Using Hyperspectral Crop Residue Angle Index to Estimate Maize and Winter-Wheat Residue Cover: A Laboratory Study
Crop residue left in the field after harvest helps to protect against water and wind erosion, increase soil organic matter, and improve soil quality, so a proper estimate of the quantity of crop residue is crucial to optimize tillage and for research into environmental effects. Although remote-sensi...
Ausführliche Beschreibung
Autor*in: |
Jibo Yue [verfasserIn] Qingjiu Tian [verfasserIn] Xinyu Dong [verfasserIn] Kaijian Xu [verfasserIn] Chengquan Zhou [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Remote Sensing - MDPI AG, 2009, 11(2019), 7, p 807 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2019 ; number:7, p 807 |
Links: |
---|
DOI / URN: |
10.3390/rs11070807 |
---|
Katalog-ID: |
DOAJ069195773 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ069195773 | ||
003 | DE-627 | ||
005 | 20230502085625.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/rs11070807 |2 doi | |
035 | |a (DE-627)DOAJ069195773 | ||
035 | |a (DE-599)DOAJff9ae0cef504485a80c02b623bc62ebd | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Jibo Yue |e verfasserin |4 aut | |
245 | 1 | 0 | |a Using Hyperspectral Crop Residue Angle Index to Estimate Maize and Winter-Wheat Residue Cover: A Laboratory Study |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Crop residue left in the field after harvest helps to protect against water and wind erosion, increase soil organic matter, and improve soil quality, so a proper estimate of the quantity of crop residue is crucial to optimize tillage and for research into environmental effects. Although remote-sensing-based techniques to estimate crop residue cover (CRC) have proven to be good tools for determining CRC, their application is limited by variations in the moisture of crop residue and soil. In this study, we propose a crop residue angle index (CRAI) to estimate the CRC for four distinct soils with varying soil moisture (SM) content and crop residue moisture (CRM). The current study uses laboratory-based tests ((i) a dry dataset (air-dried soils and crop residues, <i<n</i< = 392); (ii) a wet dataset (wet soils and crop residues, <i<n</i< = 822); (iii) a saturated dataset (saturated soils and crop residues, <i<n</i< = 402); and (iv) all datasets (<i<n</i< = 1616)), which allows us to analysis the soil and crop residue hyperspectral response to varying SM/CRM. The CRAI combines two features that reflect the moisture content in soil and crop residue. The first is the different reflectance of soil and crop residue as a function of moisture in the near-infrared band (833 nm) and short-wave near-infrared band (1670 nm), and the second is different reflectance of soils and crop residues to lignin, cellulose, and moisture in the bands at 2101, 2031, and 2201 nm. The effects of moisture and soil type on the proposed CRAI and selected traditional spectral indices ((i) hyperspectral cellulose absorption index; (ii) hyperspectral shortwave infrared normalized difference residue index; and (iii) selected broad-band spectral indices) were compared by using a laboratory-based dataset. The results show that the SM/CRM significantly affects the broad-band spectral indices and all other spectral indices investigated are less correlated with CRC when using all datasets than when using only the dry, wet, or saturated dataset. Laboratory study suggests that the CRAI is promising for estimating CRC with the four soils and with varying SM/CRM. However, because the CRAI was only validated by a laboratory-based dataset, additional field testing is thus required to verify the use of satellite hyperspectral remote-sensing images for different crops and ecological areas. | ||
650 | 4 | |a crop residue cover | |
650 | 4 | |a crop residue moisture | |
650 | 4 | |a soil moisture | |
650 | 4 | |a angle index | |
650 | 4 | |a remote sensing | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Qingjiu Tian |e verfasserin |4 aut | |
700 | 0 | |a Xinyu Dong |e verfasserin |4 aut | |
700 | 0 | |a Kaijian Xu |e verfasserin |4 aut | |
700 | 0 | |a Chengquan Zhou |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Remote Sensing |d MDPI AG, 2009 |g 11(2019), 7, p 807 |w (DE-627)608937916 |w (DE-600)2513863-7 |x 20724292 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2019 |g number:7, p 807 |
856 | 4 | 0 | |u https://doi.org/10.3390/rs11070807 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/ff9ae0cef504485a80c02b623bc62ebd |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2072-4292/11/7/807 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2072-4292 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4392 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2019 |e 7, p 807 |
author_variant |
j y jy q t qt x d xd k x kx c z cz |
---|---|
matchkey_str |
article:20724292:2019----::snhprpcrlrpeiuagenetetmtmienwnewetei |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.3390/rs11070807 doi (DE-627)DOAJ069195773 (DE-599)DOAJff9ae0cef504485a80c02b623bc62ebd DE-627 ger DE-627 rakwb eng Jibo Yue verfasserin aut Using Hyperspectral Crop Residue Angle Index to Estimate Maize and Winter-Wheat Residue Cover: A Laboratory Study 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Crop residue left in the field after harvest helps to protect against water and wind erosion, increase soil organic matter, and improve soil quality, so a proper estimate of the quantity of crop residue is crucial to optimize tillage and for research into environmental effects. Although remote-sensing-based techniques to estimate crop residue cover (CRC) have proven to be good tools for determining CRC, their application is limited by variations in the moisture of crop residue and soil. In this study, we propose a crop residue angle index (CRAI) to estimate the CRC for four distinct soils with varying soil moisture (SM) content and crop residue moisture (CRM). The current study uses laboratory-based tests ((i) a dry dataset (air-dried soils and crop residues, <i<n</i< = 392); (ii) a wet dataset (wet soils and crop residues, <i<n</i< = 822); (iii) a saturated dataset (saturated soils and crop residues, <i<n</i< = 402); and (iv) all datasets (<i<n</i< = 1616)), which allows us to analysis the soil and crop residue hyperspectral response to varying SM/CRM. The CRAI combines two features that reflect the moisture content in soil and crop residue. The first is the different reflectance of soil and crop residue as a function of moisture in the near-infrared band (833 nm) and short-wave near-infrared band (1670 nm), and the second is different reflectance of soils and crop residues to lignin, cellulose, and moisture in the bands at 2101, 2031, and 2201 nm. The effects of moisture and soil type on the proposed CRAI and selected traditional spectral indices ((i) hyperspectral cellulose absorption index; (ii) hyperspectral shortwave infrared normalized difference residue index; and (iii) selected broad-band spectral indices) were compared by using a laboratory-based dataset. The results show that the SM/CRM significantly affects the broad-band spectral indices and all other spectral indices investigated are less correlated with CRC when using all datasets than when using only the dry, wet, or saturated dataset. Laboratory study suggests that the CRAI is promising for estimating CRC with the four soils and with varying SM/CRM. However, because the CRAI was only validated by a laboratory-based dataset, additional field testing is thus required to verify the use of satellite hyperspectral remote-sensing images for different crops and ecological areas. crop residue cover crop residue moisture soil moisture angle index remote sensing Science Q Qingjiu Tian verfasserin aut Xinyu Dong verfasserin aut Kaijian Xu verfasserin aut Chengquan Zhou verfasserin aut In Remote Sensing MDPI AG, 2009 11(2019), 7, p 807 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:11 year:2019 number:7, p 807 https://doi.org/10.3390/rs11070807 kostenfrei https://doaj.org/article/ff9ae0cef504485a80c02b623bc62ebd kostenfrei https://www.mdpi.com/2072-4292/11/7/807 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 11 2019 7, p 807 |
spelling |
10.3390/rs11070807 doi (DE-627)DOAJ069195773 (DE-599)DOAJff9ae0cef504485a80c02b623bc62ebd DE-627 ger DE-627 rakwb eng Jibo Yue verfasserin aut Using Hyperspectral Crop Residue Angle Index to Estimate Maize and Winter-Wheat Residue Cover: A Laboratory Study 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Crop residue left in the field after harvest helps to protect against water and wind erosion, increase soil organic matter, and improve soil quality, so a proper estimate of the quantity of crop residue is crucial to optimize tillage and for research into environmental effects. Although remote-sensing-based techniques to estimate crop residue cover (CRC) have proven to be good tools for determining CRC, their application is limited by variations in the moisture of crop residue and soil. In this study, we propose a crop residue angle index (CRAI) to estimate the CRC for four distinct soils with varying soil moisture (SM) content and crop residue moisture (CRM). The current study uses laboratory-based tests ((i) a dry dataset (air-dried soils and crop residues, <i<n</i< = 392); (ii) a wet dataset (wet soils and crop residues, <i<n</i< = 822); (iii) a saturated dataset (saturated soils and crop residues, <i<n</i< = 402); and (iv) all datasets (<i<n</i< = 1616)), which allows us to analysis the soil and crop residue hyperspectral response to varying SM/CRM. The CRAI combines two features that reflect the moisture content in soil and crop residue. The first is the different reflectance of soil and crop residue as a function of moisture in the near-infrared band (833 nm) and short-wave near-infrared band (1670 nm), and the second is different reflectance of soils and crop residues to lignin, cellulose, and moisture in the bands at 2101, 2031, and 2201 nm. The effects of moisture and soil type on the proposed CRAI and selected traditional spectral indices ((i) hyperspectral cellulose absorption index; (ii) hyperspectral shortwave infrared normalized difference residue index; and (iii) selected broad-band spectral indices) were compared by using a laboratory-based dataset. The results show that the SM/CRM significantly affects the broad-band spectral indices and all other spectral indices investigated are less correlated with CRC when using all datasets than when using only the dry, wet, or saturated dataset. Laboratory study suggests that the CRAI is promising for estimating CRC with the four soils and with varying SM/CRM. However, because the CRAI was only validated by a laboratory-based dataset, additional field testing is thus required to verify the use of satellite hyperspectral remote-sensing images for different crops and ecological areas. crop residue cover crop residue moisture soil moisture angle index remote sensing Science Q Qingjiu Tian verfasserin aut Xinyu Dong verfasserin aut Kaijian Xu verfasserin aut Chengquan Zhou verfasserin aut In Remote Sensing MDPI AG, 2009 11(2019), 7, p 807 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:11 year:2019 number:7, p 807 https://doi.org/10.3390/rs11070807 kostenfrei https://doaj.org/article/ff9ae0cef504485a80c02b623bc62ebd kostenfrei https://www.mdpi.com/2072-4292/11/7/807 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 11 2019 7, p 807 |
allfields_unstemmed |
10.3390/rs11070807 doi (DE-627)DOAJ069195773 (DE-599)DOAJff9ae0cef504485a80c02b623bc62ebd DE-627 ger DE-627 rakwb eng Jibo Yue verfasserin aut Using Hyperspectral Crop Residue Angle Index to Estimate Maize and Winter-Wheat Residue Cover: A Laboratory Study 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Crop residue left in the field after harvest helps to protect against water and wind erosion, increase soil organic matter, and improve soil quality, so a proper estimate of the quantity of crop residue is crucial to optimize tillage and for research into environmental effects. Although remote-sensing-based techniques to estimate crop residue cover (CRC) have proven to be good tools for determining CRC, their application is limited by variations in the moisture of crop residue and soil. In this study, we propose a crop residue angle index (CRAI) to estimate the CRC for four distinct soils with varying soil moisture (SM) content and crop residue moisture (CRM). The current study uses laboratory-based tests ((i) a dry dataset (air-dried soils and crop residues, <i<n</i< = 392); (ii) a wet dataset (wet soils and crop residues, <i<n</i< = 822); (iii) a saturated dataset (saturated soils and crop residues, <i<n</i< = 402); and (iv) all datasets (<i<n</i< = 1616)), which allows us to analysis the soil and crop residue hyperspectral response to varying SM/CRM. The CRAI combines two features that reflect the moisture content in soil and crop residue. The first is the different reflectance of soil and crop residue as a function of moisture in the near-infrared band (833 nm) and short-wave near-infrared band (1670 nm), and the second is different reflectance of soils and crop residues to lignin, cellulose, and moisture in the bands at 2101, 2031, and 2201 nm. The effects of moisture and soil type on the proposed CRAI and selected traditional spectral indices ((i) hyperspectral cellulose absorption index; (ii) hyperspectral shortwave infrared normalized difference residue index; and (iii) selected broad-band spectral indices) were compared by using a laboratory-based dataset. The results show that the SM/CRM significantly affects the broad-band spectral indices and all other spectral indices investigated are less correlated with CRC when using all datasets than when using only the dry, wet, or saturated dataset. Laboratory study suggests that the CRAI is promising for estimating CRC with the four soils and with varying SM/CRM. However, because the CRAI was only validated by a laboratory-based dataset, additional field testing is thus required to verify the use of satellite hyperspectral remote-sensing images for different crops and ecological areas. crop residue cover crop residue moisture soil moisture angle index remote sensing Science Q Qingjiu Tian verfasserin aut Xinyu Dong verfasserin aut Kaijian Xu verfasserin aut Chengquan Zhou verfasserin aut In Remote Sensing MDPI AG, 2009 11(2019), 7, p 807 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:11 year:2019 number:7, p 807 https://doi.org/10.3390/rs11070807 kostenfrei https://doaj.org/article/ff9ae0cef504485a80c02b623bc62ebd kostenfrei https://www.mdpi.com/2072-4292/11/7/807 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 11 2019 7, p 807 |
allfieldsGer |
10.3390/rs11070807 doi (DE-627)DOAJ069195773 (DE-599)DOAJff9ae0cef504485a80c02b623bc62ebd DE-627 ger DE-627 rakwb eng Jibo Yue verfasserin aut Using Hyperspectral Crop Residue Angle Index to Estimate Maize and Winter-Wheat Residue Cover: A Laboratory Study 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Crop residue left in the field after harvest helps to protect against water and wind erosion, increase soil organic matter, and improve soil quality, so a proper estimate of the quantity of crop residue is crucial to optimize tillage and for research into environmental effects. Although remote-sensing-based techniques to estimate crop residue cover (CRC) have proven to be good tools for determining CRC, their application is limited by variations in the moisture of crop residue and soil. In this study, we propose a crop residue angle index (CRAI) to estimate the CRC for four distinct soils with varying soil moisture (SM) content and crop residue moisture (CRM). The current study uses laboratory-based tests ((i) a dry dataset (air-dried soils and crop residues, <i<n</i< = 392); (ii) a wet dataset (wet soils and crop residues, <i<n</i< = 822); (iii) a saturated dataset (saturated soils and crop residues, <i<n</i< = 402); and (iv) all datasets (<i<n</i< = 1616)), which allows us to analysis the soil and crop residue hyperspectral response to varying SM/CRM. The CRAI combines two features that reflect the moisture content in soil and crop residue. The first is the different reflectance of soil and crop residue as a function of moisture in the near-infrared band (833 nm) and short-wave near-infrared band (1670 nm), and the second is different reflectance of soils and crop residues to lignin, cellulose, and moisture in the bands at 2101, 2031, and 2201 nm. The effects of moisture and soil type on the proposed CRAI and selected traditional spectral indices ((i) hyperspectral cellulose absorption index; (ii) hyperspectral shortwave infrared normalized difference residue index; and (iii) selected broad-band spectral indices) were compared by using a laboratory-based dataset. The results show that the SM/CRM significantly affects the broad-band spectral indices and all other spectral indices investigated are less correlated with CRC when using all datasets than when using only the dry, wet, or saturated dataset. Laboratory study suggests that the CRAI is promising for estimating CRC with the four soils and with varying SM/CRM. However, because the CRAI was only validated by a laboratory-based dataset, additional field testing is thus required to verify the use of satellite hyperspectral remote-sensing images for different crops and ecological areas. crop residue cover crop residue moisture soil moisture angle index remote sensing Science Q Qingjiu Tian verfasserin aut Xinyu Dong verfasserin aut Kaijian Xu verfasserin aut Chengquan Zhou verfasserin aut In Remote Sensing MDPI AG, 2009 11(2019), 7, p 807 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:11 year:2019 number:7, p 807 https://doi.org/10.3390/rs11070807 kostenfrei https://doaj.org/article/ff9ae0cef504485a80c02b623bc62ebd kostenfrei https://www.mdpi.com/2072-4292/11/7/807 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 11 2019 7, p 807 |
allfieldsSound |
10.3390/rs11070807 doi (DE-627)DOAJ069195773 (DE-599)DOAJff9ae0cef504485a80c02b623bc62ebd DE-627 ger DE-627 rakwb eng Jibo Yue verfasserin aut Using Hyperspectral Crop Residue Angle Index to Estimate Maize and Winter-Wheat Residue Cover: A Laboratory Study 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Crop residue left in the field after harvest helps to protect against water and wind erosion, increase soil organic matter, and improve soil quality, so a proper estimate of the quantity of crop residue is crucial to optimize tillage and for research into environmental effects. Although remote-sensing-based techniques to estimate crop residue cover (CRC) have proven to be good tools for determining CRC, their application is limited by variations in the moisture of crop residue and soil. In this study, we propose a crop residue angle index (CRAI) to estimate the CRC for four distinct soils with varying soil moisture (SM) content and crop residue moisture (CRM). The current study uses laboratory-based tests ((i) a dry dataset (air-dried soils and crop residues, <i<n</i< = 392); (ii) a wet dataset (wet soils and crop residues, <i<n</i< = 822); (iii) a saturated dataset (saturated soils and crop residues, <i<n</i< = 402); and (iv) all datasets (<i<n</i< = 1616)), which allows us to analysis the soil and crop residue hyperspectral response to varying SM/CRM. The CRAI combines two features that reflect the moisture content in soil and crop residue. The first is the different reflectance of soil and crop residue as a function of moisture in the near-infrared band (833 nm) and short-wave near-infrared band (1670 nm), and the second is different reflectance of soils and crop residues to lignin, cellulose, and moisture in the bands at 2101, 2031, and 2201 nm. The effects of moisture and soil type on the proposed CRAI and selected traditional spectral indices ((i) hyperspectral cellulose absorption index; (ii) hyperspectral shortwave infrared normalized difference residue index; and (iii) selected broad-band spectral indices) were compared by using a laboratory-based dataset. The results show that the SM/CRM significantly affects the broad-band spectral indices and all other spectral indices investigated are less correlated with CRC when using all datasets than when using only the dry, wet, or saturated dataset. Laboratory study suggests that the CRAI is promising for estimating CRC with the four soils and with varying SM/CRM. However, because the CRAI was only validated by a laboratory-based dataset, additional field testing is thus required to verify the use of satellite hyperspectral remote-sensing images for different crops and ecological areas. crop residue cover crop residue moisture soil moisture angle index remote sensing Science Q Qingjiu Tian verfasserin aut Xinyu Dong verfasserin aut Kaijian Xu verfasserin aut Chengquan Zhou verfasserin aut In Remote Sensing MDPI AG, 2009 11(2019), 7, p 807 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:11 year:2019 number:7, p 807 https://doi.org/10.3390/rs11070807 kostenfrei https://doaj.org/article/ff9ae0cef504485a80c02b623bc62ebd kostenfrei https://www.mdpi.com/2072-4292/11/7/807 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 11 2019 7, p 807 |
language |
English |
source |
In Remote Sensing 11(2019), 7, p 807 volume:11 year:2019 number:7, p 807 |
sourceStr |
In Remote Sensing 11(2019), 7, p 807 volume:11 year:2019 number:7, p 807 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
crop residue cover crop residue moisture soil moisture angle index remote sensing Science Q |
isfreeaccess_bool |
true |
container_title |
Remote Sensing |
authorswithroles_txt_mv |
Jibo Yue @@aut@@ Qingjiu Tian @@aut@@ Xinyu Dong @@aut@@ Kaijian Xu @@aut@@ Chengquan Zhou @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
608937916 |
id |
DOAJ069195773 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ069195773</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502085625.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/rs11070807</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ069195773</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJff9ae0cef504485a80c02b623bc62ebd</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jibo Yue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Using Hyperspectral Crop Residue Angle Index to Estimate Maize and Winter-Wheat Residue Cover: A Laboratory Study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Crop residue left in the field after harvest helps to protect against water and wind erosion, increase soil organic matter, and improve soil quality, so a proper estimate of the quantity of crop residue is crucial to optimize tillage and for research into environmental effects. Although remote-sensing-based techniques to estimate crop residue cover (CRC) have proven to be good tools for determining CRC, their application is limited by variations in the moisture of crop residue and soil. In this study, we propose a crop residue angle index (CRAI) to estimate the CRC for four distinct soils with varying soil moisture (SM) content and crop residue moisture (CRM). The current study uses laboratory-based tests ((i) a dry dataset (air-dried soils and crop residues, <i<n</i< = 392); (ii) a wet dataset (wet soils and crop residues, <i<n</i< = 822); (iii) a saturated dataset (saturated soils and crop residues, <i<n</i< = 402); and (iv) all datasets (<i<n</i< = 1616)), which allows us to analysis the soil and crop residue hyperspectral response to varying SM/CRM. The CRAI combines two features that reflect the moisture content in soil and crop residue. The first is the different reflectance of soil and crop residue as a function of moisture in the near-infrared band (833 nm) and short-wave near-infrared band (1670 nm), and the second is different reflectance of soils and crop residues to lignin, cellulose, and moisture in the bands at 2101, 2031, and 2201 nm. The effects of moisture and soil type on the proposed CRAI and selected traditional spectral indices ((i) hyperspectral cellulose absorption index; (ii) hyperspectral shortwave infrared normalized difference residue index; and (iii) selected broad-band spectral indices) were compared by using a laboratory-based dataset. The results show that the SM/CRM significantly affects the broad-band spectral indices and all other spectral indices investigated are less correlated with CRC when using all datasets than when using only the dry, wet, or saturated dataset. Laboratory study suggests that the CRAI is promising for estimating CRC with the four soils and with varying SM/CRM. However, because the CRAI was only validated by a laboratory-based dataset, additional field testing is thus required to verify the use of satellite hyperspectral remote-sensing images for different crops and ecological areas.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">crop residue cover</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">crop residue moisture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">soil moisture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">angle index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">remote sensing</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qingjiu Tian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xinyu Dong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kaijian Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chengquan Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Remote Sensing</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">11(2019), 7, p 807</subfield><subfield code="w">(DE-627)608937916</subfield><subfield code="w">(DE-600)2513863-7</subfield><subfield code="x">20724292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:7, p 807</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/rs11070807</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ff9ae0cef504485a80c02b623bc62ebd</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-4292/11/7/807</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-4292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2019</subfield><subfield code="e">7, p 807</subfield></datafield></record></collection>
|
author |
Jibo Yue |
spellingShingle |
Jibo Yue misc crop residue cover misc crop residue moisture misc soil moisture misc angle index misc remote sensing misc Science misc Q Using Hyperspectral Crop Residue Angle Index to Estimate Maize and Winter-Wheat Residue Cover: A Laboratory Study |
authorStr |
Jibo Yue |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)608937916 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20724292 |
topic_title |
Using Hyperspectral Crop Residue Angle Index to Estimate Maize and Winter-Wheat Residue Cover: A Laboratory Study crop residue cover crop residue moisture soil moisture angle index remote sensing |
topic |
misc crop residue cover misc crop residue moisture misc soil moisture misc angle index misc remote sensing misc Science misc Q |
topic_unstemmed |
misc crop residue cover misc crop residue moisture misc soil moisture misc angle index misc remote sensing misc Science misc Q |
topic_browse |
misc crop residue cover misc crop residue moisture misc soil moisture misc angle index misc remote sensing misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Remote Sensing |
hierarchy_parent_id |
608937916 |
hierarchy_top_title |
Remote Sensing |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)608937916 (DE-600)2513863-7 |
title |
Using Hyperspectral Crop Residue Angle Index to Estimate Maize and Winter-Wheat Residue Cover: A Laboratory Study |
ctrlnum |
(DE-627)DOAJ069195773 (DE-599)DOAJff9ae0cef504485a80c02b623bc62ebd |
title_full |
Using Hyperspectral Crop Residue Angle Index to Estimate Maize and Winter-Wheat Residue Cover: A Laboratory Study |
author_sort |
Jibo Yue |
journal |
Remote Sensing |
journalStr |
Remote Sensing |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
author_browse |
Jibo Yue Qingjiu Tian Xinyu Dong Kaijian Xu Chengquan Zhou |
container_volume |
11 |
format_se |
Elektronische Aufsätze |
author-letter |
Jibo Yue |
doi_str_mv |
10.3390/rs11070807 |
author2-role |
verfasserin |
title_sort |
using hyperspectral crop residue angle index to estimate maize and winter-wheat residue cover: a laboratory study |
title_auth |
Using Hyperspectral Crop Residue Angle Index to Estimate Maize and Winter-Wheat Residue Cover: A Laboratory Study |
abstract |
Crop residue left in the field after harvest helps to protect against water and wind erosion, increase soil organic matter, and improve soil quality, so a proper estimate of the quantity of crop residue is crucial to optimize tillage and for research into environmental effects. Although remote-sensing-based techniques to estimate crop residue cover (CRC) have proven to be good tools for determining CRC, their application is limited by variations in the moisture of crop residue and soil. In this study, we propose a crop residue angle index (CRAI) to estimate the CRC for four distinct soils with varying soil moisture (SM) content and crop residue moisture (CRM). The current study uses laboratory-based tests ((i) a dry dataset (air-dried soils and crop residues, <i<n</i< = 392); (ii) a wet dataset (wet soils and crop residues, <i<n</i< = 822); (iii) a saturated dataset (saturated soils and crop residues, <i<n</i< = 402); and (iv) all datasets (<i<n</i< = 1616)), which allows us to analysis the soil and crop residue hyperspectral response to varying SM/CRM. The CRAI combines two features that reflect the moisture content in soil and crop residue. The first is the different reflectance of soil and crop residue as a function of moisture in the near-infrared band (833 nm) and short-wave near-infrared band (1670 nm), and the second is different reflectance of soils and crop residues to lignin, cellulose, and moisture in the bands at 2101, 2031, and 2201 nm. The effects of moisture and soil type on the proposed CRAI and selected traditional spectral indices ((i) hyperspectral cellulose absorption index; (ii) hyperspectral shortwave infrared normalized difference residue index; and (iii) selected broad-band spectral indices) were compared by using a laboratory-based dataset. The results show that the SM/CRM significantly affects the broad-band spectral indices and all other spectral indices investigated are less correlated with CRC when using all datasets than when using only the dry, wet, or saturated dataset. Laboratory study suggests that the CRAI is promising for estimating CRC with the four soils and with varying SM/CRM. However, because the CRAI was only validated by a laboratory-based dataset, additional field testing is thus required to verify the use of satellite hyperspectral remote-sensing images for different crops and ecological areas. |
abstractGer |
Crop residue left in the field after harvest helps to protect against water and wind erosion, increase soil organic matter, and improve soil quality, so a proper estimate of the quantity of crop residue is crucial to optimize tillage and for research into environmental effects. Although remote-sensing-based techniques to estimate crop residue cover (CRC) have proven to be good tools for determining CRC, their application is limited by variations in the moisture of crop residue and soil. In this study, we propose a crop residue angle index (CRAI) to estimate the CRC for four distinct soils with varying soil moisture (SM) content and crop residue moisture (CRM). The current study uses laboratory-based tests ((i) a dry dataset (air-dried soils and crop residues, <i<n</i< = 392); (ii) a wet dataset (wet soils and crop residues, <i<n</i< = 822); (iii) a saturated dataset (saturated soils and crop residues, <i<n</i< = 402); and (iv) all datasets (<i<n</i< = 1616)), which allows us to analysis the soil and crop residue hyperspectral response to varying SM/CRM. The CRAI combines two features that reflect the moisture content in soil and crop residue. The first is the different reflectance of soil and crop residue as a function of moisture in the near-infrared band (833 nm) and short-wave near-infrared band (1670 nm), and the second is different reflectance of soils and crop residues to lignin, cellulose, and moisture in the bands at 2101, 2031, and 2201 nm. The effects of moisture and soil type on the proposed CRAI and selected traditional spectral indices ((i) hyperspectral cellulose absorption index; (ii) hyperspectral shortwave infrared normalized difference residue index; and (iii) selected broad-band spectral indices) were compared by using a laboratory-based dataset. The results show that the SM/CRM significantly affects the broad-band spectral indices and all other spectral indices investigated are less correlated with CRC when using all datasets than when using only the dry, wet, or saturated dataset. Laboratory study suggests that the CRAI is promising for estimating CRC with the four soils and with varying SM/CRM. However, because the CRAI was only validated by a laboratory-based dataset, additional field testing is thus required to verify the use of satellite hyperspectral remote-sensing images for different crops and ecological areas. |
abstract_unstemmed |
Crop residue left in the field after harvest helps to protect against water and wind erosion, increase soil organic matter, and improve soil quality, so a proper estimate of the quantity of crop residue is crucial to optimize tillage and for research into environmental effects. Although remote-sensing-based techniques to estimate crop residue cover (CRC) have proven to be good tools for determining CRC, their application is limited by variations in the moisture of crop residue and soil. In this study, we propose a crop residue angle index (CRAI) to estimate the CRC for four distinct soils with varying soil moisture (SM) content and crop residue moisture (CRM). The current study uses laboratory-based tests ((i) a dry dataset (air-dried soils and crop residues, <i<n</i< = 392); (ii) a wet dataset (wet soils and crop residues, <i<n</i< = 822); (iii) a saturated dataset (saturated soils and crop residues, <i<n</i< = 402); and (iv) all datasets (<i<n</i< = 1616)), which allows us to analysis the soil and crop residue hyperspectral response to varying SM/CRM. The CRAI combines two features that reflect the moisture content in soil and crop residue. The first is the different reflectance of soil and crop residue as a function of moisture in the near-infrared band (833 nm) and short-wave near-infrared band (1670 nm), and the second is different reflectance of soils and crop residues to lignin, cellulose, and moisture in the bands at 2101, 2031, and 2201 nm. The effects of moisture and soil type on the proposed CRAI and selected traditional spectral indices ((i) hyperspectral cellulose absorption index; (ii) hyperspectral shortwave infrared normalized difference residue index; and (iii) selected broad-band spectral indices) were compared by using a laboratory-based dataset. The results show that the SM/CRM significantly affects the broad-band spectral indices and all other spectral indices investigated are less correlated with CRC when using all datasets than when using only the dry, wet, or saturated dataset. Laboratory study suggests that the CRAI is promising for estimating CRC with the four soils and with varying SM/CRM. However, because the CRAI was only validated by a laboratory-based dataset, additional field testing is thus required to verify the use of satellite hyperspectral remote-sensing images for different crops and ecological areas. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 |
container_issue |
7, p 807 |
title_short |
Using Hyperspectral Crop Residue Angle Index to Estimate Maize and Winter-Wheat Residue Cover: A Laboratory Study |
url |
https://doi.org/10.3390/rs11070807 https://doaj.org/article/ff9ae0cef504485a80c02b623bc62ebd https://www.mdpi.com/2072-4292/11/7/807 https://doaj.org/toc/2072-4292 |
remote_bool |
true |
author2 |
Qingjiu Tian Xinyu Dong Kaijian Xu Chengquan Zhou |
author2Str |
Qingjiu Tian Xinyu Dong Kaijian Xu Chengquan Zhou |
ppnlink |
608937916 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/rs11070807 |
up_date |
2024-07-03T22:01:19.774Z |
_version_ |
1803596940996247552 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ069195773</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502085625.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/rs11070807</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ069195773</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJff9ae0cef504485a80c02b623bc62ebd</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jibo Yue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Using Hyperspectral Crop Residue Angle Index to Estimate Maize and Winter-Wheat Residue Cover: A Laboratory Study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Crop residue left in the field after harvest helps to protect against water and wind erosion, increase soil organic matter, and improve soil quality, so a proper estimate of the quantity of crop residue is crucial to optimize tillage and for research into environmental effects. Although remote-sensing-based techniques to estimate crop residue cover (CRC) have proven to be good tools for determining CRC, their application is limited by variations in the moisture of crop residue and soil. In this study, we propose a crop residue angle index (CRAI) to estimate the CRC for four distinct soils with varying soil moisture (SM) content and crop residue moisture (CRM). The current study uses laboratory-based tests ((i) a dry dataset (air-dried soils and crop residues, <i<n</i< = 392); (ii) a wet dataset (wet soils and crop residues, <i<n</i< = 822); (iii) a saturated dataset (saturated soils and crop residues, <i<n</i< = 402); and (iv) all datasets (<i<n</i< = 1616)), which allows us to analysis the soil and crop residue hyperspectral response to varying SM/CRM. The CRAI combines two features that reflect the moisture content in soil and crop residue. The first is the different reflectance of soil and crop residue as a function of moisture in the near-infrared band (833 nm) and short-wave near-infrared band (1670 nm), and the second is different reflectance of soils and crop residues to lignin, cellulose, and moisture in the bands at 2101, 2031, and 2201 nm. The effects of moisture and soil type on the proposed CRAI and selected traditional spectral indices ((i) hyperspectral cellulose absorption index; (ii) hyperspectral shortwave infrared normalized difference residue index; and (iii) selected broad-band spectral indices) were compared by using a laboratory-based dataset. The results show that the SM/CRM significantly affects the broad-band spectral indices and all other spectral indices investigated are less correlated with CRC when using all datasets than when using only the dry, wet, or saturated dataset. Laboratory study suggests that the CRAI is promising for estimating CRC with the four soils and with varying SM/CRM. However, because the CRAI was only validated by a laboratory-based dataset, additional field testing is thus required to verify the use of satellite hyperspectral remote-sensing images for different crops and ecological areas.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">crop residue cover</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">crop residue moisture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">soil moisture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">angle index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">remote sensing</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qingjiu Tian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xinyu Dong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kaijian Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chengquan Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Remote Sensing</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">11(2019), 7, p 807</subfield><subfield code="w">(DE-627)608937916</subfield><subfield code="w">(DE-600)2513863-7</subfield><subfield code="x">20724292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:7, p 807</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/rs11070807</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ff9ae0cef504485a80c02b623bc62ebd</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-4292/11/7/807</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-4292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2019</subfield><subfield code="e">7, p 807</subfield></datafield></record></collection>
|
score |
7.4006233 |