Primary-Auxiliary Statistical Local Kernel Principal Component Analysis and Its Application to Incipient Fault Detection of Nonlinear Industrial Processes
Statistical local kernel principal component analysis (SLKPCA) has demonstrated its success in incipient fault detection of nonlinear industrial processes by incorporating the statistical local analysis (SLA) technology. However, the basic SLKPCA method builds the statistical model only based on the...
Ausführliche Beschreibung
Autor*in: |
Xiaogang Deng [verfasserIn] Peipei Cai [verfasserIn] Jiawei Deng [verfasserIn] Yuping Cao [verfasserIn] Zhihuan Song [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 7(2019), Seite 122192-122204 |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:2019 ; pages:122192-122204 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2019.2937886 |
---|
Katalog-ID: |
DOAJ068530390 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ068530390 | ||
003 | DE-627 | ||
005 | 20230309075545.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2019.2937886 |2 doi | |
035 | |a (DE-627)DOAJ068530390 | ||
035 | |a (DE-599)DOAJa3c7aed3575945d18beb798f3beea08c | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Xiaogang Deng |e verfasserin |4 aut | |
245 | 1 | 0 | |a Primary-Auxiliary Statistical Local Kernel Principal Component Analysis and Its Application to Incipient Fault Detection of Nonlinear Industrial Processes |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Statistical local kernel principal component analysis (SLKPCA) has demonstrated its success in incipient fault detection of nonlinear industrial processes by incorporating the statistical local analysis (SLA) technology. However, the basic SLKPCA method builds the statistical model only based on the normal data and neglects the utilization of the prior fault information, which is often available in many industrial cases. To take full advantage of the prior fault information, this paper proposes an enhanced SLKPCA method, called primary-auxiliary SLKPCA (PA-SLKPCA), for better incipient fault monitoring. The contribution of the proposed method includes three aspects. First, one primary-auxiliary statistical monitoring framework is designed, by which not only the normal training data are applied to develop a primary SLKPCA model, but also the prior fault data are used to build the auxiliary SLKPCA models. Second, a double-block modeling strategy is developed to construct the auxiliary SLKPCA model for each fault case, where a variable grouping strategy based on Kullback-Leibler divergence is applied to divide the process variables into the fault-relevant group and fault-independent variable group, and the sub-model is developed for each group. Third, the Bayesian inference is used to combine the statistical results of each variable group, and one weighted fusion strategy is further designed to integrate the monitoring results from the primary and auxiliary models. Lastly, two case studies including one numerical system and the simulated continuous stirred tank reactor (CSTR) system are used for method evaluation and the simulations show that the proposed method can detect the incipient faults effectively and outperform the traditional SLKPCA method. | ||
650 | 4 | |a Incipient fault | |
650 | 4 | |a fault detection | |
650 | 4 | |a kernel principal component analysis | |
650 | 4 | |a statistical local analysis | |
650 | 4 | |a prior fault information | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Peipei Cai |e verfasserin |4 aut | |
700 | 0 | |a Jiawei Deng |e verfasserin |4 aut | |
700 | 0 | |a Yuping Cao |e verfasserin |4 aut | |
700 | 0 | |a Zhihuan Song |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 7(2019), Seite 122192-122204 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:2019 |g pages:122192-122204 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2019.2937886 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/a3c7aed3575945d18beb798f3beea08c |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/8815719/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 7 |j 2019 |h 122192-122204 |
author_variant |
x d xd p c pc j d jd y c yc z s zs |
---|---|
matchkey_str |
article:21693536:2019----::rmraxlayttsialclenlrniacmoetnlssnisplctoticpetaldtc |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
TK |
publishDate |
2019 |
allfields |
10.1109/ACCESS.2019.2937886 doi (DE-627)DOAJ068530390 (DE-599)DOAJa3c7aed3575945d18beb798f3beea08c DE-627 ger DE-627 rakwb eng TK1-9971 Xiaogang Deng verfasserin aut Primary-Auxiliary Statistical Local Kernel Principal Component Analysis and Its Application to Incipient Fault Detection of Nonlinear Industrial Processes 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Statistical local kernel principal component analysis (SLKPCA) has demonstrated its success in incipient fault detection of nonlinear industrial processes by incorporating the statistical local analysis (SLA) technology. However, the basic SLKPCA method builds the statistical model only based on the normal data and neglects the utilization of the prior fault information, which is often available in many industrial cases. To take full advantage of the prior fault information, this paper proposes an enhanced SLKPCA method, called primary-auxiliary SLKPCA (PA-SLKPCA), for better incipient fault monitoring. The contribution of the proposed method includes three aspects. First, one primary-auxiliary statistical monitoring framework is designed, by which not only the normal training data are applied to develop a primary SLKPCA model, but also the prior fault data are used to build the auxiliary SLKPCA models. Second, a double-block modeling strategy is developed to construct the auxiliary SLKPCA model for each fault case, where a variable grouping strategy based on Kullback-Leibler divergence is applied to divide the process variables into the fault-relevant group and fault-independent variable group, and the sub-model is developed for each group. Third, the Bayesian inference is used to combine the statistical results of each variable group, and one weighted fusion strategy is further designed to integrate the monitoring results from the primary and auxiliary models. Lastly, two case studies including one numerical system and the simulated continuous stirred tank reactor (CSTR) system are used for method evaluation and the simulations show that the proposed method can detect the incipient faults effectively and outperform the traditional SLKPCA method. Incipient fault fault detection kernel principal component analysis statistical local analysis prior fault information Electrical engineering. Electronics. Nuclear engineering Peipei Cai verfasserin aut Jiawei Deng verfasserin aut Yuping Cao verfasserin aut Zhihuan Song verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 122192-122204 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:122192-122204 https://doi.org/10.1109/ACCESS.2019.2937886 kostenfrei https://doaj.org/article/a3c7aed3575945d18beb798f3beea08c kostenfrei https://ieeexplore.ieee.org/document/8815719/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 122192-122204 |
spelling |
10.1109/ACCESS.2019.2937886 doi (DE-627)DOAJ068530390 (DE-599)DOAJa3c7aed3575945d18beb798f3beea08c DE-627 ger DE-627 rakwb eng TK1-9971 Xiaogang Deng verfasserin aut Primary-Auxiliary Statistical Local Kernel Principal Component Analysis and Its Application to Incipient Fault Detection of Nonlinear Industrial Processes 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Statistical local kernel principal component analysis (SLKPCA) has demonstrated its success in incipient fault detection of nonlinear industrial processes by incorporating the statistical local analysis (SLA) technology. However, the basic SLKPCA method builds the statistical model only based on the normal data and neglects the utilization of the prior fault information, which is often available in many industrial cases. To take full advantage of the prior fault information, this paper proposes an enhanced SLKPCA method, called primary-auxiliary SLKPCA (PA-SLKPCA), for better incipient fault monitoring. The contribution of the proposed method includes three aspects. First, one primary-auxiliary statistical monitoring framework is designed, by which not only the normal training data are applied to develop a primary SLKPCA model, but also the prior fault data are used to build the auxiliary SLKPCA models. Second, a double-block modeling strategy is developed to construct the auxiliary SLKPCA model for each fault case, where a variable grouping strategy based on Kullback-Leibler divergence is applied to divide the process variables into the fault-relevant group and fault-independent variable group, and the sub-model is developed for each group. Third, the Bayesian inference is used to combine the statistical results of each variable group, and one weighted fusion strategy is further designed to integrate the monitoring results from the primary and auxiliary models. Lastly, two case studies including one numerical system and the simulated continuous stirred tank reactor (CSTR) system are used for method evaluation and the simulations show that the proposed method can detect the incipient faults effectively and outperform the traditional SLKPCA method. Incipient fault fault detection kernel principal component analysis statistical local analysis prior fault information Electrical engineering. Electronics. Nuclear engineering Peipei Cai verfasserin aut Jiawei Deng verfasserin aut Yuping Cao verfasserin aut Zhihuan Song verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 122192-122204 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:122192-122204 https://doi.org/10.1109/ACCESS.2019.2937886 kostenfrei https://doaj.org/article/a3c7aed3575945d18beb798f3beea08c kostenfrei https://ieeexplore.ieee.org/document/8815719/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 122192-122204 |
allfields_unstemmed |
10.1109/ACCESS.2019.2937886 doi (DE-627)DOAJ068530390 (DE-599)DOAJa3c7aed3575945d18beb798f3beea08c DE-627 ger DE-627 rakwb eng TK1-9971 Xiaogang Deng verfasserin aut Primary-Auxiliary Statistical Local Kernel Principal Component Analysis and Its Application to Incipient Fault Detection of Nonlinear Industrial Processes 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Statistical local kernel principal component analysis (SLKPCA) has demonstrated its success in incipient fault detection of nonlinear industrial processes by incorporating the statistical local analysis (SLA) technology. However, the basic SLKPCA method builds the statistical model only based on the normal data and neglects the utilization of the prior fault information, which is often available in many industrial cases. To take full advantage of the prior fault information, this paper proposes an enhanced SLKPCA method, called primary-auxiliary SLKPCA (PA-SLKPCA), for better incipient fault monitoring. The contribution of the proposed method includes three aspects. First, one primary-auxiliary statistical monitoring framework is designed, by which not only the normal training data are applied to develop a primary SLKPCA model, but also the prior fault data are used to build the auxiliary SLKPCA models. Second, a double-block modeling strategy is developed to construct the auxiliary SLKPCA model for each fault case, where a variable grouping strategy based on Kullback-Leibler divergence is applied to divide the process variables into the fault-relevant group and fault-independent variable group, and the sub-model is developed for each group. Third, the Bayesian inference is used to combine the statistical results of each variable group, and one weighted fusion strategy is further designed to integrate the monitoring results from the primary and auxiliary models. Lastly, two case studies including one numerical system and the simulated continuous stirred tank reactor (CSTR) system are used for method evaluation and the simulations show that the proposed method can detect the incipient faults effectively and outperform the traditional SLKPCA method. Incipient fault fault detection kernel principal component analysis statistical local analysis prior fault information Electrical engineering. Electronics. Nuclear engineering Peipei Cai verfasserin aut Jiawei Deng verfasserin aut Yuping Cao verfasserin aut Zhihuan Song verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 122192-122204 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:122192-122204 https://doi.org/10.1109/ACCESS.2019.2937886 kostenfrei https://doaj.org/article/a3c7aed3575945d18beb798f3beea08c kostenfrei https://ieeexplore.ieee.org/document/8815719/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 122192-122204 |
allfieldsGer |
10.1109/ACCESS.2019.2937886 doi (DE-627)DOAJ068530390 (DE-599)DOAJa3c7aed3575945d18beb798f3beea08c DE-627 ger DE-627 rakwb eng TK1-9971 Xiaogang Deng verfasserin aut Primary-Auxiliary Statistical Local Kernel Principal Component Analysis and Its Application to Incipient Fault Detection of Nonlinear Industrial Processes 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Statistical local kernel principal component analysis (SLKPCA) has demonstrated its success in incipient fault detection of nonlinear industrial processes by incorporating the statistical local analysis (SLA) technology. However, the basic SLKPCA method builds the statistical model only based on the normal data and neglects the utilization of the prior fault information, which is often available in many industrial cases. To take full advantage of the prior fault information, this paper proposes an enhanced SLKPCA method, called primary-auxiliary SLKPCA (PA-SLKPCA), for better incipient fault monitoring. The contribution of the proposed method includes three aspects. First, one primary-auxiliary statistical monitoring framework is designed, by which not only the normal training data are applied to develop a primary SLKPCA model, but also the prior fault data are used to build the auxiliary SLKPCA models. Second, a double-block modeling strategy is developed to construct the auxiliary SLKPCA model for each fault case, where a variable grouping strategy based on Kullback-Leibler divergence is applied to divide the process variables into the fault-relevant group and fault-independent variable group, and the sub-model is developed for each group. Third, the Bayesian inference is used to combine the statistical results of each variable group, and one weighted fusion strategy is further designed to integrate the monitoring results from the primary and auxiliary models. Lastly, two case studies including one numerical system and the simulated continuous stirred tank reactor (CSTR) system are used for method evaluation and the simulations show that the proposed method can detect the incipient faults effectively and outperform the traditional SLKPCA method. Incipient fault fault detection kernel principal component analysis statistical local analysis prior fault information Electrical engineering. Electronics. Nuclear engineering Peipei Cai verfasserin aut Jiawei Deng verfasserin aut Yuping Cao verfasserin aut Zhihuan Song verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 122192-122204 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:122192-122204 https://doi.org/10.1109/ACCESS.2019.2937886 kostenfrei https://doaj.org/article/a3c7aed3575945d18beb798f3beea08c kostenfrei https://ieeexplore.ieee.org/document/8815719/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 122192-122204 |
allfieldsSound |
10.1109/ACCESS.2019.2937886 doi (DE-627)DOAJ068530390 (DE-599)DOAJa3c7aed3575945d18beb798f3beea08c DE-627 ger DE-627 rakwb eng TK1-9971 Xiaogang Deng verfasserin aut Primary-Auxiliary Statistical Local Kernel Principal Component Analysis and Its Application to Incipient Fault Detection of Nonlinear Industrial Processes 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Statistical local kernel principal component analysis (SLKPCA) has demonstrated its success in incipient fault detection of nonlinear industrial processes by incorporating the statistical local analysis (SLA) technology. However, the basic SLKPCA method builds the statistical model only based on the normal data and neglects the utilization of the prior fault information, which is often available in many industrial cases. To take full advantage of the prior fault information, this paper proposes an enhanced SLKPCA method, called primary-auxiliary SLKPCA (PA-SLKPCA), for better incipient fault monitoring. The contribution of the proposed method includes three aspects. First, one primary-auxiliary statistical monitoring framework is designed, by which not only the normal training data are applied to develop a primary SLKPCA model, but also the prior fault data are used to build the auxiliary SLKPCA models. Second, a double-block modeling strategy is developed to construct the auxiliary SLKPCA model for each fault case, where a variable grouping strategy based on Kullback-Leibler divergence is applied to divide the process variables into the fault-relevant group and fault-independent variable group, and the sub-model is developed for each group. Third, the Bayesian inference is used to combine the statistical results of each variable group, and one weighted fusion strategy is further designed to integrate the monitoring results from the primary and auxiliary models. Lastly, two case studies including one numerical system and the simulated continuous stirred tank reactor (CSTR) system are used for method evaluation and the simulations show that the proposed method can detect the incipient faults effectively and outperform the traditional SLKPCA method. Incipient fault fault detection kernel principal component analysis statistical local analysis prior fault information Electrical engineering. Electronics. Nuclear engineering Peipei Cai verfasserin aut Jiawei Deng verfasserin aut Yuping Cao verfasserin aut Zhihuan Song verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 122192-122204 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:122192-122204 https://doi.org/10.1109/ACCESS.2019.2937886 kostenfrei https://doaj.org/article/a3c7aed3575945d18beb798f3beea08c kostenfrei https://ieeexplore.ieee.org/document/8815719/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 122192-122204 |
language |
English |
source |
In IEEE Access 7(2019), Seite 122192-122204 volume:7 year:2019 pages:122192-122204 |
sourceStr |
In IEEE Access 7(2019), Seite 122192-122204 volume:7 year:2019 pages:122192-122204 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Incipient fault fault detection kernel principal component analysis statistical local analysis prior fault information Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Xiaogang Deng @@aut@@ Peipei Cai @@aut@@ Jiawei Deng @@aut@@ Yuping Cao @@aut@@ Zhihuan Song @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ068530390 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ068530390</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309075545.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2019.2937886</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ068530390</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa3c7aed3575945d18beb798f3beea08c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xiaogang Deng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Primary-Auxiliary Statistical Local Kernel Principal Component Analysis and Its Application to Incipient Fault Detection of Nonlinear Industrial Processes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Statistical local kernel principal component analysis (SLKPCA) has demonstrated its success in incipient fault detection of nonlinear industrial processes by incorporating the statistical local analysis (SLA) technology. However, the basic SLKPCA method builds the statistical model only based on the normal data and neglects the utilization of the prior fault information, which is often available in many industrial cases. To take full advantage of the prior fault information, this paper proposes an enhanced SLKPCA method, called primary-auxiliary SLKPCA (PA-SLKPCA), for better incipient fault monitoring. The contribution of the proposed method includes three aspects. First, one primary-auxiliary statistical monitoring framework is designed, by which not only the normal training data are applied to develop a primary SLKPCA model, but also the prior fault data are used to build the auxiliary SLKPCA models. Second, a double-block modeling strategy is developed to construct the auxiliary SLKPCA model for each fault case, where a variable grouping strategy based on Kullback-Leibler divergence is applied to divide the process variables into the fault-relevant group and fault-independent variable group, and the sub-model is developed for each group. Third, the Bayesian inference is used to combine the statistical results of each variable group, and one weighted fusion strategy is further designed to integrate the monitoring results from the primary and auxiliary models. Lastly, two case studies including one numerical system and the simulated continuous stirred tank reactor (CSTR) system are used for method evaluation and the simulations show that the proposed method can detect the incipient faults effectively and outperform the traditional SLKPCA method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Incipient fault</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fault detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">kernel principal component analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">statistical local analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">prior fault information</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Peipei Cai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiawei Deng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuping Cao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhihuan Song</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">7(2019), Seite 122192-122204</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:122192-122204</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2019.2937886</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a3c7aed3575945d18beb798f3beea08c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8815719/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2019</subfield><subfield code="h">122192-122204</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Xiaogang Deng |
spellingShingle |
Xiaogang Deng misc TK1-9971 misc Incipient fault misc fault detection misc kernel principal component analysis misc statistical local analysis misc prior fault information misc Electrical engineering. Electronics. Nuclear engineering Primary-Auxiliary Statistical Local Kernel Principal Component Analysis and Its Application to Incipient Fault Detection of Nonlinear Industrial Processes |
authorStr |
Xiaogang Deng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 Primary-Auxiliary Statistical Local Kernel Principal Component Analysis and Its Application to Incipient Fault Detection of Nonlinear Industrial Processes Incipient fault fault detection kernel principal component analysis statistical local analysis prior fault information |
topic |
misc TK1-9971 misc Incipient fault misc fault detection misc kernel principal component analysis misc statistical local analysis misc prior fault information misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Incipient fault misc fault detection misc kernel principal component analysis misc statistical local analysis misc prior fault information misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Incipient fault misc fault detection misc kernel principal component analysis misc statistical local analysis misc prior fault information misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
Primary-Auxiliary Statistical Local Kernel Principal Component Analysis and Its Application to Incipient Fault Detection of Nonlinear Industrial Processes |
ctrlnum |
(DE-627)DOAJ068530390 (DE-599)DOAJa3c7aed3575945d18beb798f3beea08c |
title_full |
Primary-Auxiliary Statistical Local Kernel Principal Component Analysis and Its Application to Incipient Fault Detection of Nonlinear Industrial Processes |
author_sort |
Xiaogang Deng |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
122192 |
author_browse |
Xiaogang Deng Peipei Cai Jiawei Deng Yuping Cao Zhihuan Song |
container_volume |
7 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Xiaogang Deng |
doi_str_mv |
10.1109/ACCESS.2019.2937886 |
author2-role |
verfasserin |
title_sort |
primary-auxiliary statistical local kernel principal component analysis and its application to incipient fault detection of nonlinear industrial processes |
callnumber |
TK1-9971 |
title_auth |
Primary-Auxiliary Statistical Local Kernel Principal Component Analysis and Its Application to Incipient Fault Detection of Nonlinear Industrial Processes |
abstract |
Statistical local kernel principal component analysis (SLKPCA) has demonstrated its success in incipient fault detection of nonlinear industrial processes by incorporating the statistical local analysis (SLA) technology. However, the basic SLKPCA method builds the statistical model only based on the normal data and neglects the utilization of the prior fault information, which is often available in many industrial cases. To take full advantage of the prior fault information, this paper proposes an enhanced SLKPCA method, called primary-auxiliary SLKPCA (PA-SLKPCA), for better incipient fault monitoring. The contribution of the proposed method includes three aspects. First, one primary-auxiliary statistical monitoring framework is designed, by which not only the normal training data are applied to develop a primary SLKPCA model, but also the prior fault data are used to build the auxiliary SLKPCA models. Second, a double-block modeling strategy is developed to construct the auxiliary SLKPCA model for each fault case, where a variable grouping strategy based on Kullback-Leibler divergence is applied to divide the process variables into the fault-relevant group and fault-independent variable group, and the sub-model is developed for each group. Third, the Bayesian inference is used to combine the statistical results of each variable group, and one weighted fusion strategy is further designed to integrate the monitoring results from the primary and auxiliary models. Lastly, two case studies including one numerical system and the simulated continuous stirred tank reactor (CSTR) system are used for method evaluation and the simulations show that the proposed method can detect the incipient faults effectively and outperform the traditional SLKPCA method. |
abstractGer |
Statistical local kernel principal component analysis (SLKPCA) has demonstrated its success in incipient fault detection of nonlinear industrial processes by incorporating the statistical local analysis (SLA) technology. However, the basic SLKPCA method builds the statistical model only based on the normal data and neglects the utilization of the prior fault information, which is often available in many industrial cases. To take full advantage of the prior fault information, this paper proposes an enhanced SLKPCA method, called primary-auxiliary SLKPCA (PA-SLKPCA), for better incipient fault monitoring. The contribution of the proposed method includes three aspects. First, one primary-auxiliary statistical monitoring framework is designed, by which not only the normal training data are applied to develop a primary SLKPCA model, but also the prior fault data are used to build the auxiliary SLKPCA models. Second, a double-block modeling strategy is developed to construct the auxiliary SLKPCA model for each fault case, where a variable grouping strategy based on Kullback-Leibler divergence is applied to divide the process variables into the fault-relevant group and fault-independent variable group, and the sub-model is developed for each group. Third, the Bayesian inference is used to combine the statistical results of each variable group, and one weighted fusion strategy is further designed to integrate the monitoring results from the primary and auxiliary models. Lastly, two case studies including one numerical system and the simulated continuous stirred tank reactor (CSTR) system are used for method evaluation and the simulations show that the proposed method can detect the incipient faults effectively and outperform the traditional SLKPCA method. |
abstract_unstemmed |
Statistical local kernel principal component analysis (SLKPCA) has demonstrated its success in incipient fault detection of nonlinear industrial processes by incorporating the statistical local analysis (SLA) technology. However, the basic SLKPCA method builds the statistical model only based on the normal data and neglects the utilization of the prior fault information, which is often available in many industrial cases. To take full advantage of the prior fault information, this paper proposes an enhanced SLKPCA method, called primary-auxiliary SLKPCA (PA-SLKPCA), for better incipient fault monitoring. The contribution of the proposed method includes three aspects. First, one primary-auxiliary statistical monitoring framework is designed, by which not only the normal training data are applied to develop a primary SLKPCA model, but also the prior fault data are used to build the auxiliary SLKPCA models. Second, a double-block modeling strategy is developed to construct the auxiliary SLKPCA model for each fault case, where a variable grouping strategy based on Kullback-Leibler divergence is applied to divide the process variables into the fault-relevant group and fault-independent variable group, and the sub-model is developed for each group. Third, the Bayesian inference is used to combine the statistical results of each variable group, and one weighted fusion strategy is further designed to integrate the monitoring results from the primary and auxiliary models. Lastly, two case studies including one numerical system and the simulated continuous stirred tank reactor (CSTR) system are used for method evaluation and the simulations show that the proposed method can detect the incipient faults effectively and outperform the traditional SLKPCA method. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Primary-Auxiliary Statistical Local Kernel Principal Component Analysis and Its Application to Incipient Fault Detection of Nonlinear Industrial Processes |
url |
https://doi.org/10.1109/ACCESS.2019.2937886 https://doaj.org/article/a3c7aed3575945d18beb798f3beea08c https://ieeexplore.ieee.org/document/8815719/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Peipei Cai Jiawei Deng Yuping Cao Zhihuan Song |
author2Str |
Peipei Cai Jiawei Deng Yuping Cao Zhihuan Song |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2019.2937886 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T18:18:18.650Z |
_version_ |
1803582909874962433 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ068530390</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309075545.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2019.2937886</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ068530390</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa3c7aed3575945d18beb798f3beea08c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xiaogang Deng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Primary-Auxiliary Statistical Local Kernel Principal Component Analysis and Its Application to Incipient Fault Detection of Nonlinear Industrial Processes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Statistical local kernel principal component analysis (SLKPCA) has demonstrated its success in incipient fault detection of nonlinear industrial processes by incorporating the statistical local analysis (SLA) technology. However, the basic SLKPCA method builds the statistical model only based on the normal data and neglects the utilization of the prior fault information, which is often available in many industrial cases. To take full advantage of the prior fault information, this paper proposes an enhanced SLKPCA method, called primary-auxiliary SLKPCA (PA-SLKPCA), for better incipient fault monitoring. The contribution of the proposed method includes three aspects. First, one primary-auxiliary statistical monitoring framework is designed, by which not only the normal training data are applied to develop a primary SLKPCA model, but also the prior fault data are used to build the auxiliary SLKPCA models. Second, a double-block modeling strategy is developed to construct the auxiliary SLKPCA model for each fault case, where a variable grouping strategy based on Kullback-Leibler divergence is applied to divide the process variables into the fault-relevant group and fault-independent variable group, and the sub-model is developed for each group. Third, the Bayesian inference is used to combine the statistical results of each variable group, and one weighted fusion strategy is further designed to integrate the monitoring results from the primary and auxiliary models. Lastly, two case studies including one numerical system and the simulated continuous stirred tank reactor (CSTR) system are used for method evaluation and the simulations show that the proposed method can detect the incipient faults effectively and outperform the traditional SLKPCA method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Incipient fault</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fault detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">kernel principal component analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">statistical local analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">prior fault information</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Peipei Cai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiawei Deng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuping Cao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhihuan Song</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">7(2019), Seite 122192-122204</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:122192-122204</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2019.2937886</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a3c7aed3575945d18beb798f3beea08c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8815719/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2019</subfield><subfield code="h">122192-122204</subfield></datafield></record></collection>
|
score |
7.401737 |