Automated Quality Assessment of Fundus Images via Analysis of Illumination, Naturalness and Structure
In remote medical diagnosis, the percentage of poor-quality fundus images is very high, which requires automated quality assessment of fundus images in the acquisition stage to reduce the retransmission cost. In this paper, we propose a fundus image quality classifier via the analysis of illuminatio...
Ausführliche Beschreibung
Autor*in: |
Feng Shao [verfasserIn] Yan Yang [verfasserIn] Qiuping Jiang [verfasserIn] Gangyi Jiang [verfasserIn] Yo-Sung Ho [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 6(2018), Seite 806-817 |
---|---|
Übergeordnetes Werk: |
volume:6 ; year:2018 ; pages:806-817 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2017.2776126 |
---|
Katalog-ID: |
DOAJ068466080 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ068466080 | ||
003 | DE-627 | ||
005 | 20230501172425.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2017.2776126 |2 doi | |
035 | |a (DE-627)DOAJ068466080 | ||
035 | |a (DE-599)DOAJ67c851d1ed1b432dbe961d193e1d12ec | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Feng Shao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Automated Quality Assessment of Fundus Images via Analysis of Illumination, Naturalness and Structure |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In remote medical diagnosis, the percentage of poor-quality fundus images is very high, which requires automated quality assessment of fundus images in the acquisition stage to reduce the retransmission cost. In this paper, we propose a fundus image quality classifier via the analysis of illumination, naturalness, and structure, which use three effective secondary indices (or 5-D feature set) and different classification methods to determine the recommendation indexes of fundus images for further diagnosis. We construct a fundus image database including `accept' and `reject' classes based on the definition of illumination, naturalness, and structure. The model can achieve a sensitivity of 94.69%, specificity of 92.29%, and accuracy of 93.60% for the classifying of the fundus images. | ||
650 | 4 | |a Fundus image | |
650 | 4 | |a quality assessment | |
650 | 4 | |a illumination level | |
650 | 4 | |a naturalness level | |
650 | 4 | |a structure level | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Yan Yang |e verfasserin |4 aut | |
700 | 0 | |a Qiuping Jiang |e verfasserin |4 aut | |
700 | 0 | |a Gangyi Jiang |e verfasserin |4 aut | |
700 | 0 | |a Yo-Sung Ho |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 6(2018), Seite 806-817 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:6 |g year:2018 |g pages:806-817 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2017.2776126 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/67c851d1ed1b432dbe961d193e1d12ec |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/8116608/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 6 |j 2018 |h 806-817 |
author_variant |
f s fs y y yy q j qj g j gj y s h ysh |
---|---|
matchkey_str |
article:21693536:2018----::uoaeqaiysesetfudsmgsiaayioilmnton |
hierarchy_sort_str |
2018 |
callnumber-subject-code |
TK |
publishDate |
2018 |
allfields |
10.1109/ACCESS.2017.2776126 doi (DE-627)DOAJ068466080 (DE-599)DOAJ67c851d1ed1b432dbe961d193e1d12ec DE-627 ger DE-627 rakwb eng TK1-9971 Feng Shao verfasserin aut Automated Quality Assessment of Fundus Images via Analysis of Illumination, Naturalness and Structure 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In remote medical diagnosis, the percentage of poor-quality fundus images is very high, which requires automated quality assessment of fundus images in the acquisition stage to reduce the retransmission cost. In this paper, we propose a fundus image quality classifier via the analysis of illumination, naturalness, and structure, which use three effective secondary indices (or 5-D feature set) and different classification methods to determine the recommendation indexes of fundus images for further diagnosis. We construct a fundus image database including `accept' and `reject' classes based on the definition of illumination, naturalness, and structure. The model can achieve a sensitivity of 94.69%, specificity of 92.29%, and accuracy of 93.60% for the classifying of the fundus images. Fundus image quality assessment illumination level naturalness level structure level Electrical engineering. Electronics. Nuclear engineering Yan Yang verfasserin aut Qiuping Jiang verfasserin aut Gangyi Jiang verfasserin aut Yo-Sung Ho verfasserin aut In IEEE Access IEEE, 2014 6(2018), Seite 806-817 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:6 year:2018 pages:806-817 https://doi.org/10.1109/ACCESS.2017.2776126 kostenfrei https://doaj.org/article/67c851d1ed1b432dbe961d193e1d12ec kostenfrei https://ieeexplore.ieee.org/document/8116608/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 806-817 |
spelling |
10.1109/ACCESS.2017.2776126 doi (DE-627)DOAJ068466080 (DE-599)DOAJ67c851d1ed1b432dbe961d193e1d12ec DE-627 ger DE-627 rakwb eng TK1-9971 Feng Shao verfasserin aut Automated Quality Assessment of Fundus Images via Analysis of Illumination, Naturalness and Structure 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In remote medical diagnosis, the percentage of poor-quality fundus images is very high, which requires automated quality assessment of fundus images in the acquisition stage to reduce the retransmission cost. In this paper, we propose a fundus image quality classifier via the analysis of illumination, naturalness, and structure, which use three effective secondary indices (or 5-D feature set) and different classification methods to determine the recommendation indexes of fundus images for further diagnosis. We construct a fundus image database including `accept' and `reject' classes based on the definition of illumination, naturalness, and structure. The model can achieve a sensitivity of 94.69%, specificity of 92.29%, and accuracy of 93.60% for the classifying of the fundus images. Fundus image quality assessment illumination level naturalness level structure level Electrical engineering. Electronics. Nuclear engineering Yan Yang verfasserin aut Qiuping Jiang verfasserin aut Gangyi Jiang verfasserin aut Yo-Sung Ho verfasserin aut In IEEE Access IEEE, 2014 6(2018), Seite 806-817 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:6 year:2018 pages:806-817 https://doi.org/10.1109/ACCESS.2017.2776126 kostenfrei https://doaj.org/article/67c851d1ed1b432dbe961d193e1d12ec kostenfrei https://ieeexplore.ieee.org/document/8116608/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 806-817 |
allfields_unstemmed |
10.1109/ACCESS.2017.2776126 doi (DE-627)DOAJ068466080 (DE-599)DOAJ67c851d1ed1b432dbe961d193e1d12ec DE-627 ger DE-627 rakwb eng TK1-9971 Feng Shao verfasserin aut Automated Quality Assessment of Fundus Images via Analysis of Illumination, Naturalness and Structure 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In remote medical diagnosis, the percentage of poor-quality fundus images is very high, which requires automated quality assessment of fundus images in the acquisition stage to reduce the retransmission cost. In this paper, we propose a fundus image quality classifier via the analysis of illumination, naturalness, and structure, which use three effective secondary indices (or 5-D feature set) and different classification methods to determine the recommendation indexes of fundus images for further diagnosis. We construct a fundus image database including `accept' and `reject' classes based on the definition of illumination, naturalness, and structure. The model can achieve a sensitivity of 94.69%, specificity of 92.29%, and accuracy of 93.60% for the classifying of the fundus images. Fundus image quality assessment illumination level naturalness level structure level Electrical engineering. Electronics. Nuclear engineering Yan Yang verfasserin aut Qiuping Jiang verfasserin aut Gangyi Jiang verfasserin aut Yo-Sung Ho verfasserin aut In IEEE Access IEEE, 2014 6(2018), Seite 806-817 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:6 year:2018 pages:806-817 https://doi.org/10.1109/ACCESS.2017.2776126 kostenfrei https://doaj.org/article/67c851d1ed1b432dbe961d193e1d12ec kostenfrei https://ieeexplore.ieee.org/document/8116608/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 806-817 |
allfieldsGer |
10.1109/ACCESS.2017.2776126 doi (DE-627)DOAJ068466080 (DE-599)DOAJ67c851d1ed1b432dbe961d193e1d12ec DE-627 ger DE-627 rakwb eng TK1-9971 Feng Shao verfasserin aut Automated Quality Assessment of Fundus Images via Analysis of Illumination, Naturalness and Structure 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In remote medical diagnosis, the percentage of poor-quality fundus images is very high, which requires automated quality assessment of fundus images in the acquisition stage to reduce the retransmission cost. In this paper, we propose a fundus image quality classifier via the analysis of illumination, naturalness, and structure, which use three effective secondary indices (or 5-D feature set) and different classification methods to determine the recommendation indexes of fundus images for further diagnosis. We construct a fundus image database including `accept' and `reject' classes based on the definition of illumination, naturalness, and structure. The model can achieve a sensitivity of 94.69%, specificity of 92.29%, and accuracy of 93.60% for the classifying of the fundus images. Fundus image quality assessment illumination level naturalness level structure level Electrical engineering. Electronics. Nuclear engineering Yan Yang verfasserin aut Qiuping Jiang verfasserin aut Gangyi Jiang verfasserin aut Yo-Sung Ho verfasserin aut In IEEE Access IEEE, 2014 6(2018), Seite 806-817 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:6 year:2018 pages:806-817 https://doi.org/10.1109/ACCESS.2017.2776126 kostenfrei https://doaj.org/article/67c851d1ed1b432dbe961d193e1d12ec kostenfrei https://ieeexplore.ieee.org/document/8116608/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 806-817 |
allfieldsSound |
10.1109/ACCESS.2017.2776126 doi (DE-627)DOAJ068466080 (DE-599)DOAJ67c851d1ed1b432dbe961d193e1d12ec DE-627 ger DE-627 rakwb eng TK1-9971 Feng Shao verfasserin aut Automated Quality Assessment of Fundus Images via Analysis of Illumination, Naturalness and Structure 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In remote medical diagnosis, the percentage of poor-quality fundus images is very high, which requires automated quality assessment of fundus images in the acquisition stage to reduce the retransmission cost. In this paper, we propose a fundus image quality classifier via the analysis of illumination, naturalness, and structure, which use three effective secondary indices (or 5-D feature set) and different classification methods to determine the recommendation indexes of fundus images for further diagnosis. We construct a fundus image database including `accept' and `reject' classes based on the definition of illumination, naturalness, and structure. The model can achieve a sensitivity of 94.69%, specificity of 92.29%, and accuracy of 93.60% for the classifying of the fundus images. Fundus image quality assessment illumination level naturalness level structure level Electrical engineering. Electronics. Nuclear engineering Yan Yang verfasserin aut Qiuping Jiang verfasserin aut Gangyi Jiang verfasserin aut Yo-Sung Ho verfasserin aut In IEEE Access IEEE, 2014 6(2018), Seite 806-817 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:6 year:2018 pages:806-817 https://doi.org/10.1109/ACCESS.2017.2776126 kostenfrei https://doaj.org/article/67c851d1ed1b432dbe961d193e1d12ec kostenfrei https://ieeexplore.ieee.org/document/8116608/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 806-817 |
language |
English |
source |
In IEEE Access 6(2018), Seite 806-817 volume:6 year:2018 pages:806-817 |
sourceStr |
In IEEE Access 6(2018), Seite 806-817 volume:6 year:2018 pages:806-817 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Fundus image quality assessment illumination level naturalness level structure level Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Feng Shao @@aut@@ Yan Yang @@aut@@ Qiuping Jiang @@aut@@ Gangyi Jiang @@aut@@ Yo-Sung Ho @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ068466080 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ068466080</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230501172425.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2017.2776126</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ068466080</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ67c851d1ed1b432dbe961d193e1d12ec</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Feng Shao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Automated Quality Assessment of Fundus Images via Analysis of Illumination, Naturalness and Structure</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In remote medical diagnosis, the percentage of poor-quality fundus images is very high, which requires automated quality assessment of fundus images in the acquisition stage to reduce the retransmission cost. In this paper, we propose a fundus image quality classifier via the analysis of illumination, naturalness, and structure, which use three effective secondary indices (or 5-D feature set) and different classification methods to determine the recommendation indexes of fundus images for further diagnosis. We construct a fundus image database including `accept' and `reject' classes based on the definition of illumination, naturalness, and structure. The model can achieve a sensitivity of 94.69%, specificity of 92.29%, and accuracy of 93.60% for the classifying of the fundus images.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fundus image</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quality assessment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">illumination level</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">naturalness level</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">structure level</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yan Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qiuping Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gangyi Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yo-Sung Ho</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">6(2018), Seite 806-817</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2018</subfield><subfield code="g">pages:806-817</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2017.2776126</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/67c851d1ed1b432dbe961d193e1d12ec</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8116608/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2018</subfield><subfield code="h">806-817</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Feng Shao |
spellingShingle |
Feng Shao misc TK1-9971 misc Fundus image misc quality assessment misc illumination level misc naturalness level misc structure level misc Electrical engineering. Electronics. Nuclear engineering Automated Quality Assessment of Fundus Images via Analysis of Illumination, Naturalness and Structure |
authorStr |
Feng Shao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 Automated Quality Assessment of Fundus Images via Analysis of Illumination, Naturalness and Structure Fundus image quality assessment illumination level naturalness level structure level |
topic |
misc TK1-9971 misc Fundus image misc quality assessment misc illumination level misc naturalness level misc structure level misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Fundus image misc quality assessment misc illumination level misc naturalness level misc structure level misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Fundus image misc quality assessment misc illumination level misc naturalness level misc structure level misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
Automated Quality Assessment of Fundus Images via Analysis of Illumination, Naturalness and Structure |
ctrlnum |
(DE-627)DOAJ068466080 (DE-599)DOAJ67c851d1ed1b432dbe961d193e1d12ec |
title_full |
Automated Quality Assessment of Fundus Images via Analysis of Illumination, Naturalness and Structure |
author_sort |
Feng Shao |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
806 |
author_browse |
Feng Shao Yan Yang Qiuping Jiang Gangyi Jiang Yo-Sung Ho |
container_volume |
6 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Feng Shao |
doi_str_mv |
10.1109/ACCESS.2017.2776126 |
author2-role |
verfasserin |
title_sort |
automated quality assessment of fundus images via analysis of illumination, naturalness and structure |
callnumber |
TK1-9971 |
title_auth |
Automated Quality Assessment of Fundus Images via Analysis of Illumination, Naturalness and Structure |
abstract |
In remote medical diagnosis, the percentage of poor-quality fundus images is very high, which requires automated quality assessment of fundus images in the acquisition stage to reduce the retransmission cost. In this paper, we propose a fundus image quality classifier via the analysis of illumination, naturalness, and structure, which use three effective secondary indices (or 5-D feature set) and different classification methods to determine the recommendation indexes of fundus images for further diagnosis. We construct a fundus image database including `accept' and `reject' classes based on the definition of illumination, naturalness, and structure. The model can achieve a sensitivity of 94.69%, specificity of 92.29%, and accuracy of 93.60% for the classifying of the fundus images. |
abstractGer |
In remote medical diagnosis, the percentage of poor-quality fundus images is very high, which requires automated quality assessment of fundus images in the acquisition stage to reduce the retransmission cost. In this paper, we propose a fundus image quality classifier via the analysis of illumination, naturalness, and structure, which use three effective secondary indices (or 5-D feature set) and different classification methods to determine the recommendation indexes of fundus images for further diagnosis. We construct a fundus image database including `accept' and `reject' classes based on the definition of illumination, naturalness, and structure. The model can achieve a sensitivity of 94.69%, specificity of 92.29%, and accuracy of 93.60% for the classifying of the fundus images. |
abstract_unstemmed |
In remote medical diagnosis, the percentage of poor-quality fundus images is very high, which requires automated quality assessment of fundus images in the acquisition stage to reduce the retransmission cost. In this paper, we propose a fundus image quality classifier via the analysis of illumination, naturalness, and structure, which use three effective secondary indices (or 5-D feature set) and different classification methods to determine the recommendation indexes of fundus images for further diagnosis. We construct a fundus image database including `accept' and `reject' classes based on the definition of illumination, naturalness, and structure. The model can achieve a sensitivity of 94.69%, specificity of 92.29%, and accuracy of 93.60% for the classifying of the fundus images. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Automated Quality Assessment of Fundus Images via Analysis of Illumination, Naturalness and Structure |
url |
https://doi.org/10.1109/ACCESS.2017.2776126 https://doaj.org/article/67c851d1ed1b432dbe961d193e1d12ec https://ieeexplore.ieee.org/document/8116608/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Yan Yang Qiuping Jiang Gangyi Jiang Yo-Sung Ho |
author2Str |
Yan Yang Qiuping Jiang Gangyi Jiang Yo-Sung Ho |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2017.2776126 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T17:56:23.191Z |
_version_ |
1803581530512031744 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ068466080</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230501172425.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2017.2776126</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ068466080</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ67c851d1ed1b432dbe961d193e1d12ec</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Feng Shao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Automated Quality Assessment of Fundus Images via Analysis of Illumination, Naturalness and Structure</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In remote medical diagnosis, the percentage of poor-quality fundus images is very high, which requires automated quality assessment of fundus images in the acquisition stage to reduce the retransmission cost. In this paper, we propose a fundus image quality classifier via the analysis of illumination, naturalness, and structure, which use three effective secondary indices (or 5-D feature set) and different classification methods to determine the recommendation indexes of fundus images for further diagnosis. We construct a fundus image database including `accept' and `reject' classes based on the definition of illumination, naturalness, and structure. The model can achieve a sensitivity of 94.69%, specificity of 92.29%, and accuracy of 93.60% for the classifying of the fundus images.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fundus image</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quality assessment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">illumination level</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">naturalness level</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">structure level</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yan Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qiuping Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gangyi Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yo-Sung Ho</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">6(2018), Seite 806-817</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2018</subfield><subfield code="g">pages:806-817</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2017.2776126</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/67c851d1ed1b432dbe961d193e1d12ec</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8116608/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2018</subfield><subfield code="h">806-817</subfield></datafield></record></collection>
|
score |
7.4009047 |