Subcellular localization and physiological role of α-methylacyl-CoA racemase
α-Methylacyl-CoA racemase plays an important role in the β-oxidation of branched-chain fatty acids and fatty acid derivatives because it catalyzes the conversion of several (2R)-methyl-branched-chain fatty acyl-CoAs to their (S)-stereoisomers. Only stereoisomers with the 2-methyl group in the (S)-co...
Ausführliche Beschreibung
Autor*in: |
Sacha Ferdinandusse [verfasserIn] Simone Denis [verfasserIn] Lodewijk IJlst [verfasserIn] Georges Dacremont [verfasserIn] Hans R. Waterham [verfasserIn] Ronald J.A. Wanders [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2000 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Journal of Lipid Research - Elsevier, 2021, 41(2000), 11, Seite 1890-1896 |
---|---|
Übergeordnetes Werk: |
volume:41 ; year:2000 ; number:11 ; pages:1890-1896 |
Links: |
---|
DOI / URN: |
10.1016/S0022-2275(20)31983-0 |
---|
Katalog-ID: |
DOAJ068816391 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ068816391 | ||
003 | DE-627 | ||
005 | 20230309081022.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2000 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/S0022-2275(20)31983-0 |2 doi | |
035 | |a (DE-627)DOAJ068816391 | ||
035 | |a (DE-599)DOAJ7f873e2ce35b44028f1eff8a23853ca2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QD415-436 | |
100 | 0 | |a Sacha Ferdinandusse |e verfasserin |4 aut | |
245 | 1 | 0 | |a Subcellular localization and physiological role of α-methylacyl-CoA racemase |
264 | 1 | |c 2000 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a α-Methylacyl-CoA racemase plays an important role in the β-oxidation of branched-chain fatty acids and fatty acid derivatives because it catalyzes the conversion of several (2R)-methyl-branched-chain fatty acyl-CoAs to their (S)-stereoisomers. Only stereoisomers with the 2-methyl group in the (S)-configuration can be degraded via β-oxidation. Patients with a deficiency of α-methylacyl-CoA racemase accumulate in their plasma pristanic acid and the bile acid intermediates di- and trihydroxycholestanoic acid, which are all substrates of the peroxisomal β-oxidation system. Subcellular fractionation experiments, however, revealed that both in humans and rats α-methylacyl-CoA racemase is bimodally distributed to both the peroxisome and the mitochondrion. Our findings show that the peroxisomal and mitochondrial enzymes are produced from the same gene and that, as a consequence, the bimodal distribution pattern must be the result of differential targeting of the same gene product. In addition, we investigated the physiological role of the enzyme in the mitochondrion. Both in vitro studies with purified heterologously expressed protein and in vivo studies in fibroblasts of patients with an α-methylacyl-CoA racemase deficiency revealed that the mitochondrial enzyme plays a crucial role in the mitochondrial β-oxidation of the breakdown products of pristanic acid by converting (2R,6)-dimethylheptanoyl-CoA to its (S)-stereoisomer.—Ferdinandusse, S., S. Denis, L. IJlst, G. Dacremont, H. R. Waterham, and R. J. A. Wanders. Subcellular localization and physiological role of α-methylacyl-CoA racemase. J. Lipid Res. 2000. 41: 1890–1896. | ||
650 | 4 | |a branched-chain fatty acid β-oxidation | |
650 | 4 | |a stereospecificity | |
650 | 4 | |a (2R,6)-dimethylheptanoyl-CoA | |
653 | 0 | |a Biochemistry | |
700 | 0 | |a Simone Denis |e verfasserin |4 aut | |
700 | 0 | |a Lodewijk IJlst |e verfasserin |4 aut | |
700 | 0 | |a Georges Dacremont |e verfasserin |4 aut | |
700 | 0 | |a Hans R. Waterham |e verfasserin |4 aut | |
700 | 0 | |a Ronald J.A. Wanders |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Journal of Lipid Research |d Elsevier, 2021 |g 41(2000), 11, Seite 1890-1896 |w (DE-627)26601593X |w (DE-600)1466675-3 |x 15397262 |7 nnns |
773 | 1 | 8 | |g volume:41 |g year:2000 |g number:11 |g pages:1890-1896 |
856 | 4 | 0 | |u https://doi.org/10.1016/S0022-2275(20)31983-0 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/7f873e2ce35b44028f1eff8a23853ca2 |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S0022227520319830 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/0022-2275 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_252 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 41 |j 2000 |e 11 |h 1890-1896 |
author_variant |
s f sf s d sd l i li g d gd h r w hrw r j w rjw |
---|---|
matchkey_str |
article:15397262:2000----::uclualclztoadhsooiarlomt |
hierarchy_sort_str |
2000 |
callnumber-subject-code |
QD |
publishDate |
2000 |
allfields |
10.1016/S0022-2275(20)31983-0 doi (DE-627)DOAJ068816391 (DE-599)DOAJ7f873e2ce35b44028f1eff8a23853ca2 DE-627 ger DE-627 rakwb eng QD415-436 Sacha Ferdinandusse verfasserin aut Subcellular localization and physiological role of α-methylacyl-CoA racemase 2000 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier α-Methylacyl-CoA racemase plays an important role in the β-oxidation of branched-chain fatty acids and fatty acid derivatives because it catalyzes the conversion of several (2R)-methyl-branched-chain fatty acyl-CoAs to their (S)-stereoisomers. Only stereoisomers with the 2-methyl group in the (S)-configuration can be degraded via β-oxidation. Patients with a deficiency of α-methylacyl-CoA racemase accumulate in their plasma pristanic acid and the bile acid intermediates di- and trihydroxycholestanoic acid, which are all substrates of the peroxisomal β-oxidation system. Subcellular fractionation experiments, however, revealed that both in humans and rats α-methylacyl-CoA racemase is bimodally distributed to both the peroxisome and the mitochondrion. Our findings show that the peroxisomal and mitochondrial enzymes are produced from the same gene and that, as a consequence, the bimodal distribution pattern must be the result of differential targeting of the same gene product. In addition, we investigated the physiological role of the enzyme in the mitochondrion. Both in vitro studies with purified heterologously expressed protein and in vivo studies in fibroblasts of patients with an α-methylacyl-CoA racemase deficiency revealed that the mitochondrial enzyme plays a crucial role in the mitochondrial β-oxidation of the breakdown products of pristanic acid by converting (2R,6)-dimethylheptanoyl-CoA to its (S)-stereoisomer.—Ferdinandusse, S., S. Denis, L. IJlst, G. Dacremont, H. R. Waterham, and R. J. A. Wanders. Subcellular localization and physiological role of α-methylacyl-CoA racemase. J. Lipid Res. 2000. 41: 1890–1896. branched-chain fatty acid β-oxidation stereospecificity (2R,6)-dimethylheptanoyl-CoA Biochemistry Simone Denis verfasserin aut Lodewijk IJlst verfasserin aut Georges Dacremont verfasserin aut Hans R. Waterham verfasserin aut Ronald J.A. Wanders verfasserin aut In Journal of Lipid Research Elsevier, 2021 41(2000), 11, Seite 1890-1896 (DE-627)26601593X (DE-600)1466675-3 15397262 nnns volume:41 year:2000 number:11 pages:1890-1896 https://doi.org/10.1016/S0022-2275(20)31983-0 kostenfrei https://doaj.org/article/7f873e2ce35b44028f1eff8a23853ca2 kostenfrei http://www.sciencedirect.com/science/article/pii/S0022227520319830 kostenfrei https://doaj.org/toc/0022-2275 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_252 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2006 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 41 2000 11 1890-1896 |
spelling |
10.1016/S0022-2275(20)31983-0 doi (DE-627)DOAJ068816391 (DE-599)DOAJ7f873e2ce35b44028f1eff8a23853ca2 DE-627 ger DE-627 rakwb eng QD415-436 Sacha Ferdinandusse verfasserin aut Subcellular localization and physiological role of α-methylacyl-CoA racemase 2000 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier α-Methylacyl-CoA racemase plays an important role in the β-oxidation of branched-chain fatty acids and fatty acid derivatives because it catalyzes the conversion of several (2R)-methyl-branched-chain fatty acyl-CoAs to their (S)-stereoisomers. Only stereoisomers with the 2-methyl group in the (S)-configuration can be degraded via β-oxidation. Patients with a deficiency of α-methylacyl-CoA racemase accumulate in their plasma pristanic acid and the bile acid intermediates di- and trihydroxycholestanoic acid, which are all substrates of the peroxisomal β-oxidation system. Subcellular fractionation experiments, however, revealed that both in humans and rats α-methylacyl-CoA racemase is bimodally distributed to both the peroxisome and the mitochondrion. Our findings show that the peroxisomal and mitochondrial enzymes are produced from the same gene and that, as a consequence, the bimodal distribution pattern must be the result of differential targeting of the same gene product. In addition, we investigated the physiological role of the enzyme in the mitochondrion. Both in vitro studies with purified heterologously expressed protein and in vivo studies in fibroblasts of patients with an α-methylacyl-CoA racemase deficiency revealed that the mitochondrial enzyme plays a crucial role in the mitochondrial β-oxidation of the breakdown products of pristanic acid by converting (2R,6)-dimethylheptanoyl-CoA to its (S)-stereoisomer.—Ferdinandusse, S., S. Denis, L. IJlst, G. Dacremont, H. R. Waterham, and R. J. A. Wanders. Subcellular localization and physiological role of α-methylacyl-CoA racemase. J. Lipid Res. 2000. 41: 1890–1896. branched-chain fatty acid β-oxidation stereospecificity (2R,6)-dimethylheptanoyl-CoA Biochemistry Simone Denis verfasserin aut Lodewijk IJlst verfasserin aut Georges Dacremont verfasserin aut Hans R. Waterham verfasserin aut Ronald J.A. Wanders verfasserin aut In Journal of Lipid Research Elsevier, 2021 41(2000), 11, Seite 1890-1896 (DE-627)26601593X (DE-600)1466675-3 15397262 nnns volume:41 year:2000 number:11 pages:1890-1896 https://doi.org/10.1016/S0022-2275(20)31983-0 kostenfrei https://doaj.org/article/7f873e2ce35b44028f1eff8a23853ca2 kostenfrei http://www.sciencedirect.com/science/article/pii/S0022227520319830 kostenfrei https://doaj.org/toc/0022-2275 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_252 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2006 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 41 2000 11 1890-1896 |
allfields_unstemmed |
10.1016/S0022-2275(20)31983-0 doi (DE-627)DOAJ068816391 (DE-599)DOAJ7f873e2ce35b44028f1eff8a23853ca2 DE-627 ger DE-627 rakwb eng QD415-436 Sacha Ferdinandusse verfasserin aut Subcellular localization and physiological role of α-methylacyl-CoA racemase 2000 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier α-Methylacyl-CoA racemase plays an important role in the β-oxidation of branched-chain fatty acids and fatty acid derivatives because it catalyzes the conversion of several (2R)-methyl-branched-chain fatty acyl-CoAs to their (S)-stereoisomers. Only stereoisomers with the 2-methyl group in the (S)-configuration can be degraded via β-oxidation. Patients with a deficiency of α-methylacyl-CoA racemase accumulate in their plasma pristanic acid and the bile acid intermediates di- and trihydroxycholestanoic acid, which are all substrates of the peroxisomal β-oxidation system. Subcellular fractionation experiments, however, revealed that both in humans and rats α-methylacyl-CoA racemase is bimodally distributed to both the peroxisome and the mitochondrion. Our findings show that the peroxisomal and mitochondrial enzymes are produced from the same gene and that, as a consequence, the bimodal distribution pattern must be the result of differential targeting of the same gene product. In addition, we investigated the physiological role of the enzyme in the mitochondrion. Both in vitro studies with purified heterologously expressed protein and in vivo studies in fibroblasts of patients with an α-methylacyl-CoA racemase deficiency revealed that the mitochondrial enzyme plays a crucial role in the mitochondrial β-oxidation of the breakdown products of pristanic acid by converting (2R,6)-dimethylheptanoyl-CoA to its (S)-stereoisomer.—Ferdinandusse, S., S. Denis, L. IJlst, G. Dacremont, H. R. Waterham, and R. J. A. Wanders. Subcellular localization and physiological role of α-methylacyl-CoA racemase. J. Lipid Res. 2000. 41: 1890–1896. branched-chain fatty acid β-oxidation stereospecificity (2R,6)-dimethylheptanoyl-CoA Biochemistry Simone Denis verfasserin aut Lodewijk IJlst verfasserin aut Georges Dacremont verfasserin aut Hans R. Waterham verfasserin aut Ronald J.A. Wanders verfasserin aut In Journal of Lipid Research Elsevier, 2021 41(2000), 11, Seite 1890-1896 (DE-627)26601593X (DE-600)1466675-3 15397262 nnns volume:41 year:2000 number:11 pages:1890-1896 https://doi.org/10.1016/S0022-2275(20)31983-0 kostenfrei https://doaj.org/article/7f873e2ce35b44028f1eff8a23853ca2 kostenfrei http://www.sciencedirect.com/science/article/pii/S0022227520319830 kostenfrei https://doaj.org/toc/0022-2275 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_252 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2006 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 41 2000 11 1890-1896 |
allfieldsGer |
10.1016/S0022-2275(20)31983-0 doi (DE-627)DOAJ068816391 (DE-599)DOAJ7f873e2ce35b44028f1eff8a23853ca2 DE-627 ger DE-627 rakwb eng QD415-436 Sacha Ferdinandusse verfasserin aut Subcellular localization and physiological role of α-methylacyl-CoA racemase 2000 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier α-Methylacyl-CoA racemase plays an important role in the β-oxidation of branched-chain fatty acids and fatty acid derivatives because it catalyzes the conversion of several (2R)-methyl-branched-chain fatty acyl-CoAs to their (S)-stereoisomers. Only stereoisomers with the 2-methyl group in the (S)-configuration can be degraded via β-oxidation. Patients with a deficiency of α-methylacyl-CoA racemase accumulate in their plasma pristanic acid and the bile acid intermediates di- and trihydroxycholestanoic acid, which are all substrates of the peroxisomal β-oxidation system. Subcellular fractionation experiments, however, revealed that both in humans and rats α-methylacyl-CoA racemase is bimodally distributed to both the peroxisome and the mitochondrion. Our findings show that the peroxisomal and mitochondrial enzymes are produced from the same gene and that, as a consequence, the bimodal distribution pattern must be the result of differential targeting of the same gene product. In addition, we investigated the physiological role of the enzyme in the mitochondrion. Both in vitro studies with purified heterologously expressed protein and in vivo studies in fibroblasts of patients with an α-methylacyl-CoA racemase deficiency revealed that the mitochondrial enzyme plays a crucial role in the mitochondrial β-oxidation of the breakdown products of pristanic acid by converting (2R,6)-dimethylheptanoyl-CoA to its (S)-stereoisomer.—Ferdinandusse, S., S. Denis, L. IJlst, G. Dacremont, H. R. Waterham, and R. J. A. Wanders. Subcellular localization and physiological role of α-methylacyl-CoA racemase. J. Lipid Res. 2000. 41: 1890–1896. branched-chain fatty acid β-oxidation stereospecificity (2R,6)-dimethylheptanoyl-CoA Biochemistry Simone Denis verfasserin aut Lodewijk IJlst verfasserin aut Georges Dacremont verfasserin aut Hans R. Waterham verfasserin aut Ronald J.A. Wanders verfasserin aut In Journal of Lipid Research Elsevier, 2021 41(2000), 11, Seite 1890-1896 (DE-627)26601593X (DE-600)1466675-3 15397262 nnns volume:41 year:2000 number:11 pages:1890-1896 https://doi.org/10.1016/S0022-2275(20)31983-0 kostenfrei https://doaj.org/article/7f873e2ce35b44028f1eff8a23853ca2 kostenfrei http://www.sciencedirect.com/science/article/pii/S0022227520319830 kostenfrei https://doaj.org/toc/0022-2275 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_252 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2006 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 41 2000 11 1890-1896 |
allfieldsSound |
10.1016/S0022-2275(20)31983-0 doi (DE-627)DOAJ068816391 (DE-599)DOAJ7f873e2ce35b44028f1eff8a23853ca2 DE-627 ger DE-627 rakwb eng QD415-436 Sacha Ferdinandusse verfasserin aut Subcellular localization and physiological role of α-methylacyl-CoA racemase 2000 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier α-Methylacyl-CoA racemase plays an important role in the β-oxidation of branched-chain fatty acids and fatty acid derivatives because it catalyzes the conversion of several (2R)-methyl-branched-chain fatty acyl-CoAs to their (S)-stereoisomers. Only stereoisomers with the 2-methyl group in the (S)-configuration can be degraded via β-oxidation. Patients with a deficiency of α-methylacyl-CoA racemase accumulate in their plasma pristanic acid and the bile acid intermediates di- and trihydroxycholestanoic acid, which are all substrates of the peroxisomal β-oxidation system. Subcellular fractionation experiments, however, revealed that both in humans and rats α-methylacyl-CoA racemase is bimodally distributed to both the peroxisome and the mitochondrion. Our findings show that the peroxisomal and mitochondrial enzymes are produced from the same gene and that, as a consequence, the bimodal distribution pattern must be the result of differential targeting of the same gene product. In addition, we investigated the physiological role of the enzyme in the mitochondrion. Both in vitro studies with purified heterologously expressed protein and in vivo studies in fibroblasts of patients with an α-methylacyl-CoA racemase deficiency revealed that the mitochondrial enzyme plays a crucial role in the mitochondrial β-oxidation of the breakdown products of pristanic acid by converting (2R,6)-dimethylheptanoyl-CoA to its (S)-stereoisomer.—Ferdinandusse, S., S. Denis, L. IJlst, G. Dacremont, H. R. Waterham, and R. J. A. Wanders. Subcellular localization and physiological role of α-methylacyl-CoA racemase. J. Lipid Res. 2000. 41: 1890–1896. branched-chain fatty acid β-oxidation stereospecificity (2R,6)-dimethylheptanoyl-CoA Biochemistry Simone Denis verfasserin aut Lodewijk IJlst verfasserin aut Georges Dacremont verfasserin aut Hans R. Waterham verfasserin aut Ronald J.A. Wanders verfasserin aut In Journal of Lipid Research Elsevier, 2021 41(2000), 11, Seite 1890-1896 (DE-627)26601593X (DE-600)1466675-3 15397262 nnns volume:41 year:2000 number:11 pages:1890-1896 https://doi.org/10.1016/S0022-2275(20)31983-0 kostenfrei https://doaj.org/article/7f873e2ce35b44028f1eff8a23853ca2 kostenfrei http://www.sciencedirect.com/science/article/pii/S0022227520319830 kostenfrei https://doaj.org/toc/0022-2275 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_252 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2006 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 41 2000 11 1890-1896 |
language |
English |
source |
In Journal of Lipid Research 41(2000), 11, Seite 1890-1896 volume:41 year:2000 number:11 pages:1890-1896 |
sourceStr |
In Journal of Lipid Research 41(2000), 11, Seite 1890-1896 volume:41 year:2000 number:11 pages:1890-1896 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
branched-chain fatty acid β-oxidation stereospecificity (2R,6)-dimethylheptanoyl-CoA Biochemistry |
isfreeaccess_bool |
true |
container_title |
Journal of Lipid Research |
authorswithroles_txt_mv |
Sacha Ferdinandusse @@aut@@ Simone Denis @@aut@@ Lodewijk IJlst @@aut@@ Georges Dacremont @@aut@@ Hans R. Waterham @@aut@@ Ronald J.A. Wanders @@aut@@ |
publishDateDaySort_date |
2000-01-01T00:00:00Z |
hierarchy_top_id |
26601593X |
id |
DOAJ068816391 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ068816391</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309081022.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2000 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/S0022-2275(20)31983-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ068816391</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7f873e2ce35b44028f1eff8a23853ca2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD415-436</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Sacha Ferdinandusse</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Subcellular localization and physiological role of α-methylacyl-CoA racemase</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2000</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">α-Methylacyl-CoA racemase plays an important role in the β-oxidation of branched-chain fatty acids and fatty acid derivatives because it catalyzes the conversion of several (2R)-methyl-branched-chain fatty acyl-CoAs to their (S)-stereoisomers. Only stereoisomers with the 2-methyl group in the (S)-configuration can be degraded via β-oxidation. Patients with a deficiency of α-methylacyl-CoA racemase accumulate in their plasma pristanic acid and the bile acid intermediates di- and trihydroxycholestanoic acid, which are all substrates of the peroxisomal β-oxidation system. Subcellular fractionation experiments, however, revealed that both in humans and rats α-methylacyl-CoA racemase is bimodally distributed to both the peroxisome and the mitochondrion. Our findings show that the peroxisomal and mitochondrial enzymes are produced from the same gene and that, as a consequence, the bimodal distribution pattern must be the result of differential targeting of the same gene product. In addition, we investigated the physiological role of the enzyme in the mitochondrion. Both in vitro studies with purified heterologously expressed protein and in vivo studies in fibroblasts of patients with an α-methylacyl-CoA racemase deficiency revealed that the mitochondrial enzyme plays a crucial role in the mitochondrial β-oxidation of the breakdown products of pristanic acid by converting (2R,6)-dimethylheptanoyl-CoA to its (S)-stereoisomer.—Ferdinandusse, S., S. Denis, L. IJlst, G. Dacremont, H. R. Waterham, and R. J. A. Wanders. Subcellular localization and physiological role of α-methylacyl-CoA racemase. J. Lipid Res. 2000. 41: 1890–1896.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">branched-chain fatty acid β-oxidation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stereospecificity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">(2R,6)-dimethylheptanoyl-CoA</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biochemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Simone Denis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lodewijk IJlst</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Georges Dacremont</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hans R. Waterham</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ronald J.A. Wanders</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Lipid Research</subfield><subfield code="d">Elsevier, 2021</subfield><subfield code="g">41(2000), 11, Seite 1890-1896</subfield><subfield code="w">(DE-627)26601593X</subfield><subfield code="w">(DE-600)1466675-3</subfield><subfield code="x">15397262</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:41</subfield><subfield code="g">year:2000</subfield><subfield code="g">number:11</subfield><subfield code="g">pages:1890-1896</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/S0022-2275(20)31983-0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7f873e2ce35b44028f1eff8a23853ca2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S0022227520319830</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0022-2275</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">41</subfield><subfield code="j">2000</subfield><subfield code="e">11</subfield><subfield code="h">1890-1896</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Sacha Ferdinandusse |
spellingShingle |
Sacha Ferdinandusse misc QD415-436 misc branched-chain fatty acid β-oxidation misc stereospecificity misc (2R,6)-dimethylheptanoyl-CoA misc Biochemistry Subcellular localization and physiological role of α-methylacyl-CoA racemase |
authorStr |
Sacha Ferdinandusse |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)26601593X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QD415-436 |
illustrated |
Not Illustrated |
issn |
15397262 |
topic_title |
QD415-436 Subcellular localization and physiological role of α-methylacyl-CoA racemase branched-chain fatty acid β-oxidation stereospecificity (2R,6)-dimethylheptanoyl-CoA |
topic |
misc QD415-436 misc branched-chain fatty acid β-oxidation misc stereospecificity misc (2R,6)-dimethylheptanoyl-CoA misc Biochemistry |
topic_unstemmed |
misc QD415-436 misc branched-chain fatty acid β-oxidation misc stereospecificity misc (2R,6)-dimethylheptanoyl-CoA misc Biochemistry |
topic_browse |
misc QD415-436 misc branched-chain fatty acid β-oxidation misc stereospecificity misc (2R,6)-dimethylheptanoyl-CoA misc Biochemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of Lipid Research |
hierarchy_parent_id |
26601593X |
hierarchy_top_title |
Journal of Lipid Research |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)26601593X (DE-600)1466675-3 |
title |
Subcellular localization and physiological role of α-methylacyl-CoA racemase |
ctrlnum |
(DE-627)DOAJ068816391 (DE-599)DOAJ7f873e2ce35b44028f1eff8a23853ca2 |
title_full |
Subcellular localization and physiological role of α-methylacyl-CoA racemase |
author_sort |
Sacha Ferdinandusse |
journal |
Journal of Lipid Research |
journalStr |
Journal of Lipid Research |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2000 |
contenttype_str_mv |
txt |
container_start_page |
1890 |
author_browse |
Sacha Ferdinandusse Simone Denis Lodewijk IJlst Georges Dacremont Hans R. Waterham Ronald J.A. Wanders |
container_volume |
41 |
class |
QD415-436 |
format_se |
Elektronische Aufsätze |
author-letter |
Sacha Ferdinandusse |
doi_str_mv |
10.1016/S0022-2275(20)31983-0 |
author2-role |
verfasserin |
title_sort |
subcellular localization and physiological role of α-methylacyl-coa racemase |
callnumber |
QD415-436 |
title_auth |
Subcellular localization and physiological role of α-methylacyl-CoA racemase |
abstract |
α-Methylacyl-CoA racemase plays an important role in the β-oxidation of branched-chain fatty acids and fatty acid derivatives because it catalyzes the conversion of several (2R)-methyl-branched-chain fatty acyl-CoAs to their (S)-stereoisomers. Only stereoisomers with the 2-methyl group in the (S)-configuration can be degraded via β-oxidation. Patients with a deficiency of α-methylacyl-CoA racemase accumulate in their plasma pristanic acid and the bile acid intermediates di- and trihydroxycholestanoic acid, which are all substrates of the peroxisomal β-oxidation system. Subcellular fractionation experiments, however, revealed that both in humans and rats α-methylacyl-CoA racemase is bimodally distributed to both the peroxisome and the mitochondrion. Our findings show that the peroxisomal and mitochondrial enzymes are produced from the same gene and that, as a consequence, the bimodal distribution pattern must be the result of differential targeting of the same gene product. In addition, we investigated the physiological role of the enzyme in the mitochondrion. Both in vitro studies with purified heterologously expressed protein and in vivo studies in fibroblasts of patients with an α-methylacyl-CoA racemase deficiency revealed that the mitochondrial enzyme plays a crucial role in the mitochondrial β-oxidation of the breakdown products of pristanic acid by converting (2R,6)-dimethylheptanoyl-CoA to its (S)-stereoisomer.—Ferdinandusse, S., S. Denis, L. IJlst, G. Dacremont, H. R. Waterham, and R. J. A. Wanders. Subcellular localization and physiological role of α-methylacyl-CoA racemase. J. Lipid Res. 2000. 41: 1890–1896. |
abstractGer |
α-Methylacyl-CoA racemase plays an important role in the β-oxidation of branched-chain fatty acids and fatty acid derivatives because it catalyzes the conversion of several (2R)-methyl-branched-chain fatty acyl-CoAs to their (S)-stereoisomers. Only stereoisomers with the 2-methyl group in the (S)-configuration can be degraded via β-oxidation. Patients with a deficiency of α-methylacyl-CoA racemase accumulate in their plasma pristanic acid and the bile acid intermediates di- and trihydroxycholestanoic acid, which are all substrates of the peroxisomal β-oxidation system. Subcellular fractionation experiments, however, revealed that both in humans and rats α-methylacyl-CoA racemase is bimodally distributed to both the peroxisome and the mitochondrion. Our findings show that the peroxisomal and mitochondrial enzymes are produced from the same gene and that, as a consequence, the bimodal distribution pattern must be the result of differential targeting of the same gene product. In addition, we investigated the physiological role of the enzyme in the mitochondrion. Both in vitro studies with purified heterologously expressed protein and in vivo studies in fibroblasts of patients with an α-methylacyl-CoA racemase deficiency revealed that the mitochondrial enzyme plays a crucial role in the mitochondrial β-oxidation of the breakdown products of pristanic acid by converting (2R,6)-dimethylheptanoyl-CoA to its (S)-stereoisomer.—Ferdinandusse, S., S. Denis, L. IJlst, G. Dacremont, H. R. Waterham, and R. J. A. Wanders. Subcellular localization and physiological role of α-methylacyl-CoA racemase. J. Lipid Res. 2000. 41: 1890–1896. |
abstract_unstemmed |
α-Methylacyl-CoA racemase plays an important role in the β-oxidation of branched-chain fatty acids and fatty acid derivatives because it catalyzes the conversion of several (2R)-methyl-branched-chain fatty acyl-CoAs to their (S)-stereoisomers. Only stereoisomers with the 2-methyl group in the (S)-configuration can be degraded via β-oxidation. Patients with a deficiency of α-methylacyl-CoA racemase accumulate in their plasma pristanic acid and the bile acid intermediates di- and trihydroxycholestanoic acid, which are all substrates of the peroxisomal β-oxidation system. Subcellular fractionation experiments, however, revealed that both in humans and rats α-methylacyl-CoA racemase is bimodally distributed to both the peroxisome and the mitochondrion. Our findings show that the peroxisomal and mitochondrial enzymes are produced from the same gene and that, as a consequence, the bimodal distribution pattern must be the result of differential targeting of the same gene product. In addition, we investigated the physiological role of the enzyme in the mitochondrion. Both in vitro studies with purified heterologously expressed protein and in vivo studies in fibroblasts of patients with an α-methylacyl-CoA racemase deficiency revealed that the mitochondrial enzyme plays a crucial role in the mitochondrial β-oxidation of the breakdown products of pristanic acid by converting (2R,6)-dimethylheptanoyl-CoA to its (S)-stereoisomer.—Ferdinandusse, S., S. Denis, L. IJlst, G. Dacremont, H. R. Waterham, and R. J. A. Wanders. Subcellular localization and physiological role of α-methylacyl-CoA racemase. J. Lipid Res. 2000. 41: 1890–1896. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_252 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2006 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
11 |
title_short |
Subcellular localization and physiological role of α-methylacyl-CoA racemase |
url |
https://doi.org/10.1016/S0022-2275(20)31983-0 https://doaj.org/article/7f873e2ce35b44028f1eff8a23853ca2 http://www.sciencedirect.com/science/article/pii/S0022227520319830 https://doaj.org/toc/0022-2275 |
remote_bool |
true |
author2 |
Simone Denis Lodewijk IJlst Georges Dacremont Hans R. Waterham Ronald J.A. Wanders |
author2Str |
Simone Denis Lodewijk IJlst Georges Dacremont Hans R. Waterham Ronald J.A. Wanders |
ppnlink |
26601593X |
callnumber-subject |
QD - Chemistry |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/S0022-2275(20)31983-0 |
callnumber-a |
QD415-436 |
up_date |
2024-07-03T19:54:58.463Z |
_version_ |
1803588991414435840 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ068816391</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309081022.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2000 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/S0022-2275(20)31983-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ068816391</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7f873e2ce35b44028f1eff8a23853ca2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD415-436</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Sacha Ferdinandusse</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Subcellular localization and physiological role of α-methylacyl-CoA racemase</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2000</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">α-Methylacyl-CoA racemase plays an important role in the β-oxidation of branched-chain fatty acids and fatty acid derivatives because it catalyzes the conversion of several (2R)-methyl-branched-chain fatty acyl-CoAs to their (S)-stereoisomers. Only stereoisomers with the 2-methyl group in the (S)-configuration can be degraded via β-oxidation. Patients with a deficiency of α-methylacyl-CoA racemase accumulate in their plasma pristanic acid and the bile acid intermediates di- and trihydroxycholestanoic acid, which are all substrates of the peroxisomal β-oxidation system. Subcellular fractionation experiments, however, revealed that both in humans and rats α-methylacyl-CoA racemase is bimodally distributed to both the peroxisome and the mitochondrion. Our findings show that the peroxisomal and mitochondrial enzymes are produced from the same gene and that, as a consequence, the bimodal distribution pattern must be the result of differential targeting of the same gene product. In addition, we investigated the physiological role of the enzyme in the mitochondrion. Both in vitro studies with purified heterologously expressed protein and in vivo studies in fibroblasts of patients with an α-methylacyl-CoA racemase deficiency revealed that the mitochondrial enzyme plays a crucial role in the mitochondrial β-oxidation of the breakdown products of pristanic acid by converting (2R,6)-dimethylheptanoyl-CoA to its (S)-stereoisomer.—Ferdinandusse, S., S. Denis, L. IJlst, G. Dacremont, H. R. Waterham, and R. J. A. Wanders. Subcellular localization and physiological role of α-methylacyl-CoA racemase. J. Lipid Res. 2000. 41: 1890–1896.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">branched-chain fatty acid β-oxidation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stereospecificity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">(2R,6)-dimethylheptanoyl-CoA</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biochemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Simone Denis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lodewijk IJlst</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Georges Dacremont</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hans R. Waterham</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ronald J.A. Wanders</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Lipid Research</subfield><subfield code="d">Elsevier, 2021</subfield><subfield code="g">41(2000), 11, Seite 1890-1896</subfield><subfield code="w">(DE-627)26601593X</subfield><subfield code="w">(DE-600)1466675-3</subfield><subfield code="x">15397262</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:41</subfield><subfield code="g">year:2000</subfield><subfield code="g">number:11</subfield><subfield code="g">pages:1890-1896</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/S0022-2275(20)31983-0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7f873e2ce35b44028f1eff8a23853ca2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S0022227520319830</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0022-2275</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">41</subfield><subfield code="j">2000</subfield><subfield code="e">11</subfield><subfield code="h">1890-1896</subfield></datafield></record></collection>
|
score |
7.400982 |