Modeling restoration of gefitinib efficacy by co‐administration of MET inhibitors in an EGFR inhibitor‐resistant NSCLC xenograft model: A tumor‐in‐host DEB‐based approach
Abstract MET receptor tyrosine kinase inhibitors (TKIs) can restore sensitivity to gefitinib, a TKI targeting epidermal growth factor receptor (EGFR), and promote apoptosis in non‐small cell lung cancer (NSCLC) models resistant to gefitinib treatment in vitro and in vivo. Several novel MET inhibitor...
Ausführliche Beschreibung
Autor*in: |
Elena M. Tosca [verfasserIn] Glenn Gauderat [verfasserIn] Sylvain Fouliard [verfasserIn] Mike Burbridge [verfasserIn] Marylore Chenel [verfasserIn] Paolo Magni [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Übergeordnetes Werk: |
In: CPT: Pharmacometrics & Systems Pharmacology - Wiley, 2013, 10(2021), 11, Seite 1396-1411 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2021 ; number:11 ; pages:1396-1411 |
Links: |
---|
DOI / URN: |
10.1002/psp4.12710 |
---|
Katalog-ID: |
DOAJ068561539 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ068561539 | ||
003 | DE-627 | ||
005 | 20230309075721.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1002/psp4.12710 |2 doi | |
035 | |a (DE-627)DOAJ068561539 | ||
035 | |a (DE-599)DOAJaa833859fc9044a780546843b278ac28 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a RM1-950 | |
100 | 0 | |a Elena M. Tosca |e verfasserin |4 aut | |
245 | 1 | 0 | |a Modeling restoration of gefitinib efficacy by co‐administration of MET inhibitors in an EGFR inhibitor‐resistant NSCLC xenograft model: A tumor‐in‐host DEB‐based approach |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract MET receptor tyrosine kinase inhibitors (TKIs) can restore sensitivity to gefitinib, a TKI targeting epidermal growth factor receptor (EGFR), and promote apoptosis in non‐small cell lung cancer (NSCLC) models resistant to gefitinib treatment in vitro and in vivo. Several novel MET inhibitors are currently under study in different phases of development. In this work, a novel tumor‐in‐host modeling approach, based on the Dynamic Energy Budget (DEB) theory, was proposed and successfully applied to the context of poly‐targeted combination therapies. The population DEB‐based tumor growth inhibition (TGI) model well‐described the effect of gefitinib and of two MET inhibitors, capmatinib and S49076, on both tumor growth and host body weight when administered alone or in combination in an NSCLC mice model involving the gefitinib‐resistant tumor line HCC827ER1. The introduction of a synergistic effect in the combination DEB‐TGI model allowed to capture gefitinib anticancer activity enhanced by the co‐administered MET inhibitor, providing also a quantitative evaluation of the synergistic drug interaction. The model‐based comparison of the two MET inhibitors highlighted that S49076 exhibited a greater anticancer effect as well as a greater ability in restoring sensitivity to gefitinib than the competitor capmatinib. In summary, the DEB‐based tumor‐in‐host framework proposed here can be applied to routine combination xenograft experiments, providing an assessment of drug interactions and contributing to rank investigated compounds and to select the optimal combinations, based on both tumor and host body weight dynamics. Thus, the combination tumor‐in‐host DEB‐TGI model can be considered a useful tool in the preclinical development and a significant advance toward better characterization of combination therapies. | ||
653 | 0 | |a Therapeutics. Pharmacology | |
700 | 0 | |a Glenn Gauderat |e verfasserin |4 aut | |
700 | 0 | |a Sylvain Fouliard |e verfasserin |4 aut | |
700 | 0 | |a Mike Burbridge |e verfasserin |4 aut | |
700 | 0 | |a Marylore Chenel |e verfasserin |4 aut | |
700 | 0 | |a Paolo Magni |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t CPT: Pharmacometrics & Systems Pharmacology |d Wiley, 2013 |g 10(2021), 11, Seite 1396-1411 |w (DE-627)733752829 |w (DE-600)2697010-7 |x 21638306 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2021 |g number:11 |g pages:1396-1411 |
856 | 4 | 0 | |u https://doi.org/10.1002/psp4.12710 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/aa833859fc9044a780546843b278ac28 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1002/psp4.12710 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2163-8306 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2021 |e 11 |h 1396-1411 |
author_variant |
e m t emt g g gg s f sf m b mb m c mc p m pm |
---|---|
matchkey_str |
article:21638306:2021----::oeigetrtoogftnbfiayyodiitainfeihbtriaefihbtreitnncceor |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
RM |
publishDate |
2021 |
allfields |
10.1002/psp4.12710 doi (DE-627)DOAJ068561539 (DE-599)DOAJaa833859fc9044a780546843b278ac28 DE-627 ger DE-627 rakwb eng RM1-950 Elena M. Tosca verfasserin aut Modeling restoration of gefitinib efficacy by co‐administration of MET inhibitors in an EGFR inhibitor‐resistant NSCLC xenograft model: A tumor‐in‐host DEB‐based approach 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract MET receptor tyrosine kinase inhibitors (TKIs) can restore sensitivity to gefitinib, a TKI targeting epidermal growth factor receptor (EGFR), and promote apoptosis in non‐small cell lung cancer (NSCLC) models resistant to gefitinib treatment in vitro and in vivo. Several novel MET inhibitors are currently under study in different phases of development. In this work, a novel tumor‐in‐host modeling approach, based on the Dynamic Energy Budget (DEB) theory, was proposed and successfully applied to the context of poly‐targeted combination therapies. The population DEB‐based tumor growth inhibition (TGI) model well‐described the effect of gefitinib and of two MET inhibitors, capmatinib and S49076, on both tumor growth and host body weight when administered alone or in combination in an NSCLC mice model involving the gefitinib‐resistant tumor line HCC827ER1. The introduction of a synergistic effect in the combination DEB‐TGI model allowed to capture gefitinib anticancer activity enhanced by the co‐administered MET inhibitor, providing also a quantitative evaluation of the synergistic drug interaction. The model‐based comparison of the two MET inhibitors highlighted that S49076 exhibited a greater anticancer effect as well as a greater ability in restoring sensitivity to gefitinib than the competitor capmatinib. In summary, the DEB‐based tumor‐in‐host framework proposed here can be applied to routine combination xenograft experiments, providing an assessment of drug interactions and contributing to rank investigated compounds and to select the optimal combinations, based on both tumor and host body weight dynamics. Thus, the combination tumor‐in‐host DEB‐TGI model can be considered a useful tool in the preclinical development and a significant advance toward better characterization of combination therapies. Therapeutics. Pharmacology Glenn Gauderat verfasserin aut Sylvain Fouliard verfasserin aut Mike Burbridge verfasserin aut Marylore Chenel verfasserin aut Paolo Magni verfasserin aut In CPT: Pharmacometrics & Systems Pharmacology Wiley, 2013 10(2021), 11, Seite 1396-1411 (DE-627)733752829 (DE-600)2697010-7 21638306 nnns volume:10 year:2021 number:11 pages:1396-1411 https://doi.org/10.1002/psp4.12710 kostenfrei https://doaj.org/article/aa833859fc9044a780546843b278ac28 kostenfrei https://doi.org/10.1002/psp4.12710 kostenfrei https://doaj.org/toc/2163-8306 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2021 11 1396-1411 |
spelling |
10.1002/psp4.12710 doi (DE-627)DOAJ068561539 (DE-599)DOAJaa833859fc9044a780546843b278ac28 DE-627 ger DE-627 rakwb eng RM1-950 Elena M. Tosca verfasserin aut Modeling restoration of gefitinib efficacy by co‐administration of MET inhibitors in an EGFR inhibitor‐resistant NSCLC xenograft model: A tumor‐in‐host DEB‐based approach 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract MET receptor tyrosine kinase inhibitors (TKIs) can restore sensitivity to gefitinib, a TKI targeting epidermal growth factor receptor (EGFR), and promote apoptosis in non‐small cell lung cancer (NSCLC) models resistant to gefitinib treatment in vitro and in vivo. Several novel MET inhibitors are currently under study in different phases of development. In this work, a novel tumor‐in‐host modeling approach, based on the Dynamic Energy Budget (DEB) theory, was proposed and successfully applied to the context of poly‐targeted combination therapies. The population DEB‐based tumor growth inhibition (TGI) model well‐described the effect of gefitinib and of two MET inhibitors, capmatinib and S49076, on both tumor growth and host body weight when administered alone or in combination in an NSCLC mice model involving the gefitinib‐resistant tumor line HCC827ER1. The introduction of a synergistic effect in the combination DEB‐TGI model allowed to capture gefitinib anticancer activity enhanced by the co‐administered MET inhibitor, providing also a quantitative evaluation of the synergistic drug interaction. The model‐based comparison of the two MET inhibitors highlighted that S49076 exhibited a greater anticancer effect as well as a greater ability in restoring sensitivity to gefitinib than the competitor capmatinib. In summary, the DEB‐based tumor‐in‐host framework proposed here can be applied to routine combination xenograft experiments, providing an assessment of drug interactions and contributing to rank investigated compounds and to select the optimal combinations, based on both tumor and host body weight dynamics. Thus, the combination tumor‐in‐host DEB‐TGI model can be considered a useful tool in the preclinical development and a significant advance toward better characterization of combination therapies. Therapeutics. Pharmacology Glenn Gauderat verfasserin aut Sylvain Fouliard verfasserin aut Mike Burbridge verfasserin aut Marylore Chenel verfasserin aut Paolo Magni verfasserin aut In CPT: Pharmacometrics & Systems Pharmacology Wiley, 2013 10(2021), 11, Seite 1396-1411 (DE-627)733752829 (DE-600)2697010-7 21638306 nnns volume:10 year:2021 number:11 pages:1396-1411 https://doi.org/10.1002/psp4.12710 kostenfrei https://doaj.org/article/aa833859fc9044a780546843b278ac28 kostenfrei https://doi.org/10.1002/psp4.12710 kostenfrei https://doaj.org/toc/2163-8306 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2021 11 1396-1411 |
allfields_unstemmed |
10.1002/psp4.12710 doi (DE-627)DOAJ068561539 (DE-599)DOAJaa833859fc9044a780546843b278ac28 DE-627 ger DE-627 rakwb eng RM1-950 Elena M. Tosca verfasserin aut Modeling restoration of gefitinib efficacy by co‐administration of MET inhibitors in an EGFR inhibitor‐resistant NSCLC xenograft model: A tumor‐in‐host DEB‐based approach 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract MET receptor tyrosine kinase inhibitors (TKIs) can restore sensitivity to gefitinib, a TKI targeting epidermal growth factor receptor (EGFR), and promote apoptosis in non‐small cell lung cancer (NSCLC) models resistant to gefitinib treatment in vitro and in vivo. Several novel MET inhibitors are currently under study in different phases of development. In this work, a novel tumor‐in‐host modeling approach, based on the Dynamic Energy Budget (DEB) theory, was proposed and successfully applied to the context of poly‐targeted combination therapies. The population DEB‐based tumor growth inhibition (TGI) model well‐described the effect of gefitinib and of two MET inhibitors, capmatinib and S49076, on both tumor growth and host body weight when administered alone or in combination in an NSCLC mice model involving the gefitinib‐resistant tumor line HCC827ER1. The introduction of a synergistic effect in the combination DEB‐TGI model allowed to capture gefitinib anticancer activity enhanced by the co‐administered MET inhibitor, providing also a quantitative evaluation of the synergistic drug interaction. The model‐based comparison of the two MET inhibitors highlighted that S49076 exhibited a greater anticancer effect as well as a greater ability in restoring sensitivity to gefitinib than the competitor capmatinib. In summary, the DEB‐based tumor‐in‐host framework proposed here can be applied to routine combination xenograft experiments, providing an assessment of drug interactions and contributing to rank investigated compounds and to select the optimal combinations, based on both tumor and host body weight dynamics. Thus, the combination tumor‐in‐host DEB‐TGI model can be considered a useful tool in the preclinical development and a significant advance toward better characterization of combination therapies. Therapeutics. Pharmacology Glenn Gauderat verfasserin aut Sylvain Fouliard verfasserin aut Mike Burbridge verfasserin aut Marylore Chenel verfasserin aut Paolo Magni verfasserin aut In CPT: Pharmacometrics & Systems Pharmacology Wiley, 2013 10(2021), 11, Seite 1396-1411 (DE-627)733752829 (DE-600)2697010-7 21638306 nnns volume:10 year:2021 number:11 pages:1396-1411 https://doi.org/10.1002/psp4.12710 kostenfrei https://doaj.org/article/aa833859fc9044a780546843b278ac28 kostenfrei https://doi.org/10.1002/psp4.12710 kostenfrei https://doaj.org/toc/2163-8306 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2021 11 1396-1411 |
allfieldsGer |
10.1002/psp4.12710 doi (DE-627)DOAJ068561539 (DE-599)DOAJaa833859fc9044a780546843b278ac28 DE-627 ger DE-627 rakwb eng RM1-950 Elena M. Tosca verfasserin aut Modeling restoration of gefitinib efficacy by co‐administration of MET inhibitors in an EGFR inhibitor‐resistant NSCLC xenograft model: A tumor‐in‐host DEB‐based approach 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract MET receptor tyrosine kinase inhibitors (TKIs) can restore sensitivity to gefitinib, a TKI targeting epidermal growth factor receptor (EGFR), and promote apoptosis in non‐small cell lung cancer (NSCLC) models resistant to gefitinib treatment in vitro and in vivo. Several novel MET inhibitors are currently under study in different phases of development. In this work, a novel tumor‐in‐host modeling approach, based on the Dynamic Energy Budget (DEB) theory, was proposed and successfully applied to the context of poly‐targeted combination therapies. The population DEB‐based tumor growth inhibition (TGI) model well‐described the effect of gefitinib and of two MET inhibitors, capmatinib and S49076, on both tumor growth and host body weight when administered alone or in combination in an NSCLC mice model involving the gefitinib‐resistant tumor line HCC827ER1. The introduction of a synergistic effect in the combination DEB‐TGI model allowed to capture gefitinib anticancer activity enhanced by the co‐administered MET inhibitor, providing also a quantitative evaluation of the synergistic drug interaction. The model‐based comparison of the two MET inhibitors highlighted that S49076 exhibited a greater anticancer effect as well as a greater ability in restoring sensitivity to gefitinib than the competitor capmatinib. In summary, the DEB‐based tumor‐in‐host framework proposed here can be applied to routine combination xenograft experiments, providing an assessment of drug interactions and contributing to rank investigated compounds and to select the optimal combinations, based on both tumor and host body weight dynamics. Thus, the combination tumor‐in‐host DEB‐TGI model can be considered a useful tool in the preclinical development and a significant advance toward better characterization of combination therapies. Therapeutics. Pharmacology Glenn Gauderat verfasserin aut Sylvain Fouliard verfasserin aut Mike Burbridge verfasserin aut Marylore Chenel verfasserin aut Paolo Magni verfasserin aut In CPT: Pharmacometrics & Systems Pharmacology Wiley, 2013 10(2021), 11, Seite 1396-1411 (DE-627)733752829 (DE-600)2697010-7 21638306 nnns volume:10 year:2021 number:11 pages:1396-1411 https://doi.org/10.1002/psp4.12710 kostenfrei https://doaj.org/article/aa833859fc9044a780546843b278ac28 kostenfrei https://doi.org/10.1002/psp4.12710 kostenfrei https://doaj.org/toc/2163-8306 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2021 11 1396-1411 |
allfieldsSound |
10.1002/psp4.12710 doi (DE-627)DOAJ068561539 (DE-599)DOAJaa833859fc9044a780546843b278ac28 DE-627 ger DE-627 rakwb eng RM1-950 Elena M. Tosca verfasserin aut Modeling restoration of gefitinib efficacy by co‐administration of MET inhibitors in an EGFR inhibitor‐resistant NSCLC xenograft model: A tumor‐in‐host DEB‐based approach 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract MET receptor tyrosine kinase inhibitors (TKIs) can restore sensitivity to gefitinib, a TKI targeting epidermal growth factor receptor (EGFR), and promote apoptosis in non‐small cell lung cancer (NSCLC) models resistant to gefitinib treatment in vitro and in vivo. Several novel MET inhibitors are currently under study in different phases of development. In this work, a novel tumor‐in‐host modeling approach, based on the Dynamic Energy Budget (DEB) theory, was proposed and successfully applied to the context of poly‐targeted combination therapies. The population DEB‐based tumor growth inhibition (TGI) model well‐described the effect of gefitinib and of two MET inhibitors, capmatinib and S49076, on both tumor growth and host body weight when administered alone or in combination in an NSCLC mice model involving the gefitinib‐resistant tumor line HCC827ER1. The introduction of a synergistic effect in the combination DEB‐TGI model allowed to capture gefitinib anticancer activity enhanced by the co‐administered MET inhibitor, providing also a quantitative evaluation of the synergistic drug interaction. The model‐based comparison of the two MET inhibitors highlighted that S49076 exhibited a greater anticancer effect as well as a greater ability in restoring sensitivity to gefitinib than the competitor capmatinib. In summary, the DEB‐based tumor‐in‐host framework proposed here can be applied to routine combination xenograft experiments, providing an assessment of drug interactions and contributing to rank investigated compounds and to select the optimal combinations, based on both tumor and host body weight dynamics. Thus, the combination tumor‐in‐host DEB‐TGI model can be considered a useful tool in the preclinical development and a significant advance toward better characterization of combination therapies. Therapeutics. Pharmacology Glenn Gauderat verfasserin aut Sylvain Fouliard verfasserin aut Mike Burbridge verfasserin aut Marylore Chenel verfasserin aut Paolo Magni verfasserin aut In CPT: Pharmacometrics & Systems Pharmacology Wiley, 2013 10(2021), 11, Seite 1396-1411 (DE-627)733752829 (DE-600)2697010-7 21638306 nnns volume:10 year:2021 number:11 pages:1396-1411 https://doi.org/10.1002/psp4.12710 kostenfrei https://doaj.org/article/aa833859fc9044a780546843b278ac28 kostenfrei https://doi.org/10.1002/psp4.12710 kostenfrei https://doaj.org/toc/2163-8306 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2021 11 1396-1411 |
language |
English |
source |
In CPT: Pharmacometrics & Systems Pharmacology 10(2021), 11, Seite 1396-1411 volume:10 year:2021 number:11 pages:1396-1411 |
sourceStr |
In CPT: Pharmacometrics & Systems Pharmacology 10(2021), 11, Seite 1396-1411 volume:10 year:2021 number:11 pages:1396-1411 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Therapeutics. Pharmacology |
isfreeaccess_bool |
true |
container_title |
CPT: Pharmacometrics & Systems Pharmacology |
authorswithroles_txt_mv |
Elena M. Tosca @@aut@@ Glenn Gauderat @@aut@@ Sylvain Fouliard @@aut@@ Mike Burbridge @@aut@@ Marylore Chenel @@aut@@ Paolo Magni @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
733752829 |
id |
DOAJ068561539 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ068561539</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309075721.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/psp4.12710</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ068561539</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJaa833859fc9044a780546843b278ac28</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RM1-950</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Elena M. Tosca</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modeling restoration of gefitinib efficacy by co‐administration of MET inhibitors in an EGFR inhibitor‐resistant NSCLC xenograft model: A tumor‐in‐host DEB‐based approach</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract MET receptor tyrosine kinase inhibitors (TKIs) can restore sensitivity to gefitinib, a TKI targeting epidermal growth factor receptor (EGFR), and promote apoptosis in non‐small cell lung cancer (NSCLC) models resistant to gefitinib treatment in vitro and in vivo. Several novel MET inhibitors are currently under study in different phases of development. In this work, a novel tumor‐in‐host modeling approach, based on the Dynamic Energy Budget (DEB) theory, was proposed and successfully applied to the context of poly‐targeted combination therapies. The population DEB‐based tumor growth inhibition (TGI) model well‐described the effect of gefitinib and of two MET inhibitors, capmatinib and S49076, on both tumor growth and host body weight when administered alone or in combination in an NSCLC mice model involving the gefitinib‐resistant tumor line HCC827ER1. The introduction of a synergistic effect in the combination DEB‐TGI model allowed to capture gefitinib anticancer activity enhanced by the co‐administered MET inhibitor, providing also a quantitative evaluation of the synergistic drug interaction. The model‐based comparison of the two MET inhibitors highlighted that S49076 exhibited a greater anticancer effect as well as a greater ability in restoring sensitivity to gefitinib than the competitor capmatinib. In summary, the DEB‐based tumor‐in‐host framework proposed here can be applied to routine combination xenograft experiments, providing an assessment of drug interactions and contributing to rank investigated compounds and to select the optimal combinations, based on both tumor and host body weight dynamics. Thus, the combination tumor‐in‐host DEB‐TGI model can be considered a useful tool in the preclinical development and a significant advance toward better characterization of combination therapies.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Therapeutics. Pharmacology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Glenn Gauderat</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sylvain Fouliard</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mike Burbridge</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marylore Chenel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Paolo Magni</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">CPT: Pharmacometrics & Systems Pharmacology</subfield><subfield code="d">Wiley, 2013</subfield><subfield code="g">10(2021), 11, Seite 1396-1411</subfield><subfield code="w">(DE-627)733752829</subfield><subfield code="w">(DE-600)2697010-7</subfield><subfield code="x">21638306</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:11</subfield><subfield code="g">pages:1396-1411</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/psp4.12710</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/aa833859fc9044a780546843b278ac28</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/psp4.12710</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2163-8306</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2021</subfield><subfield code="e">11</subfield><subfield code="h">1396-1411</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Elena M. Tosca |
spellingShingle |
Elena M. Tosca misc RM1-950 misc Therapeutics. Pharmacology Modeling restoration of gefitinib efficacy by co‐administration of MET inhibitors in an EGFR inhibitor‐resistant NSCLC xenograft model: A tumor‐in‐host DEB‐based approach |
authorStr |
Elena M. Tosca |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)733752829 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
RM1-950 |
illustrated |
Not Illustrated |
issn |
21638306 |
topic_title |
RM1-950 Modeling restoration of gefitinib efficacy by co‐administration of MET inhibitors in an EGFR inhibitor‐resistant NSCLC xenograft model: A tumor‐in‐host DEB‐based approach |
topic |
misc RM1-950 misc Therapeutics. Pharmacology |
topic_unstemmed |
misc RM1-950 misc Therapeutics. Pharmacology |
topic_browse |
misc RM1-950 misc Therapeutics. Pharmacology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
CPT: Pharmacometrics & Systems Pharmacology |
hierarchy_parent_id |
733752829 |
hierarchy_top_title |
CPT: Pharmacometrics & Systems Pharmacology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)733752829 (DE-600)2697010-7 |
title |
Modeling restoration of gefitinib efficacy by co‐administration of MET inhibitors in an EGFR inhibitor‐resistant NSCLC xenograft model: A tumor‐in‐host DEB‐based approach |
ctrlnum |
(DE-627)DOAJ068561539 (DE-599)DOAJaa833859fc9044a780546843b278ac28 |
title_full |
Modeling restoration of gefitinib efficacy by co‐administration of MET inhibitors in an EGFR inhibitor‐resistant NSCLC xenograft model: A tumor‐in‐host DEB‐based approach |
author_sort |
Elena M. Tosca |
journal |
CPT: Pharmacometrics & Systems Pharmacology |
journalStr |
CPT: Pharmacometrics & Systems Pharmacology |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
1396 |
author_browse |
Elena M. Tosca Glenn Gauderat Sylvain Fouliard Mike Burbridge Marylore Chenel Paolo Magni |
container_volume |
10 |
class |
RM1-950 |
format_se |
Elektronische Aufsätze |
author-letter |
Elena M. Tosca |
doi_str_mv |
10.1002/psp4.12710 |
author2-role |
verfasserin |
title_sort |
modeling restoration of gefitinib efficacy by co‐administration of met inhibitors in an egfr inhibitor‐resistant nsclc xenograft model: a tumor‐in‐host deb‐based approach |
callnumber |
RM1-950 |
title_auth |
Modeling restoration of gefitinib efficacy by co‐administration of MET inhibitors in an EGFR inhibitor‐resistant NSCLC xenograft model: A tumor‐in‐host DEB‐based approach |
abstract |
Abstract MET receptor tyrosine kinase inhibitors (TKIs) can restore sensitivity to gefitinib, a TKI targeting epidermal growth factor receptor (EGFR), and promote apoptosis in non‐small cell lung cancer (NSCLC) models resistant to gefitinib treatment in vitro and in vivo. Several novel MET inhibitors are currently under study in different phases of development. In this work, a novel tumor‐in‐host modeling approach, based on the Dynamic Energy Budget (DEB) theory, was proposed and successfully applied to the context of poly‐targeted combination therapies. The population DEB‐based tumor growth inhibition (TGI) model well‐described the effect of gefitinib and of two MET inhibitors, capmatinib and S49076, on both tumor growth and host body weight when administered alone or in combination in an NSCLC mice model involving the gefitinib‐resistant tumor line HCC827ER1. The introduction of a synergistic effect in the combination DEB‐TGI model allowed to capture gefitinib anticancer activity enhanced by the co‐administered MET inhibitor, providing also a quantitative evaluation of the synergistic drug interaction. The model‐based comparison of the two MET inhibitors highlighted that S49076 exhibited a greater anticancer effect as well as a greater ability in restoring sensitivity to gefitinib than the competitor capmatinib. In summary, the DEB‐based tumor‐in‐host framework proposed here can be applied to routine combination xenograft experiments, providing an assessment of drug interactions and contributing to rank investigated compounds and to select the optimal combinations, based on both tumor and host body weight dynamics. Thus, the combination tumor‐in‐host DEB‐TGI model can be considered a useful tool in the preclinical development and a significant advance toward better characterization of combination therapies. |
abstractGer |
Abstract MET receptor tyrosine kinase inhibitors (TKIs) can restore sensitivity to gefitinib, a TKI targeting epidermal growth factor receptor (EGFR), and promote apoptosis in non‐small cell lung cancer (NSCLC) models resistant to gefitinib treatment in vitro and in vivo. Several novel MET inhibitors are currently under study in different phases of development. In this work, a novel tumor‐in‐host modeling approach, based on the Dynamic Energy Budget (DEB) theory, was proposed and successfully applied to the context of poly‐targeted combination therapies. The population DEB‐based tumor growth inhibition (TGI) model well‐described the effect of gefitinib and of two MET inhibitors, capmatinib and S49076, on both tumor growth and host body weight when administered alone or in combination in an NSCLC mice model involving the gefitinib‐resistant tumor line HCC827ER1. The introduction of a synergistic effect in the combination DEB‐TGI model allowed to capture gefitinib anticancer activity enhanced by the co‐administered MET inhibitor, providing also a quantitative evaluation of the synergistic drug interaction. The model‐based comparison of the two MET inhibitors highlighted that S49076 exhibited a greater anticancer effect as well as a greater ability in restoring sensitivity to gefitinib than the competitor capmatinib. In summary, the DEB‐based tumor‐in‐host framework proposed here can be applied to routine combination xenograft experiments, providing an assessment of drug interactions and contributing to rank investigated compounds and to select the optimal combinations, based on both tumor and host body weight dynamics. Thus, the combination tumor‐in‐host DEB‐TGI model can be considered a useful tool in the preclinical development and a significant advance toward better characterization of combination therapies. |
abstract_unstemmed |
Abstract MET receptor tyrosine kinase inhibitors (TKIs) can restore sensitivity to gefitinib, a TKI targeting epidermal growth factor receptor (EGFR), and promote apoptosis in non‐small cell lung cancer (NSCLC) models resistant to gefitinib treatment in vitro and in vivo. Several novel MET inhibitors are currently under study in different phases of development. In this work, a novel tumor‐in‐host modeling approach, based on the Dynamic Energy Budget (DEB) theory, was proposed and successfully applied to the context of poly‐targeted combination therapies. The population DEB‐based tumor growth inhibition (TGI) model well‐described the effect of gefitinib and of two MET inhibitors, capmatinib and S49076, on both tumor growth and host body weight when administered alone or in combination in an NSCLC mice model involving the gefitinib‐resistant tumor line HCC827ER1. The introduction of a synergistic effect in the combination DEB‐TGI model allowed to capture gefitinib anticancer activity enhanced by the co‐administered MET inhibitor, providing also a quantitative evaluation of the synergistic drug interaction. The model‐based comparison of the two MET inhibitors highlighted that S49076 exhibited a greater anticancer effect as well as a greater ability in restoring sensitivity to gefitinib than the competitor capmatinib. In summary, the DEB‐based tumor‐in‐host framework proposed here can be applied to routine combination xenograft experiments, providing an assessment of drug interactions and contributing to rank investigated compounds and to select the optimal combinations, based on both tumor and host body weight dynamics. Thus, the combination tumor‐in‐host DEB‐TGI model can be considered a useful tool in the preclinical development and a significant advance toward better characterization of combination therapies. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
11 |
title_short |
Modeling restoration of gefitinib efficacy by co‐administration of MET inhibitors in an EGFR inhibitor‐resistant NSCLC xenograft model: A tumor‐in‐host DEB‐based approach |
url |
https://doi.org/10.1002/psp4.12710 https://doaj.org/article/aa833859fc9044a780546843b278ac28 https://doaj.org/toc/2163-8306 |
remote_bool |
true |
author2 |
Glenn Gauderat Sylvain Fouliard Mike Burbridge Marylore Chenel Paolo Magni |
author2Str |
Glenn Gauderat Sylvain Fouliard Mike Burbridge Marylore Chenel Paolo Magni |
ppnlink |
733752829 |
callnumber-subject |
RM - Therapeutics and Pharmacology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1002/psp4.12710 |
callnumber-a |
RM1-950 |
up_date |
2024-07-03T18:28:58.327Z |
_version_ |
1803583580630155264 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ068561539</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309075721.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/psp4.12710</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ068561539</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJaa833859fc9044a780546843b278ac28</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RM1-950</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Elena M. Tosca</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modeling restoration of gefitinib efficacy by co‐administration of MET inhibitors in an EGFR inhibitor‐resistant NSCLC xenograft model: A tumor‐in‐host DEB‐based approach</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract MET receptor tyrosine kinase inhibitors (TKIs) can restore sensitivity to gefitinib, a TKI targeting epidermal growth factor receptor (EGFR), and promote apoptosis in non‐small cell lung cancer (NSCLC) models resistant to gefitinib treatment in vitro and in vivo. Several novel MET inhibitors are currently under study in different phases of development. In this work, a novel tumor‐in‐host modeling approach, based on the Dynamic Energy Budget (DEB) theory, was proposed and successfully applied to the context of poly‐targeted combination therapies. The population DEB‐based tumor growth inhibition (TGI) model well‐described the effect of gefitinib and of two MET inhibitors, capmatinib and S49076, on both tumor growth and host body weight when administered alone or in combination in an NSCLC mice model involving the gefitinib‐resistant tumor line HCC827ER1. The introduction of a synergistic effect in the combination DEB‐TGI model allowed to capture gefitinib anticancer activity enhanced by the co‐administered MET inhibitor, providing also a quantitative evaluation of the synergistic drug interaction. The model‐based comparison of the two MET inhibitors highlighted that S49076 exhibited a greater anticancer effect as well as a greater ability in restoring sensitivity to gefitinib than the competitor capmatinib. In summary, the DEB‐based tumor‐in‐host framework proposed here can be applied to routine combination xenograft experiments, providing an assessment of drug interactions and contributing to rank investigated compounds and to select the optimal combinations, based on both tumor and host body weight dynamics. Thus, the combination tumor‐in‐host DEB‐TGI model can be considered a useful tool in the preclinical development and a significant advance toward better characterization of combination therapies.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Therapeutics. Pharmacology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Glenn Gauderat</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sylvain Fouliard</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mike Burbridge</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marylore Chenel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Paolo Magni</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">CPT: Pharmacometrics & Systems Pharmacology</subfield><subfield code="d">Wiley, 2013</subfield><subfield code="g">10(2021), 11, Seite 1396-1411</subfield><subfield code="w">(DE-627)733752829</subfield><subfield code="w">(DE-600)2697010-7</subfield><subfield code="x">21638306</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:11</subfield><subfield code="g">pages:1396-1411</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/psp4.12710</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/aa833859fc9044a780546843b278ac28</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/psp4.12710</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2163-8306</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2021</subfield><subfield code="e">11</subfield><subfield code="h">1396-1411</subfield></datafield></record></collection>
|
score |
7.402895 |