Scan Blindness Free Design of Wideband Wide-Scanning Open-Ended Waveguide Phased Array
A wideband wide-scanning open-ended rectangular waveguide phased array in a triangular lattice is presented. Dielectric or metamaterial wide-angle impedance matching superstrates have been widely used in phased arrays to improve the scanning performance. However these dielectric-containing covers ca...
Ausführliche Beschreibung
Autor*in: |
Xiuye Liang [verfasserIn] Zhe Zhang [verfasserIn] Jianping Zeng [verfasserIn] Fang Guan [verfasserIn] Xiaohan Liu [verfasserIn] Jian Zi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 9(2021), Seite 68127-68138 |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2021 ; pages:68127-68138 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2021.3074867 |
---|
Katalog-ID: |
DOAJ068698003 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ068698003 | ||
003 | DE-627 | ||
005 | 20230309080506.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2021.3074867 |2 doi | |
035 | |a (DE-627)DOAJ068698003 | ||
035 | |a (DE-599)DOAJ5b495456db8c4048b6844b41015be00d | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Xiuye Liang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Scan Blindness Free Design of Wideband Wide-Scanning Open-Ended Waveguide Phased Array |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a A wideband wide-scanning open-ended rectangular waveguide phased array in a triangular lattice is presented. Dielectric or metamaterial wide-angle impedance matching superstrates have been widely used in phased arrays to improve the scanning performance. However these dielectric-containing covers cannot solve the problem of scan blindness caused by the surface waves, or even further aggravate the surface wave effect. The modulated surface structures, which consist of the impedance-gradient structures and the surface wave bandgap structures are designed to maximize the wideband wide-scanning performance of the array. The proposed array achieves 40% bandwidth (8–12 GHz), while covering a scanning range of ±65° in the E-plane (VSWR < 2.3) and H-plane (VSWR < 2). The practical working frequency band occupies the whole potential operating frequency band between the waveguide TE<sub<10</sub< cutoff frequency and the onset frequency of the first grating lobe. An <inline-formula< <tex-math notation="LaTeX"<$11\times11$ </tex-math<</inline-formula< prototype is fabricated and measured. Good agreement is achieved between the simulated and measured results. | ||
650 | 4 | |a Open-ended waveguide | |
650 | 4 | |a phase array antenna | |
650 | 4 | |a scan blindness | |
650 | 4 | |a surface wave bandgap | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Zhe Zhang |e verfasserin |4 aut | |
700 | 0 | |a Jianping Zeng |e verfasserin |4 aut | |
700 | 0 | |a Fang Guan |e verfasserin |4 aut | |
700 | 0 | |a Xiaohan Liu |e verfasserin |4 aut | |
700 | 0 | |a Jian Zi |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 9(2021), Seite 68127-68138 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2021 |g pages:68127-68138 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2021.3074867 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/5b495456db8c4048b6844b41015be00d |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/9410534/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2021 |h 68127-68138 |
author_variant |
x l xl z z zz j z jz f g fg x l xl j z jz |
---|---|
matchkey_str |
article:21693536:2021----::cnlnnsfedsgowdbnwdsannoeedd |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
TK |
publishDate |
2021 |
allfields |
10.1109/ACCESS.2021.3074867 doi (DE-627)DOAJ068698003 (DE-599)DOAJ5b495456db8c4048b6844b41015be00d DE-627 ger DE-627 rakwb eng TK1-9971 Xiuye Liang verfasserin aut Scan Blindness Free Design of Wideband Wide-Scanning Open-Ended Waveguide Phased Array 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A wideband wide-scanning open-ended rectangular waveguide phased array in a triangular lattice is presented. Dielectric or metamaterial wide-angle impedance matching superstrates have been widely used in phased arrays to improve the scanning performance. However these dielectric-containing covers cannot solve the problem of scan blindness caused by the surface waves, or even further aggravate the surface wave effect. The modulated surface structures, which consist of the impedance-gradient structures and the surface wave bandgap structures are designed to maximize the wideband wide-scanning performance of the array. The proposed array achieves 40% bandwidth (8–12 GHz), while covering a scanning range of ±65° in the E-plane (VSWR < 2.3) and H-plane (VSWR < 2). The practical working frequency band occupies the whole potential operating frequency band between the waveguide TE<sub<10</sub< cutoff frequency and the onset frequency of the first grating lobe. An <inline-formula< <tex-math notation="LaTeX"<$11\times11$ </tex-math<</inline-formula< prototype is fabricated and measured. Good agreement is achieved between the simulated and measured results. Open-ended waveguide phase array antenna scan blindness surface wave bandgap Electrical engineering. Electronics. Nuclear engineering Zhe Zhang verfasserin aut Jianping Zeng verfasserin aut Fang Guan verfasserin aut Xiaohan Liu verfasserin aut Jian Zi verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 68127-68138 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:68127-68138 https://doi.org/10.1109/ACCESS.2021.3074867 kostenfrei https://doaj.org/article/5b495456db8c4048b6844b41015be00d kostenfrei https://ieeexplore.ieee.org/document/9410534/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 68127-68138 |
spelling |
10.1109/ACCESS.2021.3074867 doi (DE-627)DOAJ068698003 (DE-599)DOAJ5b495456db8c4048b6844b41015be00d DE-627 ger DE-627 rakwb eng TK1-9971 Xiuye Liang verfasserin aut Scan Blindness Free Design of Wideband Wide-Scanning Open-Ended Waveguide Phased Array 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A wideband wide-scanning open-ended rectangular waveguide phased array in a triangular lattice is presented. Dielectric or metamaterial wide-angle impedance matching superstrates have been widely used in phased arrays to improve the scanning performance. However these dielectric-containing covers cannot solve the problem of scan blindness caused by the surface waves, or even further aggravate the surface wave effect. The modulated surface structures, which consist of the impedance-gradient structures and the surface wave bandgap structures are designed to maximize the wideband wide-scanning performance of the array. The proposed array achieves 40% bandwidth (8–12 GHz), while covering a scanning range of ±65° in the E-plane (VSWR < 2.3) and H-plane (VSWR < 2). The practical working frequency band occupies the whole potential operating frequency band between the waveguide TE<sub<10</sub< cutoff frequency and the onset frequency of the first grating lobe. An <inline-formula< <tex-math notation="LaTeX"<$11\times11$ </tex-math<</inline-formula< prototype is fabricated and measured. Good agreement is achieved between the simulated and measured results. Open-ended waveguide phase array antenna scan blindness surface wave bandgap Electrical engineering. Electronics. Nuclear engineering Zhe Zhang verfasserin aut Jianping Zeng verfasserin aut Fang Guan verfasserin aut Xiaohan Liu verfasserin aut Jian Zi verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 68127-68138 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:68127-68138 https://doi.org/10.1109/ACCESS.2021.3074867 kostenfrei https://doaj.org/article/5b495456db8c4048b6844b41015be00d kostenfrei https://ieeexplore.ieee.org/document/9410534/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 68127-68138 |
allfields_unstemmed |
10.1109/ACCESS.2021.3074867 doi (DE-627)DOAJ068698003 (DE-599)DOAJ5b495456db8c4048b6844b41015be00d DE-627 ger DE-627 rakwb eng TK1-9971 Xiuye Liang verfasserin aut Scan Blindness Free Design of Wideband Wide-Scanning Open-Ended Waveguide Phased Array 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A wideband wide-scanning open-ended rectangular waveguide phased array in a triangular lattice is presented. Dielectric or metamaterial wide-angle impedance matching superstrates have been widely used in phased arrays to improve the scanning performance. However these dielectric-containing covers cannot solve the problem of scan blindness caused by the surface waves, or even further aggravate the surface wave effect. The modulated surface structures, which consist of the impedance-gradient structures and the surface wave bandgap structures are designed to maximize the wideband wide-scanning performance of the array. The proposed array achieves 40% bandwidth (8–12 GHz), while covering a scanning range of ±65° in the E-plane (VSWR < 2.3) and H-plane (VSWR < 2). The practical working frequency band occupies the whole potential operating frequency band between the waveguide TE<sub<10</sub< cutoff frequency and the onset frequency of the first grating lobe. An <inline-formula< <tex-math notation="LaTeX"<$11\times11$ </tex-math<</inline-formula< prototype is fabricated and measured. Good agreement is achieved between the simulated and measured results. Open-ended waveguide phase array antenna scan blindness surface wave bandgap Electrical engineering. Electronics. Nuclear engineering Zhe Zhang verfasserin aut Jianping Zeng verfasserin aut Fang Guan verfasserin aut Xiaohan Liu verfasserin aut Jian Zi verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 68127-68138 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:68127-68138 https://doi.org/10.1109/ACCESS.2021.3074867 kostenfrei https://doaj.org/article/5b495456db8c4048b6844b41015be00d kostenfrei https://ieeexplore.ieee.org/document/9410534/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 68127-68138 |
allfieldsGer |
10.1109/ACCESS.2021.3074867 doi (DE-627)DOAJ068698003 (DE-599)DOAJ5b495456db8c4048b6844b41015be00d DE-627 ger DE-627 rakwb eng TK1-9971 Xiuye Liang verfasserin aut Scan Blindness Free Design of Wideband Wide-Scanning Open-Ended Waveguide Phased Array 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A wideband wide-scanning open-ended rectangular waveguide phased array in a triangular lattice is presented. Dielectric or metamaterial wide-angle impedance matching superstrates have been widely used in phased arrays to improve the scanning performance. However these dielectric-containing covers cannot solve the problem of scan blindness caused by the surface waves, or even further aggravate the surface wave effect. The modulated surface structures, which consist of the impedance-gradient structures and the surface wave bandgap structures are designed to maximize the wideband wide-scanning performance of the array. The proposed array achieves 40% bandwidth (8–12 GHz), while covering a scanning range of ±65° in the E-plane (VSWR < 2.3) and H-plane (VSWR < 2). The practical working frequency band occupies the whole potential operating frequency band between the waveguide TE<sub<10</sub< cutoff frequency and the onset frequency of the first grating lobe. An <inline-formula< <tex-math notation="LaTeX"<$11\times11$ </tex-math<</inline-formula< prototype is fabricated and measured. Good agreement is achieved between the simulated and measured results. Open-ended waveguide phase array antenna scan blindness surface wave bandgap Electrical engineering. Electronics. Nuclear engineering Zhe Zhang verfasserin aut Jianping Zeng verfasserin aut Fang Guan verfasserin aut Xiaohan Liu verfasserin aut Jian Zi verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 68127-68138 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:68127-68138 https://doi.org/10.1109/ACCESS.2021.3074867 kostenfrei https://doaj.org/article/5b495456db8c4048b6844b41015be00d kostenfrei https://ieeexplore.ieee.org/document/9410534/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 68127-68138 |
allfieldsSound |
10.1109/ACCESS.2021.3074867 doi (DE-627)DOAJ068698003 (DE-599)DOAJ5b495456db8c4048b6844b41015be00d DE-627 ger DE-627 rakwb eng TK1-9971 Xiuye Liang verfasserin aut Scan Blindness Free Design of Wideband Wide-Scanning Open-Ended Waveguide Phased Array 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A wideband wide-scanning open-ended rectangular waveguide phased array in a triangular lattice is presented. Dielectric or metamaterial wide-angle impedance matching superstrates have been widely used in phased arrays to improve the scanning performance. However these dielectric-containing covers cannot solve the problem of scan blindness caused by the surface waves, or even further aggravate the surface wave effect. The modulated surface structures, which consist of the impedance-gradient structures and the surface wave bandgap structures are designed to maximize the wideband wide-scanning performance of the array. The proposed array achieves 40% bandwidth (8–12 GHz), while covering a scanning range of ±65° in the E-plane (VSWR < 2.3) and H-plane (VSWR < 2). The practical working frequency band occupies the whole potential operating frequency band between the waveguide TE<sub<10</sub< cutoff frequency and the onset frequency of the first grating lobe. An <inline-formula< <tex-math notation="LaTeX"<$11\times11$ </tex-math<</inline-formula< prototype is fabricated and measured. Good agreement is achieved between the simulated and measured results. Open-ended waveguide phase array antenna scan blindness surface wave bandgap Electrical engineering. Electronics. Nuclear engineering Zhe Zhang verfasserin aut Jianping Zeng verfasserin aut Fang Guan verfasserin aut Xiaohan Liu verfasserin aut Jian Zi verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 68127-68138 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:68127-68138 https://doi.org/10.1109/ACCESS.2021.3074867 kostenfrei https://doaj.org/article/5b495456db8c4048b6844b41015be00d kostenfrei https://ieeexplore.ieee.org/document/9410534/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 68127-68138 |
language |
English |
source |
In IEEE Access 9(2021), Seite 68127-68138 volume:9 year:2021 pages:68127-68138 |
sourceStr |
In IEEE Access 9(2021), Seite 68127-68138 volume:9 year:2021 pages:68127-68138 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Open-ended waveguide phase array antenna scan blindness surface wave bandgap Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Xiuye Liang @@aut@@ Zhe Zhang @@aut@@ Jianping Zeng @@aut@@ Fang Guan @@aut@@ Xiaohan Liu @@aut@@ Jian Zi @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ068698003 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ068698003</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309080506.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2021.3074867</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ068698003</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5b495456db8c4048b6844b41015be00d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xiuye Liang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Scan Blindness Free Design of Wideband Wide-Scanning Open-Ended Waveguide Phased Array</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A wideband wide-scanning open-ended rectangular waveguide phased array in a triangular lattice is presented. Dielectric or metamaterial wide-angle impedance matching superstrates have been widely used in phased arrays to improve the scanning performance. However these dielectric-containing covers cannot solve the problem of scan blindness caused by the surface waves, or even further aggravate the surface wave effect. The modulated surface structures, which consist of the impedance-gradient structures and the surface wave bandgap structures are designed to maximize the wideband wide-scanning performance of the array. The proposed array achieves 40% bandwidth (8–12 GHz), while covering a scanning range of ±65° in the E-plane (VSWR < 2.3) and H-plane (VSWR < 2). The practical working frequency band occupies the whole potential operating frequency band between the waveguide TE<sub<10</sub< cutoff frequency and the onset frequency of the first grating lobe. An <inline-formula< <tex-math notation="LaTeX"<$11\times11$ </tex-math<</inline-formula< prototype is fabricated and measured. Good agreement is achieved between the simulated and measured results.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Open-ended waveguide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phase array antenna</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">scan blindness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">surface wave bandgap</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhe Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianping Zeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fang Guan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaohan Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jian Zi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">9(2021), Seite 68127-68138</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:68127-68138</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2021.3074867</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5b495456db8c4048b6844b41015be00d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9410534/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2021</subfield><subfield code="h">68127-68138</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Xiuye Liang |
spellingShingle |
Xiuye Liang misc TK1-9971 misc Open-ended waveguide misc phase array antenna misc scan blindness misc surface wave bandgap misc Electrical engineering. Electronics. Nuclear engineering Scan Blindness Free Design of Wideband Wide-Scanning Open-Ended Waveguide Phased Array |
authorStr |
Xiuye Liang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 Scan Blindness Free Design of Wideband Wide-Scanning Open-Ended Waveguide Phased Array Open-ended waveguide phase array antenna scan blindness surface wave bandgap |
topic |
misc TK1-9971 misc Open-ended waveguide misc phase array antenna misc scan blindness misc surface wave bandgap misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Open-ended waveguide misc phase array antenna misc scan blindness misc surface wave bandgap misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Open-ended waveguide misc phase array antenna misc scan blindness misc surface wave bandgap misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
Scan Blindness Free Design of Wideband Wide-Scanning Open-Ended Waveguide Phased Array |
ctrlnum |
(DE-627)DOAJ068698003 (DE-599)DOAJ5b495456db8c4048b6844b41015be00d |
title_full |
Scan Blindness Free Design of Wideband Wide-Scanning Open-Ended Waveguide Phased Array |
author_sort |
Xiuye Liang |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
68127 |
author_browse |
Xiuye Liang Zhe Zhang Jianping Zeng Fang Guan Xiaohan Liu Jian Zi |
container_volume |
9 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Xiuye Liang |
doi_str_mv |
10.1109/ACCESS.2021.3074867 |
author2-role |
verfasserin |
title_sort |
scan blindness free design of wideband wide-scanning open-ended waveguide phased array |
callnumber |
TK1-9971 |
title_auth |
Scan Blindness Free Design of Wideband Wide-Scanning Open-Ended Waveguide Phased Array |
abstract |
A wideband wide-scanning open-ended rectangular waveguide phased array in a triangular lattice is presented. Dielectric or metamaterial wide-angle impedance matching superstrates have been widely used in phased arrays to improve the scanning performance. However these dielectric-containing covers cannot solve the problem of scan blindness caused by the surface waves, or even further aggravate the surface wave effect. The modulated surface structures, which consist of the impedance-gradient structures and the surface wave bandgap structures are designed to maximize the wideband wide-scanning performance of the array. The proposed array achieves 40% bandwidth (8–12 GHz), while covering a scanning range of ±65° in the E-plane (VSWR < 2.3) and H-plane (VSWR < 2). The practical working frequency band occupies the whole potential operating frequency band between the waveguide TE<sub<10</sub< cutoff frequency and the onset frequency of the first grating lobe. An <inline-formula< <tex-math notation="LaTeX"<$11\times11$ </tex-math<</inline-formula< prototype is fabricated and measured. Good agreement is achieved between the simulated and measured results. |
abstractGer |
A wideband wide-scanning open-ended rectangular waveguide phased array in a triangular lattice is presented. Dielectric or metamaterial wide-angle impedance matching superstrates have been widely used in phased arrays to improve the scanning performance. However these dielectric-containing covers cannot solve the problem of scan blindness caused by the surface waves, or even further aggravate the surface wave effect. The modulated surface structures, which consist of the impedance-gradient structures and the surface wave bandgap structures are designed to maximize the wideband wide-scanning performance of the array. The proposed array achieves 40% bandwidth (8–12 GHz), while covering a scanning range of ±65° in the E-plane (VSWR < 2.3) and H-plane (VSWR < 2). The practical working frequency band occupies the whole potential operating frequency band between the waveguide TE<sub<10</sub< cutoff frequency and the onset frequency of the first grating lobe. An <inline-formula< <tex-math notation="LaTeX"<$11\times11$ </tex-math<</inline-formula< prototype is fabricated and measured. Good agreement is achieved between the simulated and measured results. |
abstract_unstemmed |
A wideband wide-scanning open-ended rectangular waveguide phased array in a triangular lattice is presented. Dielectric or metamaterial wide-angle impedance matching superstrates have been widely used in phased arrays to improve the scanning performance. However these dielectric-containing covers cannot solve the problem of scan blindness caused by the surface waves, or even further aggravate the surface wave effect. The modulated surface structures, which consist of the impedance-gradient structures and the surface wave bandgap structures are designed to maximize the wideband wide-scanning performance of the array. The proposed array achieves 40% bandwidth (8–12 GHz), while covering a scanning range of ±65° in the E-plane (VSWR < 2.3) and H-plane (VSWR < 2). The practical working frequency band occupies the whole potential operating frequency band between the waveguide TE<sub<10</sub< cutoff frequency and the onset frequency of the first grating lobe. An <inline-formula< <tex-math notation="LaTeX"<$11\times11$ </tex-math<</inline-formula< prototype is fabricated and measured. Good agreement is achieved between the simulated and measured results. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Scan Blindness Free Design of Wideband Wide-Scanning Open-Ended Waveguide Phased Array |
url |
https://doi.org/10.1109/ACCESS.2021.3074867 https://doaj.org/article/5b495456db8c4048b6844b41015be00d https://ieeexplore.ieee.org/document/9410534/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Zhe Zhang Jianping Zeng Fang Guan Xiaohan Liu Jian Zi |
author2Str |
Zhe Zhang Jianping Zeng Fang Guan Xiaohan Liu Jian Zi |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2021.3074867 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T19:16:07.199Z |
_version_ |
1803586546906955776 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ068698003</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309080506.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2021.3074867</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ068698003</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5b495456db8c4048b6844b41015be00d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xiuye Liang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Scan Blindness Free Design of Wideband Wide-Scanning Open-Ended Waveguide Phased Array</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A wideband wide-scanning open-ended rectangular waveguide phased array in a triangular lattice is presented. Dielectric or metamaterial wide-angle impedance matching superstrates have been widely used in phased arrays to improve the scanning performance. However these dielectric-containing covers cannot solve the problem of scan blindness caused by the surface waves, or even further aggravate the surface wave effect. The modulated surface structures, which consist of the impedance-gradient structures and the surface wave bandgap structures are designed to maximize the wideband wide-scanning performance of the array. The proposed array achieves 40% bandwidth (8–12 GHz), while covering a scanning range of ±65° in the E-plane (VSWR < 2.3) and H-plane (VSWR < 2). The practical working frequency band occupies the whole potential operating frequency band between the waveguide TE<sub<10</sub< cutoff frequency and the onset frequency of the first grating lobe. An <inline-formula< <tex-math notation="LaTeX"<$11\times11$ </tex-math<</inline-formula< prototype is fabricated and measured. Good agreement is achieved between the simulated and measured results.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Open-ended waveguide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phase array antenna</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">scan blindness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">surface wave bandgap</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhe Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianping Zeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fang Guan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaohan Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jian Zi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">9(2021), Seite 68127-68138</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:68127-68138</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2021.3074867</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5b495456db8c4048b6844b41015be00d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9410534/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2021</subfield><subfield code="h">68127-68138</subfield></datafield></record></collection>
|
score |
7.400772 |