Identification of Epithelial-Mesenchymal Transition- (EMT-) Related LncRNA for Prognostic Prediction and Risk Stratification in Esophageal Squamous Cell Carcinoma
Background. Epithelial-mesenchymal transition (EMT) is significantly associated with the invasion and development of esophageal squamous cell carcinoma (ESCC). However, the importance of EMT-related long noncoding RNA (lncRNA) is little known in ESCC. Methods. GSE53624 (N=119) and GSE53622 (N=60) da...
Ausführliche Beschreibung
Autor*in: |
Peipei Wang [verfasserIn] Yueyun Chen [verfasserIn] Yue Zheng [verfasserIn] Yang Fu [verfasserIn] Zhenyu Ding [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Übergeordnetes Werk: |
In: Disease Markers - Hindawi Limited, 2013, (2021) |
---|---|
Übergeordnetes Werk: |
year:2021 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.1155/2021/5340240 |
---|
Katalog-ID: |
DOAJ069348499 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ069348499 | ||
003 | DE-627 | ||
005 | 20230228072329.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1155/2021/5340240 |2 doi | |
035 | |a (DE-627)DOAJ069348499 | ||
035 | |a (DE-599)DOAJaba0c3d1b0b74981a779e701f6a91ee1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a R5-920 | |
100 | 0 | |a Peipei Wang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Identification of Epithelial-Mesenchymal Transition- (EMT-) Related LncRNA for Prognostic Prediction and Risk Stratification in Esophageal Squamous Cell Carcinoma |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Background. Epithelial-mesenchymal transition (EMT) is significantly associated with the invasion and development of esophageal squamous cell carcinoma (ESCC). However, the importance of EMT-related long noncoding RNA (lncRNA) is little known in ESCC. Methods. GSE53624 (N=119) and GSE53622 (N=60) datasets retrieved from the Gene Expression Omnibus (GEO) database were used as training and external validation cohorts, respectively. GSE53624 and GSE53622 datasets were all sampled from China. Then, the prognostic value of EMT-related lncRNA was comprehensively investigated by weighted coexpression network analysis (WGCNA) and COX regression model. Results. High expression of PLA2G4E-AS1, AC063976.1, and LINC01592 significantly correlated with the favorable overall survival (OS) of ESCC patients, and LINC01592 had the greatest contribution to OS. Importantly, ESCC patients were divided into low- and high-risk groups based on the optimal cut-off value of risk score estimated by the multivariate COX regression model of these three lncRNA. Patients with high risk had a shorter OS rate and restricted mean survival time (RMST) than those with low risk. Moreover, univariate and multivariate COX regression revealed that risk stratification, age, and TNM were independent prognostic predictors, which were used to construct a nomogram model for individualized and visualized prognosis prediction of ESCC patients. The calibration curves and time-dependent ROC curves in the training and validation cohorts suggested that the nomogram model had a good performance. Interestingly, clear trends indicated that risk score positively correlated with tumor microenvironment (TME) scores and immune checkpoints TIGIT, CTLA4, and BTLA. In addition, the Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that PLA2G4E-AS1, AC063976.1, and LINC01592 were primarily associated with TNF signaling pathway, NF-kappa B signaling pathway, and ECM-receptor interaction. Conclusion. We developed EMT-related lncRNA PLA2G4E-AS1, AC063976.1, and LINC01592 for prognostic prediction and risk stratification of Chinese ESCC patients, which might provide deep insight for personalized prognosis prediction in Chinese ESCC patients and be potential biomarkers for designing novel therapy. | ||
653 | 0 | |a Medicine (General) | |
700 | 0 | |a Yueyun Chen |e verfasserin |4 aut | |
700 | 0 | |a Yue Zheng |e verfasserin |4 aut | |
700 | 0 | |a Yang Fu |e verfasserin |4 aut | |
700 | 0 | |a Zhenyu Ding |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Disease Markers |d Hindawi Limited, 2013 |g (2021) |w (DE-627)324960247 |w (DE-600)2033253-1 |x 18758630 |7 nnns |
773 | 1 | 8 | |g year:2021 |
856 | 4 | 0 | |u https://doi.org/10.1155/2021/5340240 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/aba0c3d1b0b74981a779e701f6a91ee1 |z kostenfrei |
856 | 4 | 0 | |u http://dx.doi.org/10.1155/2021/5340240 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/0278-0240 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1875-8630 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_165 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |j 2021 |
author_variant |
p w pw y c yc y z yz y f yf z d zd |
---|---|
matchkey_str |
article:18758630:2021----::dniiainfpteileecyatastoeteaelcnfrrgotcrdcinnrssrtfct |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
R |
publishDate |
2021 |
allfields |
10.1155/2021/5340240 doi (DE-627)DOAJ069348499 (DE-599)DOAJaba0c3d1b0b74981a779e701f6a91ee1 DE-627 ger DE-627 rakwb eng R5-920 Peipei Wang verfasserin aut Identification of Epithelial-Mesenchymal Transition- (EMT-) Related LncRNA for Prognostic Prediction and Risk Stratification in Esophageal Squamous Cell Carcinoma 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background. Epithelial-mesenchymal transition (EMT) is significantly associated with the invasion and development of esophageal squamous cell carcinoma (ESCC). However, the importance of EMT-related long noncoding RNA (lncRNA) is little known in ESCC. Methods. GSE53624 (N=119) and GSE53622 (N=60) datasets retrieved from the Gene Expression Omnibus (GEO) database were used as training and external validation cohorts, respectively. GSE53624 and GSE53622 datasets were all sampled from China. Then, the prognostic value of EMT-related lncRNA was comprehensively investigated by weighted coexpression network analysis (WGCNA) and COX regression model. Results. High expression of PLA2G4E-AS1, AC063976.1, and LINC01592 significantly correlated with the favorable overall survival (OS) of ESCC patients, and LINC01592 had the greatest contribution to OS. Importantly, ESCC patients were divided into low- and high-risk groups based on the optimal cut-off value of risk score estimated by the multivariate COX regression model of these three lncRNA. Patients with high risk had a shorter OS rate and restricted mean survival time (RMST) than those with low risk. Moreover, univariate and multivariate COX regression revealed that risk stratification, age, and TNM were independent prognostic predictors, which were used to construct a nomogram model for individualized and visualized prognosis prediction of ESCC patients. The calibration curves and time-dependent ROC curves in the training and validation cohorts suggested that the nomogram model had a good performance. Interestingly, clear trends indicated that risk score positively correlated with tumor microenvironment (TME) scores and immune checkpoints TIGIT, CTLA4, and BTLA. In addition, the Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that PLA2G4E-AS1, AC063976.1, and LINC01592 were primarily associated with TNF signaling pathway, NF-kappa B signaling pathway, and ECM-receptor interaction. Conclusion. We developed EMT-related lncRNA PLA2G4E-AS1, AC063976.1, and LINC01592 for prognostic prediction and risk stratification of Chinese ESCC patients, which might provide deep insight for personalized prognosis prediction in Chinese ESCC patients and be potential biomarkers for designing novel therapy. Medicine (General) Yueyun Chen verfasserin aut Yue Zheng verfasserin aut Yang Fu verfasserin aut Zhenyu Ding verfasserin aut In Disease Markers Hindawi Limited, 2013 (2021) (DE-627)324960247 (DE-600)2033253-1 18758630 nnns year:2021 https://doi.org/10.1155/2021/5340240 kostenfrei https://doaj.org/article/aba0c3d1b0b74981a779e701f6a91ee1 kostenfrei http://dx.doi.org/10.1155/2021/5340240 kostenfrei https://doaj.org/toc/0278-0240 Journal toc kostenfrei https://doaj.org/toc/1875-8630 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2021 |
spelling |
10.1155/2021/5340240 doi (DE-627)DOAJ069348499 (DE-599)DOAJaba0c3d1b0b74981a779e701f6a91ee1 DE-627 ger DE-627 rakwb eng R5-920 Peipei Wang verfasserin aut Identification of Epithelial-Mesenchymal Transition- (EMT-) Related LncRNA for Prognostic Prediction and Risk Stratification in Esophageal Squamous Cell Carcinoma 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background. Epithelial-mesenchymal transition (EMT) is significantly associated with the invasion and development of esophageal squamous cell carcinoma (ESCC). However, the importance of EMT-related long noncoding RNA (lncRNA) is little known in ESCC. Methods. GSE53624 (N=119) and GSE53622 (N=60) datasets retrieved from the Gene Expression Omnibus (GEO) database were used as training and external validation cohorts, respectively. GSE53624 and GSE53622 datasets were all sampled from China. Then, the prognostic value of EMT-related lncRNA was comprehensively investigated by weighted coexpression network analysis (WGCNA) and COX regression model. Results. High expression of PLA2G4E-AS1, AC063976.1, and LINC01592 significantly correlated with the favorable overall survival (OS) of ESCC patients, and LINC01592 had the greatest contribution to OS. Importantly, ESCC patients were divided into low- and high-risk groups based on the optimal cut-off value of risk score estimated by the multivariate COX regression model of these three lncRNA. Patients with high risk had a shorter OS rate and restricted mean survival time (RMST) than those with low risk. Moreover, univariate and multivariate COX regression revealed that risk stratification, age, and TNM were independent prognostic predictors, which were used to construct a nomogram model for individualized and visualized prognosis prediction of ESCC patients. The calibration curves and time-dependent ROC curves in the training and validation cohorts suggested that the nomogram model had a good performance. Interestingly, clear trends indicated that risk score positively correlated with tumor microenvironment (TME) scores and immune checkpoints TIGIT, CTLA4, and BTLA. In addition, the Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that PLA2G4E-AS1, AC063976.1, and LINC01592 were primarily associated with TNF signaling pathway, NF-kappa B signaling pathway, and ECM-receptor interaction. Conclusion. We developed EMT-related lncRNA PLA2G4E-AS1, AC063976.1, and LINC01592 for prognostic prediction and risk stratification of Chinese ESCC patients, which might provide deep insight for personalized prognosis prediction in Chinese ESCC patients and be potential biomarkers for designing novel therapy. Medicine (General) Yueyun Chen verfasserin aut Yue Zheng verfasserin aut Yang Fu verfasserin aut Zhenyu Ding verfasserin aut In Disease Markers Hindawi Limited, 2013 (2021) (DE-627)324960247 (DE-600)2033253-1 18758630 nnns year:2021 https://doi.org/10.1155/2021/5340240 kostenfrei https://doaj.org/article/aba0c3d1b0b74981a779e701f6a91ee1 kostenfrei http://dx.doi.org/10.1155/2021/5340240 kostenfrei https://doaj.org/toc/0278-0240 Journal toc kostenfrei https://doaj.org/toc/1875-8630 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2021 |
allfields_unstemmed |
10.1155/2021/5340240 doi (DE-627)DOAJ069348499 (DE-599)DOAJaba0c3d1b0b74981a779e701f6a91ee1 DE-627 ger DE-627 rakwb eng R5-920 Peipei Wang verfasserin aut Identification of Epithelial-Mesenchymal Transition- (EMT-) Related LncRNA for Prognostic Prediction and Risk Stratification in Esophageal Squamous Cell Carcinoma 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background. Epithelial-mesenchymal transition (EMT) is significantly associated with the invasion and development of esophageal squamous cell carcinoma (ESCC). However, the importance of EMT-related long noncoding RNA (lncRNA) is little known in ESCC. Methods. GSE53624 (N=119) and GSE53622 (N=60) datasets retrieved from the Gene Expression Omnibus (GEO) database were used as training and external validation cohorts, respectively. GSE53624 and GSE53622 datasets were all sampled from China. Then, the prognostic value of EMT-related lncRNA was comprehensively investigated by weighted coexpression network analysis (WGCNA) and COX regression model. Results. High expression of PLA2G4E-AS1, AC063976.1, and LINC01592 significantly correlated with the favorable overall survival (OS) of ESCC patients, and LINC01592 had the greatest contribution to OS. Importantly, ESCC patients were divided into low- and high-risk groups based on the optimal cut-off value of risk score estimated by the multivariate COX regression model of these three lncRNA. Patients with high risk had a shorter OS rate and restricted mean survival time (RMST) than those with low risk. Moreover, univariate and multivariate COX regression revealed that risk stratification, age, and TNM were independent prognostic predictors, which were used to construct a nomogram model for individualized and visualized prognosis prediction of ESCC patients. The calibration curves and time-dependent ROC curves in the training and validation cohorts suggested that the nomogram model had a good performance. Interestingly, clear trends indicated that risk score positively correlated with tumor microenvironment (TME) scores and immune checkpoints TIGIT, CTLA4, and BTLA. In addition, the Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that PLA2G4E-AS1, AC063976.1, and LINC01592 were primarily associated with TNF signaling pathway, NF-kappa B signaling pathway, and ECM-receptor interaction. Conclusion. We developed EMT-related lncRNA PLA2G4E-AS1, AC063976.1, and LINC01592 for prognostic prediction and risk stratification of Chinese ESCC patients, which might provide deep insight for personalized prognosis prediction in Chinese ESCC patients and be potential biomarkers for designing novel therapy. Medicine (General) Yueyun Chen verfasserin aut Yue Zheng verfasserin aut Yang Fu verfasserin aut Zhenyu Ding verfasserin aut In Disease Markers Hindawi Limited, 2013 (2021) (DE-627)324960247 (DE-600)2033253-1 18758630 nnns year:2021 https://doi.org/10.1155/2021/5340240 kostenfrei https://doaj.org/article/aba0c3d1b0b74981a779e701f6a91ee1 kostenfrei http://dx.doi.org/10.1155/2021/5340240 kostenfrei https://doaj.org/toc/0278-0240 Journal toc kostenfrei https://doaj.org/toc/1875-8630 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2021 |
allfieldsGer |
10.1155/2021/5340240 doi (DE-627)DOAJ069348499 (DE-599)DOAJaba0c3d1b0b74981a779e701f6a91ee1 DE-627 ger DE-627 rakwb eng R5-920 Peipei Wang verfasserin aut Identification of Epithelial-Mesenchymal Transition- (EMT-) Related LncRNA for Prognostic Prediction and Risk Stratification in Esophageal Squamous Cell Carcinoma 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background. Epithelial-mesenchymal transition (EMT) is significantly associated with the invasion and development of esophageal squamous cell carcinoma (ESCC). However, the importance of EMT-related long noncoding RNA (lncRNA) is little known in ESCC. Methods. GSE53624 (N=119) and GSE53622 (N=60) datasets retrieved from the Gene Expression Omnibus (GEO) database were used as training and external validation cohorts, respectively. GSE53624 and GSE53622 datasets were all sampled from China. Then, the prognostic value of EMT-related lncRNA was comprehensively investigated by weighted coexpression network analysis (WGCNA) and COX regression model. Results. High expression of PLA2G4E-AS1, AC063976.1, and LINC01592 significantly correlated with the favorable overall survival (OS) of ESCC patients, and LINC01592 had the greatest contribution to OS. Importantly, ESCC patients were divided into low- and high-risk groups based on the optimal cut-off value of risk score estimated by the multivariate COX regression model of these three lncRNA. Patients with high risk had a shorter OS rate and restricted mean survival time (RMST) than those with low risk. Moreover, univariate and multivariate COX regression revealed that risk stratification, age, and TNM were independent prognostic predictors, which were used to construct a nomogram model for individualized and visualized prognosis prediction of ESCC patients. The calibration curves and time-dependent ROC curves in the training and validation cohorts suggested that the nomogram model had a good performance. Interestingly, clear trends indicated that risk score positively correlated with tumor microenvironment (TME) scores and immune checkpoints TIGIT, CTLA4, and BTLA. In addition, the Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that PLA2G4E-AS1, AC063976.1, and LINC01592 were primarily associated with TNF signaling pathway, NF-kappa B signaling pathway, and ECM-receptor interaction. Conclusion. We developed EMT-related lncRNA PLA2G4E-AS1, AC063976.1, and LINC01592 for prognostic prediction and risk stratification of Chinese ESCC patients, which might provide deep insight for personalized prognosis prediction in Chinese ESCC patients and be potential biomarkers for designing novel therapy. Medicine (General) Yueyun Chen verfasserin aut Yue Zheng verfasserin aut Yang Fu verfasserin aut Zhenyu Ding verfasserin aut In Disease Markers Hindawi Limited, 2013 (2021) (DE-627)324960247 (DE-600)2033253-1 18758630 nnns year:2021 https://doi.org/10.1155/2021/5340240 kostenfrei https://doaj.org/article/aba0c3d1b0b74981a779e701f6a91ee1 kostenfrei http://dx.doi.org/10.1155/2021/5340240 kostenfrei https://doaj.org/toc/0278-0240 Journal toc kostenfrei https://doaj.org/toc/1875-8630 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2021 |
allfieldsSound |
10.1155/2021/5340240 doi (DE-627)DOAJ069348499 (DE-599)DOAJaba0c3d1b0b74981a779e701f6a91ee1 DE-627 ger DE-627 rakwb eng R5-920 Peipei Wang verfasserin aut Identification of Epithelial-Mesenchymal Transition- (EMT-) Related LncRNA for Prognostic Prediction and Risk Stratification in Esophageal Squamous Cell Carcinoma 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background. Epithelial-mesenchymal transition (EMT) is significantly associated with the invasion and development of esophageal squamous cell carcinoma (ESCC). However, the importance of EMT-related long noncoding RNA (lncRNA) is little known in ESCC. Methods. GSE53624 (N=119) and GSE53622 (N=60) datasets retrieved from the Gene Expression Omnibus (GEO) database were used as training and external validation cohorts, respectively. GSE53624 and GSE53622 datasets were all sampled from China. Then, the prognostic value of EMT-related lncRNA was comprehensively investigated by weighted coexpression network analysis (WGCNA) and COX regression model. Results. High expression of PLA2G4E-AS1, AC063976.1, and LINC01592 significantly correlated with the favorable overall survival (OS) of ESCC patients, and LINC01592 had the greatest contribution to OS. Importantly, ESCC patients were divided into low- and high-risk groups based on the optimal cut-off value of risk score estimated by the multivariate COX regression model of these three lncRNA. Patients with high risk had a shorter OS rate and restricted mean survival time (RMST) than those with low risk. Moreover, univariate and multivariate COX regression revealed that risk stratification, age, and TNM were independent prognostic predictors, which were used to construct a nomogram model for individualized and visualized prognosis prediction of ESCC patients. The calibration curves and time-dependent ROC curves in the training and validation cohorts suggested that the nomogram model had a good performance. Interestingly, clear trends indicated that risk score positively correlated with tumor microenvironment (TME) scores and immune checkpoints TIGIT, CTLA4, and BTLA. In addition, the Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that PLA2G4E-AS1, AC063976.1, and LINC01592 were primarily associated with TNF signaling pathway, NF-kappa B signaling pathway, and ECM-receptor interaction. Conclusion. We developed EMT-related lncRNA PLA2G4E-AS1, AC063976.1, and LINC01592 for prognostic prediction and risk stratification of Chinese ESCC patients, which might provide deep insight for personalized prognosis prediction in Chinese ESCC patients and be potential biomarkers for designing novel therapy. Medicine (General) Yueyun Chen verfasserin aut Yue Zheng verfasserin aut Yang Fu verfasserin aut Zhenyu Ding verfasserin aut In Disease Markers Hindawi Limited, 2013 (2021) (DE-627)324960247 (DE-600)2033253-1 18758630 nnns year:2021 https://doi.org/10.1155/2021/5340240 kostenfrei https://doaj.org/article/aba0c3d1b0b74981a779e701f6a91ee1 kostenfrei http://dx.doi.org/10.1155/2021/5340240 kostenfrei https://doaj.org/toc/0278-0240 Journal toc kostenfrei https://doaj.org/toc/1875-8630 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2021 |
language |
English |
source |
In Disease Markers (2021) year:2021 |
sourceStr |
In Disease Markers (2021) year:2021 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Medicine (General) |
isfreeaccess_bool |
true |
container_title |
Disease Markers |
authorswithroles_txt_mv |
Peipei Wang @@aut@@ Yueyun Chen @@aut@@ Yue Zheng @@aut@@ Yang Fu @@aut@@ Zhenyu Ding @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
324960247 |
id |
DOAJ069348499 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ069348499</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230228072329.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1155/2021/5340240</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ069348499</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJaba0c3d1b0b74981a779e701f6a91ee1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R5-920</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Peipei Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Identification of Epithelial-Mesenchymal Transition- (EMT-) Related LncRNA for Prognostic Prediction and Risk Stratification in Esophageal Squamous Cell Carcinoma</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background. Epithelial-mesenchymal transition (EMT) is significantly associated with the invasion and development of esophageal squamous cell carcinoma (ESCC). However, the importance of EMT-related long noncoding RNA (lncRNA) is little known in ESCC. Methods. GSE53624 (N=119) and GSE53622 (N=60) datasets retrieved from the Gene Expression Omnibus (GEO) database were used as training and external validation cohorts, respectively. GSE53624 and GSE53622 datasets were all sampled from China. Then, the prognostic value of EMT-related lncRNA was comprehensively investigated by weighted coexpression network analysis (WGCNA) and COX regression model. Results. High expression of PLA2G4E-AS1, AC063976.1, and LINC01592 significantly correlated with the favorable overall survival (OS) of ESCC patients, and LINC01592 had the greatest contribution to OS. Importantly, ESCC patients were divided into low- and high-risk groups based on the optimal cut-off value of risk score estimated by the multivariate COX regression model of these three lncRNA. Patients with high risk had a shorter OS rate and restricted mean survival time (RMST) than those with low risk. Moreover, univariate and multivariate COX regression revealed that risk stratification, age, and TNM were independent prognostic predictors, which were used to construct a nomogram model for individualized and visualized prognosis prediction of ESCC patients. The calibration curves and time-dependent ROC curves in the training and validation cohorts suggested that the nomogram model had a good performance. Interestingly, clear trends indicated that risk score positively correlated with tumor microenvironment (TME) scores and immune checkpoints TIGIT, CTLA4, and BTLA. In addition, the Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that PLA2G4E-AS1, AC063976.1, and LINC01592 were primarily associated with TNF signaling pathway, NF-kappa B signaling pathway, and ECM-receptor interaction. Conclusion. We developed EMT-related lncRNA PLA2G4E-AS1, AC063976.1, and LINC01592 for prognostic prediction and risk stratification of Chinese ESCC patients, which might provide deep insight for personalized prognosis prediction in Chinese ESCC patients and be potential biomarkers for designing novel therapy.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yueyun Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yue Zheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yang Fu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhenyu Ding</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Disease Markers</subfield><subfield code="d">Hindawi Limited, 2013</subfield><subfield code="g">(2021)</subfield><subfield code="w">(DE-627)324960247</subfield><subfield code="w">(DE-600)2033253-1</subfield><subfield code="x">18758630</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2021</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1155/2021/5340240</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/aba0c3d1b0b74981a779e701f6a91ee1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1155/2021/5340240</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0278-0240</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1875-8630</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2021</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Peipei Wang |
spellingShingle |
Peipei Wang misc R5-920 misc Medicine (General) Identification of Epithelial-Mesenchymal Transition- (EMT-) Related LncRNA for Prognostic Prediction and Risk Stratification in Esophageal Squamous Cell Carcinoma |
authorStr |
Peipei Wang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)324960247 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
R5-920 |
illustrated |
Not Illustrated |
issn |
18758630 |
topic_title |
R5-920 Identification of Epithelial-Mesenchymal Transition- (EMT-) Related LncRNA for Prognostic Prediction and Risk Stratification in Esophageal Squamous Cell Carcinoma |
topic |
misc R5-920 misc Medicine (General) |
topic_unstemmed |
misc R5-920 misc Medicine (General) |
topic_browse |
misc R5-920 misc Medicine (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Disease Markers |
hierarchy_parent_id |
324960247 |
hierarchy_top_title |
Disease Markers |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)324960247 (DE-600)2033253-1 |
title |
Identification of Epithelial-Mesenchymal Transition- (EMT-) Related LncRNA for Prognostic Prediction and Risk Stratification in Esophageal Squamous Cell Carcinoma |
ctrlnum |
(DE-627)DOAJ069348499 (DE-599)DOAJaba0c3d1b0b74981a779e701f6a91ee1 |
title_full |
Identification of Epithelial-Mesenchymal Transition- (EMT-) Related LncRNA for Prognostic Prediction and Risk Stratification in Esophageal Squamous Cell Carcinoma |
author_sort |
Peipei Wang |
journal |
Disease Markers |
journalStr |
Disease Markers |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Peipei Wang Yueyun Chen Yue Zheng Yang Fu Zhenyu Ding |
class |
R5-920 |
format_se |
Elektronische Aufsätze |
author-letter |
Peipei Wang |
doi_str_mv |
10.1155/2021/5340240 |
author2-role |
verfasserin |
title_sort |
identification of epithelial-mesenchymal transition- (emt-) related lncrna for prognostic prediction and risk stratification in esophageal squamous cell carcinoma |
callnumber |
R5-920 |
title_auth |
Identification of Epithelial-Mesenchymal Transition- (EMT-) Related LncRNA for Prognostic Prediction and Risk Stratification in Esophageal Squamous Cell Carcinoma |
abstract |
Background. Epithelial-mesenchymal transition (EMT) is significantly associated with the invasion and development of esophageal squamous cell carcinoma (ESCC). However, the importance of EMT-related long noncoding RNA (lncRNA) is little known in ESCC. Methods. GSE53624 (N=119) and GSE53622 (N=60) datasets retrieved from the Gene Expression Omnibus (GEO) database were used as training and external validation cohorts, respectively. GSE53624 and GSE53622 datasets were all sampled from China. Then, the prognostic value of EMT-related lncRNA was comprehensively investigated by weighted coexpression network analysis (WGCNA) and COX regression model. Results. High expression of PLA2G4E-AS1, AC063976.1, and LINC01592 significantly correlated with the favorable overall survival (OS) of ESCC patients, and LINC01592 had the greatest contribution to OS. Importantly, ESCC patients were divided into low- and high-risk groups based on the optimal cut-off value of risk score estimated by the multivariate COX regression model of these three lncRNA. Patients with high risk had a shorter OS rate and restricted mean survival time (RMST) than those with low risk. Moreover, univariate and multivariate COX regression revealed that risk stratification, age, and TNM were independent prognostic predictors, which were used to construct a nomogram model for individualized and visualized prognosis prediction of ESCC patients. The calibration curves and time-dependent ROC curves in the training and validation cohorts suggested that the nomogram model had a good performance. Interestingly, clear trends indicated that risk score positively correlated with tumor microenvironment (TME) scores and immune checkpoints TIGIT, CTLA4, and BTLA. In addition, the Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that PLA2G4E-AS1, AC063976.1, and LINC01592 were primarily associated with TNF signaling pathway, NF-kappa B signaling pathway, and ECM-receptor interaction. Conclusion. We developed EMT-related lncRNA PLA2G4E-AS1, AC063976.1, and LINC01592 for prognostic prediction and risk stratification of Chinese ESCC patients, which might provide deep insight for personalized prognosis prediction in Chinese ESCC patients and be potential biomarkers for designing novel therapy. |
abstractGer |
Background. Epithelial-mesenchymal transition (EMT) is significantly associated with the invasion and development of esophageal squamous cell carcinoma (ESCC). However, the importance of EMT-related long noncoding RNA (lncRNA) is little known in ESCC. Methods. GSE53624 (N=119) and GSE53622 (N=60) datasets retrieved from the Gene Expression Omnibus (GEO) database were used as training and external validation cohorts, respectively. GSE53624 and GSE53622 datasets were all sampled from China. Then, the prognostic value of EMT-related lncRNA was comprehensively investigated by weighted coexpression network analysis (WGCNA) and COX regression model. Results. High expression of PLA2G4E-AS1, AC063976.1, and LINC01592 significantly correlated with the favorable overall survival (OS) of ESCC patients, and LINC01592 had the greatest contribution to OS. Importantly, ESCC patients were divided into low- and high-risk groups based on the optimal cut-off value of risk score estimated by the multivariate COX regression model of these three lncRNA. Patients with high risk had a shorter OS rate and restricted mean survival time (RMST) than those with low risk. Moreover, univariate and multivariate COX regression revealed that risk stratification, age, and TNM were independent prognostic predictors, which were used to construct a nomogram model for individualized and visualized prognosis prediction of ESCC patients. The calibration curves and time-dependent ROC curves in the training and validation cohorts suggested that the nomogram model had a good performance. Interestingly, clear trends indicated that risk score positively correlated with tumor microenvironment (TME) scores and immune checkpoints TIGIT, CTLA4, and BTLA. In addition, the Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that PLA2G4E-AS1, AC063976.1, and LINC01592 were primarily associated with TNF signaling pathway, NF-kappa B signaling pathway, and ECM-receptor interaction. Conclusion. We developed EMT-related lncRNA PLA2G4E-AS1, AC063976.1, and LINC01592 for prognostic prediction and risk stratification of Chinese ESCC patients, which might provide deep insight for personalized prognosis prediction in Chinese ESCC patients and be potential biomarkers for designing novel therapy. |
abstract_unstemmed |
Background. Epithelial-mesenchymal transition (EMT) is significantly associated with the invasion and development of esophageal squamous cell carcinoma (ESCC). However, the importance of EMT-related long noncoding RNA (lncRNA) is little known in ESCC. Methods. GSE53624 (N=119) and GSE53622 (N=60) datasets retrieved from the Gene Expression Omnibus (GEO) database were used as training and external validation cohorts, respectively. GSE53624 and GSE53622 datasets were all sampled from China. Then, the prognostic value of EMT-related lncRNA was comprehensively investigated by weighted coexpression network analysis (WGCNA) and COX regression model. Results. High expression of PLA2G4E-AS1, AC063976.1, and LINC01592 significantly correlated with the favorable overall survival (OS) of ESCC patients, and LINC01592 had the greatest contribution to OS. Importantly, ESCC patients were divided into low- and high-risk groups based on the optimal cut-off value of risk score estimated by the multivariate COX regression model of these three lncRNA. Patients with high risk had a shorter OS rate and restricted mean survival time (RMST) than those with low risk. Moreover, univariate and multivariate COX regression revealed that risk stratification, age, and TNM were independent prognostic predictors, which were used to construct a nomogram model for individualized and visualized prognosis prediction of ESCC patients. The calibration curves and time-dependent ROC curves in the training and validation cohorts suggested that the nomogram model had a good performance. Interestingly, clear trends indicated that risk score positively correlated with tumor microenvironment (TME) scores and immune checkpoints TIGIT, CTLA4, and BTLA. In addition, the Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that PLA2G4E-AS1, AC063976.1, and LINC01592 were primarily associated with TNF signaling pathway, NF-kappa B signaling pathway, and ECM-receptor interaction. Conclusion. We developed EMT-related lncRNA PLA2G4E-AS1, AC063976.1, and LINC01592 for prognostic prediction and risk stratification of Chinese ESCC patients, which might provide deep insight for personalized prognosis prediction in Chinese ESCC patients and be potential biomarkers for designing novel therapy. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Identification of Epithelial-Mesenchymal Transition- (EMT-) Related LncRNA for Prognostic Prediction and Risk Stratification in Esophageal Squamous Cell Carcinoma |
url |
https://doi.org/10.1155/2021/5340240 https://doaj.org/article/aba0c3d1b0b74981a779e701f6a91ee1 http://dx.doi.org/10.1155/2021/5340240 https://doaj.org/toc/0278-0240 https://doaj.org/toc/1875-8630 |
remote_bool |
true |
author2 |
Yueyun Chen Yue Zheng Yang Fu Zhenyu Ding |
author2Str |
Yueyun Chen Yue Zheng Yang Fu Zhenyu Ding |
ppnlink |
324960247 |
callnumber-subject |
R - General Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1155/2021/5340240 |
callnumber-a |
R5-920 |
up_date |
2024-07-03T22:48:39.491Z |
_version_ |
1803599918660583424 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ069348499</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230228072329.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1155/2021/5340240</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ069348499</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJaba0c3d1b0b74981a779e701f6a91ee1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R5-920</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Peipei Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Identification of Epithelial-Mesenchymal Transition- (EMT-) Related LncRNA for Prognostic Prediction and Risk Stratification in Esophageal Squamous Cell Carcinoma</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background. Epithelial-mesenchymal transition (EMT) is significantly associated with the invasion and development of esophageal squamous cell carcinoma (ESCC). However, the importance of EMT-related long noncoding RNA (lncRNA) is little known in ESCC. Methods. GSE53624 (N=119) and GSE53622 (N=60) datasets retrieved from the Gene Expression Omnibus (GEO) database were used as training and external validation cohorts, respectively. GSE53624 and GSE53622 datasets were all sampled from China. Then, the prognostic value of EMT-related lncRNA was comprehensively investigated by weighted coexpression network analysis (WGCNA) and COX regression model. Results. High expression of PLA2G4E-AS1, AC063976.1, and LINC01592 significantly correlated with the favorable overall survival (OS) of ESCC patients, and LINC01592 had the greatest contribution to OS. Importantly, ESCC patients were divided into low- and high-risk groups based on the optimal cut-off value of risk score estimated by the multivariate COX regression model of these three lncRNA. Patients with high risk had a shorter OS rate and restricted mean survival time (RMST) than those with low risk. Moreover, univariate and multivariate COX regression revealed that risk stratification, age, and TNM were independent prognostic predictors, which were used to construct a nomogram model for individualized and visualized prognosis prediction of ESCC patients. The calibration curves and time-dependent ROC curves in the training and validation cohorts suggested that the nomogram model had a good performance. Interestingly, clear trends indicated that risk score positively correlated with tumor microenvironment (TME) scores and immune checkpoints TIGIT, CTLA4, and BTLA. In addition, the Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that PLA2G4E-AS1, AC063976.1, and LINC01592 were primarily associated with TNF signaling pathway, NF-kappa B signaling pathway, and ECM-receptor interaction. Conclusion. We developed EMT-related lncRNA PLA2G4E-AS1, AC063976.1, and LINC01592 for prognostic prediction and risk stratification of Chinese ESCC patients, which might provide deep insight for personalized prognosis prediction in Chinese ESCC patients and be potential biomarkers for designing novel therapy.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yueyun Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yue Zheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yang Fu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhenyu Ding</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Disease Markers</subfield><subfield code="d">Hindawi Limited, 2013</subfield><subfield code="g">(2021)</subfield><subfield code="w">(DE-627)324960247</subfield><subfield code="w">(DE-600)2033253-1</subfield><subfield code="x">18758630</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2021</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1155/2021/5340240</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/aba0c3d1b0b74981a779e701f6a91ee1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1155/2021/5340240</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0278-0240</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1875-8630</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2021</subfield></datafield></record></collection>
|
score |
7.400754 |