.org/10.1051/e3sconf/202128007011 kostenfrei https://doaj.org/article/e45fcccb7420437d875d9213b2cc4ebb kostenfrei https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/56/e3sconf_icsf2021_07011.pdf kostenfrei https://doaj.org/toc/2267-1242 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 280, p 07011 2021 |
allfieldsSound |
10.1051/e3sconf/202128007011 doi (DE-627)DOAJ06813293X (DE-599)DOAJe45fcccb7420437d875d9213b2cc4ebb DE-627 ger DE-627 rakwb eng fre GE1-350 Dmytrenko Viktoriia verfasserin aut Increasing the production of gas condensate by using ammonium carbonate salts 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The work is devoted to the problem of increasing gas condensate production in gas condensate fields. It was found that ammonium carbonate salts, in the absence of calcium chloride type waters, interact with carbonate rocks, increase the permeability of reservoirs. Solutions of ammonium carbonate salts when interacting with formation water of the calcium chloride type form chemically precipitated chalk in the pore space, while the permeability of carbonate rocks decreases. A set of experimental studies was carried out to study the displacing and washing properties of ammonium carbonate salts. It was found that ammonium carbonate salts have high displacing properties, the displacement ratio of kerosene by NH4HCO3 solution is 0.75-0.80, while reservoir water – 0.55-0.58. According to the results of laboratory studies of the displacing and washing characteristics of ammonium carbonate salts, conclusions were made about the effect of bicarbonate solution (ammonium carbonate salts) on the production characteristics of a well in reservoir conditions at temperatures of 80-100 °C and above. Industrial tests of ammonium carbonate salts showed an increase in gas flow by 30-50% at wells № 23 of Opishnia, № 115 of Mashivka, № 3 of Tymofiivka gas condensate fields. The effect of formation treatment with ammonium carbonate salts is achieved due to clearing of well bottom zone and increasing the formation permeability. At wells № 56, 108 of Yablunivka and № 58 of Tymofiivka gas condensate fields, an increase in the condensate ratio was observed by 22-35%. The effectiveness of this treatment is associated with the simultaneous bottomhole zone cleaning from asphalt-resinous contaminants and permeability increase, as well as with the hydrophilization of the pore space and mobility increase of condensate precipitated as a result of carbon dioxide effect, which was rejected as a result of decomposition of ammonium carbonate. Thus, experimental and industrial tests in Opishnia, Mashivka, Tymofiivka, Yablunivka gas condensate fields of Poltava region confirmed the effectiveness of using ammonium carbonate to increase hydrocarbon production. The prospect of further research is aimed at developing a technology for increasing the production of liquid hydrocarbons by using ammonium carbonate salts. Environmental sciences Zezekalо Ivan verfasserin aut Vynnykov Yuriy verfasserin aut Hristov Nikolay verfasserin aut Meracheva Gergana verfasserin aut In E3S Web of Conferences EDP Sciences, 2013 280, p 07011(2021) (DE-627)778372081 (DE-600)2755680-3 22671242 nnns volume:280, p 07011 year:2021 https://doi.org/10.1051/e3sconf/202128007011 kostenfrei https://doaj.org/article/e45fcccb7420437d875d9213b2cc4ebb kostenfrei https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/56/e3sconf_icsf2021_07011.pdf kostenfrei https://doaj.org/toc/2267-1242 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 280, p 07011 2021 |
language |
English French |
source |
In E3S Web of Conferences 280, p 07011(2021) volume:280, p 07011 year:2021 |
sourceStr |
In E3S Web of Conferences 280, p 07011(2021) volume:280, p 07011 year:2021 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Environmental sciences |
isfreeaccess_bool |
true |
container_title |
E3S Web of Conferences |
authorswithroles_txt_mv |
Dmytrenko Viktoriia @@aut@@ Zezekalо Ivan @@aut@@ Vynnykov Yuriy @@aut@@ Hristov Nikolay @@aut@@ Meracheva Gergana @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
778372081 |
id |
DOAJ06813293X |
language_de |
englisch franzoesisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ06813293X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309073812.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1051/e3sconf/202128007011</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ06813293X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe45fcccb7420437d875d9213b2cc4ebb</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">fre</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Dmytrenko Viktoriia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Increasing the production of gas condensate by using ammonium carbonate salts</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The work is devoted to the problem of increasing gas condensate production in gas condensate fields. It was found that ammonium carbonate salts, in the absence of calcium chloride type waters, interact with carbonate rocks, increase the permeability of reservoirs. Solutions of ammonium carbonate salts when interacting with formation water of the calcium chloride type form chemically precipitated chalk in the pore space, while the permeability of carbonate rocks decreases. A set of experimental studies was carried out to study the displacing and washing properties of ammonium carbonate salts. It was found that ammonium carbonate salts have high displacing properties, the displacement ratio of kerosene by NH4HCO3 solution is 0.75-0.80, while reservoir water – 0.55-0.58. According to the results of laboratory studies of the displacing and washing characteristics of ammonium carbonate salts, conclusions were made about the effect of bicarbonate solution (ammonium carbonate salts) on the production characteristics of a well in reservoir conditions at temperatures of 80-100 °C and above. Industrial tests of ammonium carbonate salts showed an increase in gas flow by 30-50% at wells № 23 of Opishnia, № 115 of Mashivka, № 3 of Tymofiivka gas condensate fields. The effect of formation treatment with ammonium carbonate salts is achieved due to clearing of well bottom zone and increasing the formation permeability. At wells № 56, 108 of Yablunivka and № 58 of Tymofiivka gas condensate fields, an increase in the condensate ratio was observed by 22-35%. The effectiveness of this treatment is associated with the simultaneous bottomhole zone cleaning from asphalt-resinous contaminants and permeability increase, as well as with the hydrophilization of the pore space and mobility increase of condensate precipitated as a result of carbon dioxide effect, which was rejected as a result of decomposition of ammonium carbonate. Thus, experimental and industrial tests in Opishnia, Mashivka, Tymofiivka, Yablunivka gas condensate fields of Poltava region confirmed the effectiveness of using ammonium carbonate to increase hydrocarbon production. The prospect of further research is aimed at developing a technology for increasing the production of liquid hydrocarbons by using ammonium carbonate salts.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zezekalо Ivan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vynnykov Yuriy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hristov Nikolay</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Meracheva Gergana</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">E3S Web of Conferences</subfield><subfield code="d">EDP Sciences, 2013</subfield><subfield code="g">280, p 07011(2021)</subfield><subfield code="w">(DE-627)778372081</subfield><subfield code="w">(DE-600)2755680-3</subfield><subfield code="x">22671242</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:280, p 07011</subfield><subfield code="g">year:2021</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1051/e3sconf/202128007011</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e45fcccb7420437d875d9213b2cc4ebb</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/56/e3sconf_icsf2021_07011.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2267-1242</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">280, p 07011</subfield><subfield code="j">2021</subfield></datafield></record></collection>
|
callnumber-first |
G - Geography, Anthropology, Recreation |
author |
Dmytrenko Viktoriia |
spellingShingle |
Dmytrenko Viktoriia misc GE1-350 misc Environmental sciences Increasing the production of gas condensate by using ammonium carbonate salts |
authorStr |
Dmytrenko Viktoriia |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)778372081 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
GE1-350 |
illustrated |
Not Illustrated |
issn |
22671242 |
topic_title |
GE1-350 Increasing the production of gas condensate by using ammonium carbonate salts |
topic |
misc GE1-350 misc Environmental sciences |
topic_unstemmed |
misc GE1-350 misc Environmental sciences |
topic_browse |
misc GE1-350 misc Environmental sciences |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
E3S Web of Conferences |
hierarchy_parent_id |
778372081 |
hierarchy_top_title |
E3S Web of Conferences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)778372081 (DE-600)2755680-3 |
title |
Increasing the production of gas condensate by using ammonium carbonate salts |
ctrlnum |
(DE-627)DOAJ06813293X (DE-599)DOAJe45fcccb7420437d875d9213b2cc4ebb |
title_full |
Increasing the production of gas condensate by using ammonium carbonate salts |
author_sort |
Dmytrenko Viktoriia |
journal |
E3S Web of Conferences |
journalStr |
E3S Web of Conferences |
callnumber-first-code |
G |
lang_code |
eng fre |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Dmytrenko Viktoriia Zezekalо Ivan Vynnykov Yuriy Hristov Nikolay Meracheva Gergana |
container_volume |
280, p 07011 |
class |
GE1-350 |
format_se |
Elektronische Aufsätze |
author-letter |
Dmytrenko Viktoriia |
doi_str_mv |
10.1051/e3sconf/202128007011 |
author2-role |
verfasserin |
title_sort |
increasing the production of gas condensate by using ammonium carbonate salts |
callnumber |
GE1-350 |
title_auth |
Increasing the production of gas condensate by using ammonium carbonate salts |
abstract |
The work is devoted to the problem of increasing gas condensate production in gas condensate fields. It was found that ammonium carbonate salts, in the absence of calcium chloride type waters, interact with carbonate rocks, increase the permeability of reservoirs. Solutions of ammonium carbonate salts when interacting with formation water of the calcium chloride type form chemically precipitated chalk in the pore space, while the permeability of carbonate rocks decreases. A set of experimental studies was carried out to study the displacing and washing properties of ammonium carbonate salts. It was found that ammonium carbonate salts have high displacing properties, the displacement ratio of kerosene by NH4HCO3 solution is 0.75-0.80, while reservoir water – 0.55-0.58. According to the results of laboratory studies of the displacing and washing characteristics of ammonium carbonate salts, conclusions were made about the effect of bicarbonate solution (ammonium carbonate salts) on the production characteristics of a well in reservoir conditions at temperatures of 80-100 °C and above. Industrial tests of ammonium carbonate salts showed an increase in gas flow by 30-50% at wells № 23 of Opishnia, № 115 of Mashivka, № 3 of Tymofiivka gas condensate fields. The effect of formation treatment with ammonium carbonate salts is achieved due to clearing of well bottom zone and increasing the formation permeability. At wells № 56, 108 of Yablunivka and № 58 of Tymofiivka gas condensate fields, an increase in the condensate ratio was observed by 22-35%. The effectiveness of this treatment is associated with the simultaneous bottomhole zone cleaning from asphalt-resinous contaminants and permeability increase, as well as with the hydrophilization of the pore space and mobility increase of condensate precipitated as a result of carbon dioxide effect, which was rejected as a result of decomposition of ammonium carbonate. Thus, experimental and industrial tests in Opishnia, Mashivka, Tymofiivka, Yablunivka gas condensate fields of Poltava region confirmed the effectiveness of using ammonium carbonate to increase hydrocarbon production. The prospect of further research is aimed at developing a technology for increasing the production of liquid hydrocarbons by using ammonium carbonate salts. |
abstractGer |
The work is devoted to the problem of increasing gas condensate production in gas condensate fields. It was found that ammonium carbonate salts, in the absence of calcium chloride type waters, interact with carbonate rocks, increase the permeability of reservoirs. Solutions of ammonium carbonate salts when interacting with formation water of the calcium chloride type form chemically precipitated chalk in the pore space, while the permeability of carbonate rocks decreases. A set of experimental studies was carried out to study the displacing and washing properties of ammonium carbonate salts. It was found that ammonium carbonate salts have high displacing properties, the displacement ratio of kerosene by NH4HCO3 solution is 0.75-0.80, while reservoir water – 0.55-0.58. According to the results of laboratory studies of the displacing and washing characteristics of ammonium carbonate salts, conclusions were made about the effect of bicarbonate solution (ammonium carbonate salts) on the production characteristics of a well in reservoir conditions at temperatures of 80-100 °C and above. Industrial tests of ammonium carbonate salts showed an increase in gas flow by 30-50% at wells № 23 of Opishnia, № 115 of Mashivka, № 3 of Tymofiivka gas condensate fields. The effect of formation treatment with ammonium carbonate salts is achieved due to clearing of well bottom zone and increasing the formation permeability. At wells № 56, 108 of Yablunivka and № 58 of Tymofiivka gas condensate fields, an increase in the condensate ratio was observed by 22-35%. The effectiveness of this treatment is associated with the simultaneous bottomhole zone cleaning from asphalt-resinous contaminants and permeability increase, as well as with the hydrophilization of the pore space and mobility increase of condensate precipitated as a result of carbon dioxide effect, which was rejected as a result of decomposition of ammonium carbonate. Thus, experimental and industrial tests in Opishnia, Mashivka, Tymofiivka, Yablunivka gas condensate fields of Poltava region confirmed the effectiveness of using ammonium carbonate to increase hydrocarbon production. The prospect of further research is aimed at developing a technology for increasing the production of liquid hydrocarbons by using ammonium carbonate salts. |
abstract_unstemmed |
The work is devoted to the problem of increasing gas condensate production in gas condensate fields. It was found that ammonium carbonate salts, in the absence of calcium chloride type waters, interact with carbonate rocks, increase the permeability of reservoirs. Solutions of ammonium carbonate salts when interacting with formation water of the calcium chloride type form chemically precipitated chalk in the pore space, while the permeability of carbonate rocks decreases. A set of experimental studies was carried out to study the displacing and washing properties of ammonium carbonate salts. It was found that ammonium carbonate salts have high displacing properties, the displacement ratio of kerosene by NH4HCO3 solution is 0.75-0.80, while reservoir water – 0.55-0.58. According to the results of laboratory studies of the displacing and washing characteristics of ammonium carbonate salts, conclusions were made about the effect of bicarbonate solution (ammonium carbonate salts) on the production characteristics of a well in reservoir conditions at temperatures of 80-100 °C and above. Industrial tests of ammonium carbonate salts showed an increase in gas flow by 30-50% at wells № 23 of Opishnia, № 115 of Mashivka, № 3 of Tymofiivka gas condensate fields. The effect of formation treatment with ammonium carbonate salts is achieved due to clearing of well bottom zone and increasing the formation permeability. At wells № 56, 108 of Yablunivka and № 58 of Tymofiivka gas condensate fields, an increase in the condensate ratio was observed by 22-35%. The effectiveness of this treatment is associated with the simultaneous bottomhole zone cleaning from asphalt-resinous contaminants and permeability increase, as well as with the hydrophilization of the pore space and mobility increase of condensate precipitated as a result of carbon dioxide effect, which was rejected as a result of decomposition of ammonium carbonate. Thus, experimental and industrial tests in Opishnia, Mashivka, Tymofiivka, Yablunivka gas condensate fields of Poltava region confirmed the effectiveness of using ammonium carbonate to increase hydrocarbon production. The prospect of further research is aimed at developing a technology for increasing the production of liquid hydrocarbons by using ammonium carbonate salts. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Increasing the production of gas condensate by using ammonium carbonate salts |
url |
https://doi.org/10.1051/e3sconf/202128007011 https://doaj.org/article/e45fcccb7420437d875d9213b2cc4ebb https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/56/e3sconf_icsf2021_07011.pdf https://doaj.org/toc/2267-1242 |
remote_bool |
true |
author2 |
Zezekalо Ivan Vynnykov Yuriy Hristov Nikolay Meracheva Gergana |
author2Str |
Zezekalо Ivan Vynnykov Yuriy Hristov Nikolay Meracheva Gergana |
ppnlink |
778372081 |
callnumber-subject |
GE - Environmental Sciences |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1051/e3sconf/202128007011 |
callnumber-a |
GE1-350 |
up_date |
2024-07-03T16:03:48.254Z |
_version_ |
1803574447448260608 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ06813293X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309073812.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1051/e3sconf/202128007011</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ06813293X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe45fcccb7420437d875d9213b2cc4ebb</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">fre</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Dmytrenko Viktoriia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Increasing the production of gas condensate by using ammonium carbonate salts</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The work is devoted to the problem of increasing gas condensate production in gas condensate fields. It was found that ammonium carbonate salts, in the absence of calcium chloride type waters, interact with carbonate rocks, increase the permeability of reservoirs. Solutions of ammonium carbonate salts when interacting with formation water of the calcium chloride type form chemically precipitated chalk in the pore space, while the permeability of carbonate rocks decreases. A set of experimental studies was carried out to study the displacing and washing properties of ammonium carbonate salts. It was found that ammonium carbonate salts have high displacing properties, the displacement ratio of kerosene by NH4HCO3 solution is 0.75-0.80, while reservoir water – 0.55-0.58. According to the results of laboratory studies of the displacing and washing characteristics of ammonium carbonate salts, conclusions were made about the effect of bicarbonate solution (ammonium carbonate salts) on the production characteristics of a well in reservoir conditions at temperatures of 80-100 °C and above. Industrial tests of ammonium carbonate salts showed an increase in gas flow by 30-50% at wells № 23 of Opishnia, № 115 of Mashivka, № 3 of Tymofiivka gas condensate fields. The effect of formation treatment with ammonium carbonate salts is achieved due to clearing of well bottom zone and increasing the formation permeability. At wells № 56, 108 of Yablunivka and № 58 of Tymofiivka gas condensate fields, an increase in the condensate ratio was observed by 22-35%. The effectiveness of this treatment is associated with the simultaneous bottomhole zone cleaning from asphalt-resinous contaminants and permeability increase, as well as with the hydrophilization of the pore space and mobility increase of condensate precipitated as a result of carbon dioxide effect, which was rejected as a result of decomposition of ammonium carbonate. Thus, experimental and industrial tests in Opishnia, Mashivka, Tymofiivka, Yablunivka gas condensate fields of Poltava region confirmed the effectiveness of using ammonium carbonate to increase hydrocarbon production. The prospect of further research is aimed at developing a technology for increasing the production of liquid hydrocarbons by using ammonium carbonate salts.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zezekalо Ivan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vynnykov Yuriy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hristov Nikolay</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Meracheva Gergana</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">E3S Web of Conferences</subfield><subfield code="d">EDP Sciences, 2013</subfield><subfield code="g">280, p 07011(2021)</subfield><subfield code="w">(DE-627)778372081</subfield><subfield code="w">(DE-600)2755680-3</subfield><subfield code="x">22671242</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:280, p 07011</subfield><subfield code="g">year:2021</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1051/e3sconf/202128007011</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e45fcccb7420437d875d9213b2cc4ebb</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/56/e3sconf_icsf2021_07011.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2267-1242</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">280, p 07011</subfield><subfield code="j">2021</subfield></datafield></record></collection>
|
score |
7.4025126 |