Applying Deep Learning for Improving Image Classification in Nuclear Fusion Devices
Deep learning has become one of the most promising approaches in recent years. One of the main applications of deep learning is the automatic feature extraction with auto-encoders (AEs). Feature extraction, one of the most important stages in machine learning, that can reduce drastically the dimensi...
Ausführliche Beschreibung
Autor*in: |
Gonzalo Farias [verfasserIn] Ernesto Fabregas [verfasserIn] Sebastian Dormido-Canto [verfasserIn] Jesus Vega [verfasserIn] Sebastian Vergara [verfasserIn] Sebastian Dormido Bencomo [verfasserIn] Ignacio Pastor [verfasserIn] Alvaro Olmedo [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 6(2018), Seite 72345-72356 |
---|---|
Übergeordnetes Werk: |
volume:6 ; year:2018 ; pages:72345-72356 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2018.2881832 |
---|
Katalog-ID: |
DOAJ069554099 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ069554099 | ||
003 | DE-627 | ||
005 | 20230503015553.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2018.2881832 |2 doi | |
035 | |a (DE-627)DOAJ069554099 | ||
035 | |a (DE-599)DOAJ9f5802444ce54d75989d71d35a924152 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Gonzalo Farias |e verfasserin |4 aut | |
245 | 1 | 0 | |a Applying Deep Learning for Improving Image Classification in Nuclear Fusion Devices |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Deep learning has become one of the most promising approaches in recent years. One of the main applications of deep learning is the automatic feature extraction with auto-encoders (AEs). Feature extraction, one of the most important stages in machine learning, that can reduce drastically the dimensionality of the problem, making easier any subsequent process such as classification. The main contribution of this research is to evaluate the use of AEs for automatic feature extraction in massive thermonuclear fusion databases. In order to show the performance of AEs in a practical way, the problem of image classification of the TJ-II Thomson Scattering diagnostic has been selected. The classification has been performed by the algorithm of support vector machines and conformal predictors. The results show that the use of AEs produces the predictions faster, with more reliable models, and with higher success rates in comparison to the performance without using the deep learning approach. | ||
650 | 4 | |a Images classification | |
650 | 4 | |a auto-encoder | |
650 | 4 | |a future extraction | |
650 | 4 | |a nuclear fusion | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Ernesto Fabregas |e verfasserin |4 aut | |
700 | 0 | |a Sebastian Dormido-Canto |e verfasserin |4 aut | |
700 | 0 | |a Jesus Vega |e verfasserin |4 aut | |
700 | 0 | |a Sebastian Vergara |e verfasserin |4 aut | |
700 | 0 | |a Sebastian Dormido Bencomo |e verfasserin |4 aut | |
700 | 0 | |a Ignacio Pastor |e verfasserin |4 aut | |
700 | 0 | |a Alvaro Olmedo |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 6(2018), Seite 72345-72356 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:6 |g year:2018 |g pages:72345-72356 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2018.2881832 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/9f5802444ce54d75989d71d35a924152 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/8537905/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 6 |j 2018 |h 72345-72356 |
author_variant |
g f gf e f ef s d c sdc j v jv s v sv s d b sdb i p ip a o ao |
---|---|
matchkey_str |
article:21693536:2018----::pligeperigoipoigmgcasfctoin |
hierarchy_sort_str |
2018 |
callnumber-subject-code |
TK |
publishDate |
2018 |
allfields |
10.1109/ACCESS.2018.2881832 doi (DE-627)DOAJ069554099 (DE-599)DOAJ9f5802444ce54d75989d71d35a924152 DE-627 ger DE-627 rakwb eng TK1-9971 Gonzalo Farias verfasserin aut Applying Deep Learning for Improving Image Classification in Nuclear Fusion Devices 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Deep learning has become one of the most promising approaches in recent years. One of the main applications of deep learning is the automatic feature extraction with auto-encoders (AEs). Feature extraction, one of the most important stages in machine learning, that can reduce drastically the dimensionality of the problem, making easier any subsequent process such as classification. The main contribution of this research is to evaluate the use of AEs for automatic feature extraction in massive thermonuclear fusion databases. In order to show the performance of AEs in a practical way, the problem of image classification of the TJ-II Thomson Scattering diagnostic has been selected. The classification has been performed by the algorithm of support vector machines and conformal predictors. The results show that the use of AEs produces the predictions faster, with more reliable models, and with higher success rates in comparison to the performance without using the deep learning approach. Images classification auto-encoder future extraction nuclear fusion Electrical engineering. Electronics. Nuclear engineering Ernesto Fabregas verfasserin aut Sebastian Dormido-Canto verfasserin aut Jesus Vega verfasserin aut Sebastian Vergara verfasserin aut Sebastian Dormido Bencomo verfasserin aut Ignacio Pastor verfasserin aut Alvaro Olmedo verfasserin aut In IEEE Access IEEE, 2014 6(2018), Seite 72345-72356 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:6 year:2018 pages:72345-72356 https://doi.org/10.1109/ACCESS.2018.2881832 kostenfrei https://doaj.org/article/9f5802444ce54d75989d71d35a924152 kostenfrei https://ieeexplore.ieee.org/document/8537905/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 72345-72356 |
spelling |
10.1109/ACCESS.2018.2881832 doi (DE-627)DOAJ069554099 (DE-599)DOAJ9f5802444ce54d75989d71d35a924152 DE-627 ger DE-627 rakwb eng TK1-9971 Gonzalo Farias verfasserin aut Applying Deep Learning for Improving Image Classification in Nuclear Fusion Devices 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Deep learning has become one of the most promising approaches in recent years. One of the main applications of deep learning is the automatic feature extraction with auto-encoders (AEs). Feature extraction, one of the most important stages in machine learning, that can reduce drastically the dimensionality of the problem, making easier any subsequent process such as classification. The main contribution of this research is to evaluate the use of AEs for automatic feature extraction in massive thermonuclear fusion databases. In order to show the performance of AEs in a practical way, the problem of image classification of the TJ-II Thomson Scattering diagnostic has been selected. The classification has been performed by the algorithm of support vector machines and conformal predictors. The results show that the use of AEs produces the predictions faster, with more reliable models, and with higher success rates in comparison to the performance without using the deep learning approach. Images classification auto-encoder future extraction nuclear fusion Electrical engineering. Electronics. Nuclear engineering Ernesto Fabregas verfasserin aut Sebastian Dormido-Canto verfasserin aut Jesus Vega verfasserin aut Sebastian Vergara verfasserin aut Sebastian Dormido Bencomo verfasserin aut Ignacio Pastor verfasserin aut Alvaro Olmedo verfasserin aut In IEEE Access IEEE, 2014 6(2018), Seite 72345-72356 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:6 year:2018 pages:72345-72356 https://doi.org/10.1109/ACCESS.2018.2881832 kostenfrei https://doaj.org/article/9f5802444ce54d75989d71d35a924152 kostenfrei https://ieeexplore.ieee.org/document/8537905/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 72345-72356 |
allfields_unstemmed |
10.1109/ACCESS.2018.2881832 doi (DE-627)DOAJ069554099 (DE-599)DOAJ9f5802444ce54d75989d71d35a924152 DE-627 ger DE-627 rakwb eng TK1-9971 Gonzalo Farias verfasserin aut Applying Deep Learning for Improving Image Classification in Nuclear Fusion Devices 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Deep learning has become one of the most promising approaches in recent years. One of the main applications of deep learning is the automatic feature extraction with auto-encoders (AEs). Feature extraction, one of the most important stages in machine learning, that can reduce drastically the dimensionality of the problem, making easier any subsequent process such as classification. The main contribution of this research is to evaluate the use of AEs for automatic feature extraction in massive thermonuclear fusion databases. In order to show the performance of AEs in a practical way, the problem of image classification of the TJ-II Thomson Scattering diagnostic has been selected. The classification has been performed by the algorithm of support vector machines and conformal predictors. The results show that the use of AEs produces the predictions faster, with more reliable models, and with higher success rates in comparison to the performance without using the deep learning approach. Images classification auto-encoder future extraction nuclear fusion Electrical engineering. Electronics. Nuclear engineering Ernesto Fabregas verfasserin aut Sebastian Dormido-Canto verfasserin aut Jesus Vega verfasserin aut Sebastian Vergara verfasserin aut Sebastian Dormido Bencomo verfasserin aut Ignacio Pastor verfasserin aut Alvaro Olmedo verfasserin aut In IEEE Access IEEE, 2014 6(2018), Seite 72345-72356 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:6 year:2018 pages:72345-72356 https://doi.org/10.1109/ACCESS.2018.2881832 kostenfrei https://doaj.org/article/9f5802444ce54d75989d71d35a924152 kostenfrei https://ieeexplore.ieee.org/document/8537905/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 72345-72356 |
allfieldsGer |
10.1109/ACCESS.2018.2881832 doi (DE-627)DOAJ069554099 (DE-599)DOAJ9f5802444ce54d75989d71d35a924152 DE-627 ger DE-627 rakwb eng TK1-9971 Gonzalo Farias verfasserin aut Applying Deep Learning for Improving Image Classification in Nuclear Fusion Devices 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Deep learning has become one of the most promising approaches in recent years. One of the main applications of deep learning is the automatic feature extraction with auto-encoders (AEs). Feature extraction, one of the most important stages in machine learning, that can reduce drastically the dimensionality of the problem, making easier any subsequent process such as classification. The main contribution of this research is to evaluate the use of AEs for automatic feature extraction in massive thermonuclear fusion databases. In order to show the performance of AEs in a practical way, the problem of image classification of the TJ-II Thomson Scattering diagnostic has been selected. The classification has been performed by the algorithm of support vector machines and conformal predictors. The results show that the use of AEs produces the predictions faster, with more reliable models, and with higher success rates in comparison to the performance without using the deep learning approach. Images classification auto-encoder future extraction nuclear fusion Electrical engineering. Electronics. Nuclear engineering Ernesto Fabregas verfasserin aut Sebastian Dormido-Canto verfasserin aut Jesus Vega verfasserin aut Sebastian Vergara verfasserin aut Sebastian Dormido Bencomo verfasserin aut Ignacio Pastor verfasserin aut Alvaro Olmedo verfasserin aut In IEEE Access IEEE, 2014 6(2018), Seite 72345-72356 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:6 year:2018 pages:72345-72356 https://doi.org/10.1109/ACCESS.2018.2881832 kostenfrei https://doaj.org/article/9f5802444ce54d75989d71d35a924152 kostenfrei https://ieeexplore.ieee.org/document/8537905/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 72345-72356 |
allfieldsSound |
10.1109/ACCESS.2018.2881832 doi (DE-627)DOAJ069554099 (DE-599)DOAJ9f5802444ce54d75989d71d35a924152 DE-627 ger DE-627 rakwb eng TK1-9971 Gonzalo Farias verfasserin aut Applying Deep Learning for Improving Image Classification in Nuclear Fusion Devices 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Deep learning has become one of the most promising approaches in recent years. One of the main applications of deep learning is the automatic feature extraction with auto-encoders (AEs). Feature extraction, one of the most important stages in machine learning, that can reduce drastically the dimensionality of the problem, making easier any subsequent process such as classification. The main contribution of this research is to evaluate the use of AEs for automatic feature extraction in massive thermonuclear fusion databases. In order to show the performance of AEs in a practical way, the problem of image classification of the TJ-II Thomson Scattering diagnostic has been selected. The classification has been performed by the algorithm of support vector machines and conformal predictors. The results show that the use of AEs produces the predictions faster, with more reliable models, and with higher success rates in comparison to the performance without using the deep learning approach. Images classification auto-encoder future extraction nuclear fusion Electrical engineering. Electronics. Nuclear engineering Ernesto Fabregas verfasserin aut Sebastian Dormido-Canto verfasserin aut Jesus Vega verfasserin aut Sebastian Vergara verfasserin aut Sebastian Dormido Bencomo verfasserin aut Ignacio Pastor verfasserin aut Alvaro Olmedo verfasserin aut In IEEE Access IEEE, 2014 6(2018), Seite 72345-72356 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:6 year:2018 pages:72345-72356 https://doi.org/10.1109/ACCESS.2018.2881832 kostenfrei https://doaj.org/article/9f5802444ce54d75989d71d35a924152 kostenfrei https://ieeexplore.ieee.org/document/8537905/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 72345-72356 |
language |
English |
source |
In IEEE Access 6(2018), Seite 72345-72356 volume:6 year:2018 pages:72345-72356 |
sourceStr |
In IEEE Access 6(2018), Seite 72345-72356 volume:6 year:2018 pages:72345-72356 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Images classification auto-encoder future extraction nuclear fusion Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Gonzalo Farias @@aut@@ Ernesto Fabregas @@aut@@ Sebastian Dormido-Canto @@aut@@ Jesus Vega @@aut@@ Sebastian Vergara @@aut@@ Sebastian Dormido Bencomo @@aut@@ Ignacio Pastor @@aut@@ Alvaro Olmedo @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ069554099 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ069554099</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503015553.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2018.2881832</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ069554099</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ9f5802444ce54d75989d71d35a924152</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Gonzalo Farias</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Applying Deep Learning for Improving Image Classification in Nuclear Fusion Devices</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Deep learning has become one of the most promising approaches in recent years. One of the main applications of deep learning is the automatic feature extraction with auto-encoders (AEs). Feature extraction, one of the most important stages in machine learning, that can reduce drastically the dimensionality of the problem, making easier any subsequent process such as classification. The main contribution of this research is to evaluate the use of AEs for automatic feature extraction in massive thermonuclear fusion databases. In order to show the performance of AEs in a practical way, the problem of image classification of the TJ-II Thomson Scattering diagnostic has been selected. The classification has been performed by the algorithm of support vector machines and conformal predictors. The results show that the use of AEs produces the predictions faster, with more reliable models, and with higher success rates in comparison to the performance without using the deep learning approach.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Images classification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">auto-encoder</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">future extraction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nuclear fusion</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ernesto Fabregas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sebastian Dormido-Canto</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jesus Vega</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sebastian Vergara</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sebastian Dormido Bencomo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ignacio Pastor</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alvaro Olmedo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">6(2018), Seite 72345-72356</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2018</subfield><subfield code="g">pages:72345-72356</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2018.2881832</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/9f5802444ce54d75989d71d35a924152</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8537905/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2018</subfield><subfield code="h">72345-72356</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Gonzalo Farias |
spellingShingle |
Gonzalo Farias misc TK1-9971 misc Images classification misc auto-encoder misc future extraction misc nuclear fusion misc Electrical engineering. Electronics. Nuclear engineering Applying Deep Learning for Improving Image Classification in Nuclear Fusion Devices |
authorStr |
Gonzalo Farias |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 Applying Deep Learning for Improving Image Classification in Nuclear Fusion Devices Images classification auto-encoder future extraction nuclear fusion |
topic |
misc TK1-9971 misc Images classification misc auto-encoder misc future extraction misc nuclear fusion misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Images classification misc auto-encoder misc future extraction misc nuclear fusion misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Images classification misc auto-encoder misc future extraction misc nuclear fusion misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
Applying Deep Learning for Improving Image Classification in Nuclear Fusion Devices |
ctrlnum |
(DE-627)DOAJ069554099 (DE-599)DOAJ9f5802444ce54d75989d71d35a924152 |
title_full |
Applying Deep Learning for Improving Image Classification in Nuclear Fusion Devices |
author_sort |
Gonzalo Farias |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
72345 |
author_browse |
Gonzalo Farias Ernesto Fabregas Sebastian Dormido-Canto Jesus Vega Sebastian Vergara Sebastian Dormido Bencomo Ignacio Pastor Alvaro Olmedo |
container_volume |
6 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Gonzalo Farias |
doi_str_mv |
10.1109/ACCESS.2018.2881832 |
author2-role |
verfasserin |
title_sort |
applying deep learning for improving image classification in nuclear fusion devices |
callnumber |
TK1-9971 |
title_auth |
Applying Deep Learning for Improving Image Classification in Nuclear Fusion Devices |
abstract |
Deep learning has become one of the most promising approaches in recent years. One of the main applications of deep learning is the automatic feature extraction with auto-encoders (AEs). Feature extraction, one of the most important stages in machine learning, that can reduce drastically the dimensionality of the problem, making easier any subsequent process such as classification. The main contribution of this research is to evaluate the use of AEs for automatic feature extraction in massive thermonuclear fusion databases. In order to show the performance of AEs in a practical way, the problem of image classification of the TJ-II Thomson Scattering diagnostic has been selected. The classification has been performed by the algorithm of support vector machines and conformal predictors. The results show that the use of AEs produces the predictions faster, with more reliable models, and with higher success rates in comparison to the performance without using the deep learning approach. |
abstractGer |
Deep learning has become one of the most promising approaches in recent years. One of the main applications of deep learning is the automatic feature extraction with auto-encoders (AEs). Feature extraction, one of the most important stages in machine learning, that can reduce drastically the dimensionality of the problem, making easier any subsequent process such as classification. The main contribution of this research is to evaluate the use of AEs for automatic feature extraction in massive thermonuclear fusion databases. In order to show the performance of AEs in a practical way, the problem of image classification of the TJ-II Thomson Scattering diagnostic has been selected. The classification has been performed by the algorithm of support vector machines and conformal predictors. The results show that the use of AEs produces the predictions faster, with more reliable models, and with higher success rates in comparison to the performance without using the deep learning approach. |
abstract_unstemmed |
Deep learning has become one of the most promising approaches in recent years. One of the main applications of deep learning is the automatic feature extraction with auto-encoders (AEs). Feature extraction, one of the most important stages in machine learning, that can reduce drastically the dimensionality of the problem, making easier any subsequent process such as classification. The main contribution of this research is to evaluate the use of AEs for automatic feature extraction in massive thermonuclear fusion databases. In order to show the performance of AEs in a practical way, the problem of image classification of the TJ-II Thomson Scattering diagnostic has been selected. The classification has been performed by the algorithm of support vector machines and conformal predictors. The results show that the use of AEs produces the predictions faster, with more reliable models, and with higher success rates in comparison to the performance without using the deep learning approach. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Applying Deep Learning for Improving Image Classification in Nuclear Fusion Devices |
url |
https://doi.org/10.1109/ACCESS.2018.2881832 https://doaj.org/article/9f5802444ce54d75989d71d35a924152 https://ieeexplore.ieee.org/document/8537905/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Ernesto Fabregas Sebastian Dormido-Canto Jesus Vega Sebastian Vergara Sebastian Dormido Bencomo Ignacio Pastor Alvaro Olmedo |
author2Str |
Ernesto Fabregas Sebastian Dormido-Canto Jesus Vega Sebastian Vergara Sebastian Dormido Bencomo Ignacio Pastor Alvaro Olmedo |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2018.2881832 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T23:46:04.499Z |
_version_ |
1803603531005952001 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ069554099</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503015553.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2018.2881832</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ069554099</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ9f5802444ce54d75989d71d35a924152</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Gonzalo Farias</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Applying Deep Learning for Improving Image Classification in Nuclear Fusion Devices</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Deep learning has become one of the most promising approaches in recent years. One of the main applications of deep learning is the automatic feature extraction with auto-encoders (AEs). Feature extraction, one of the most important stages in machine learning, that can reduce drastically the dimensionality of the problem, making easier any subsequent process such as classification. The main contribution of this research is to evaluate the use of AEs for automatic feature extraction in massive thermonuclear fusion databases. In order to show the performance of AEs in a practical way, the problem of image classification of the TJ-II Thomson Scattering diagnostic has been selected. The classification has been performed by the algorithm of support vector machines and conformal predictors. The results show that the use of AEs produces the predictions faster, with more reliable models, and with higher success rates in comparison to the performance without using the deep learning approach.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Images classification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">auto-encoder</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">future extraction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nuclear fusion</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ernesto Fabregas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sebastian Dormido-Canto</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jesus Vega</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sebastian Vergara</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sebastian Dormido Bencomo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ignacio Pastor</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alvaro Olmedo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">6(2018), Seite 72345-72356</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2018</subfield><subfield code="g">pages:72345-72356</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2018.2881832</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/9f5802444ce54d75989d71d35a924152</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8537905/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2018</subfield><subfield code="h">72345-72356</subfield></datafield></record></collection>
|
score |
7.4007015 |