Semantic Comprehension of Questions in Q&A System for Chinese Language Based on Semantic Element Combination
Question understanding is an extremely important part of the question and answer (Q&A) system, which is the basis of subsequent information retrieval and answer extraction. In order to improve the semantic understanding of question, we propose a method of understanding the question based on the...
Ausführliche Beschreibung
Autor*in: |
Jiaxing Song [verfasserIn] Feilong Liu [verfasserIn] Kai Ding [verfasserIn] Kai Du [verfasserIn] Xiaonan Zhang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 8(2020), Seite 102971-102981 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2020 ; pages:102971-102981 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2020.2997958 |
---|
Katalog-ID: |
DOAJ069588236 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ069588236 | ||
003 | DE-627 | ||
005 | 20230309084640.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2020.2997958 |2 doi | |
035 | |a (DE-627)DOAJ069588236 | ||
035 | |a (DE-599)DOAJc3756f8adddf46ce83102ab4ff9c3a5d | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Jiaxing Song |e verfasserin |4 aut | |
245 | 1 | 0 | |a Semantic Comprehension of Questions in Q&A System for Chinese Language Based on Semantic Element Combination |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Question understanding is an extremely important part of the question and answer (Q&A) system, which is the basis of subsequent information retrieval and answer extraction. In order to improve the semantic understanding of question, we propose a method of understanding the question based on the combination of semantic element for Chinese language. Firstly, the method uses lexical and rules recognition to extract the semantic elements of questions and recognizes the functions according to the preprocessing pattern. Secondly, combining the dependency analysis tree structure of the question and the function type, it can produce the semantic elements. Finally, a normalized semantic expression was generated. We extract the user questions in Baidu-Zhidao as the test set. The result shows that the accuracy of the proposed method is 97.8%, so the semantics of the Chinese language questions can be effectively understood by this method. | ||
650 | 4 | |a Semantics | |
650 | 4 | |a system analysis and design | |
650 | 4 | |a logic testing | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Feilong Liu |e verfasserin |4 aut | |
700 | 0 | |a Kai Ding |e verfasserin |4 aut | |
700 | 0 | |a Kai Du |e verfasserin |4 aut | |
700 | 0 | |a Xiaonan Zhang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 8(2020), Seite 102971-102981 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2020 |g pages:102971-102981 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2020.2997958 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/c3756f8adddf46ce83102ab4ff9c3a5d |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/9102298/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2020 |h 102971-102981 |
author_variant |
j s js f l fl k d kd k d kd x z xz |
---|---|
matchkey_str |
article:21693536:2020----::eatcopeesooqetosnaytmocieeagaeaeos |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
TK |
publishDate |
2020 |
allfields |
10.1109/ACCESS.2020.2997958 doi (DE-627)DOAJ069588236 (DE-599)DOAJc3756f8adddf46ce83102ab4ff9c3a5d DE-627 ger DE-627 rakwb eng TK1-9971 Jiaxing Song verfasserin aut Semantic Comprehension of Questions in Q&A System for Chinese Language Based on Semantic Element Combination 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Question understanding is an extremely important part of the question and answer (Q&A) system, which is the basis of subsequent information retrieval and answer extraction. In order to improve the semantic understanding of question, we propose a method of understanding the question based on the combination of semantic element for Chinese language. Firstly, the method uses lexical and rules recognition to extract the semantic elements of questions and recognizes the functions according to the preprocessing pattern. Secondly, combining the dependency analysis tree structure of the question and the function type, it can produce the semantic elements. Finally, a normalized semantic expression was generated. We extract the user questions in Baidu-Zhidao as the test set. The result shows that the accuracy of the proposed method is 97.8%, so the semantics of the Chinese language questions can be effectively understood by this method. Semantics system analysis and design logic testing Electrical engineering. Electronics. Nuclear engineering Feilong Liu verfasserin aut Kai Ding verfasserin aut Kai Du verfasserin aut Xiaonan Zhang verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 102971-102981 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:102971-102981 https://doi.org/10.1109/ACCESS.2020.2997958 kostenfrei https://doaj.org/article/c3756f8adddf46ce83102ab4ff9c3a5d kostenfrei https://ieeexplore.ieee.org/document/9102298/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 102971-102981 |
spelling |
10.1109/ACCESS.2020.2997958 doi (DE-627)DOAJ069588236 (DE-599)DOAJc3756f8adddf46ce83102ab4ff9c3a5d DE-627 ger DE-627 rakwb eng TK1-9971 Jiaxing Song verfasserin aut Semantic Comprehension of Questions in Q&A System for Chinese Language Based on Semantic Element Combination 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Question understanding is an extremely important part of the question and answer (Q&A) system, which is the basis of subsequent information retrieval and answer extraction. In order to improve the semantic understanding of question, we propose a method of understanding the question based on the combination of semantic element for Chinese language. Firstly, the method uses lexical and rules recognition to extract the semantic elements of questions and recognizes the functions according to the preprocessing pattern. Secondly, combining the dependency analysis tree structure of the question and the function type, it can produce the semantic elements. Finally, a normalized semantic expression was generated. We extract the user questions in Baidu-Zhidao as the test set. The result shows that the accuracy of the proposed method is 97.8%, so the semantics of the Chinese language questions can be effectively understood by this method. Semantics system analysis and design logic testing Electrical engineering. Electronics. Nuclear engineering Feilong Liu verfasserin aut Kai Ding verfasserin aut Kai Du verfasserin aut Xiaonan Zhang verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 102971-102981 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:102971-102981 https://doi.org/10.1109/ACCESS.2020.2997958 kostenfrei https://doaj.org/article/c3756f8adddf46ce83102ab4ff9c3a5d kostenfrei https://ieeexplore.ieee.org/document/9102298/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 102971-102981 |
allfields_unstemmed |
10.1109/ACCESS.2020.2997958 doi (DE-627)DOAJ069588236 (DE-599)DOAJc3756f8adddf46ce83102ab4ff9c3a5d DE-627 ger DE-627 rakwb eng TK1-9971 Jiaxing Song verfasserin aut Semantic Comprehension of Questions in Q&A System for Chinese Language Based on Semantic Element Combination 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Question understanding is an extremely important part of the question and answer (Q&A) system, which is the basis of subsequent information retrieval and answer extraction. In order to improve the semantic understanding of question, we propose a method of understanding the question based on the combination of semantic element for Chinese language. Firstly, the method uses lexical and rules recognition to extract the semantic elements of questions and recognizes the functions according to the preprocessing pattern. Secondly, combining the dependency analysis tree structure of the question and the function type, it can produce the semantic elements. Finally, a normalized semantic expression was generated. We extract the user questions in Baidu-Zhidao as the test set. The result shows that the accuracy of the proposed method is 97.8%, so the semantics of the Chinese language questions can be effectively understood by this method. Semantics system analysis and design logic testing Electrical engineering. Electronics. Nuclear engineering Feilong Liu verfasserin aut Kai Ding verfasserin aut Kai Du verfasserin aut Xiaonan Zhang verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 102971-102981 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:102971-102981 https://doi.org/10.1109/ACCESS.2020.2997958 kostenfrei https://doaj.org/article/c3756f8adddf46ce83102ab4ff9c3a5d kostenfrei https://ieeexplore.ieee.org/document/9102298/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 102971-102981 |
allfieldsGer |
10.1109/ACCESS.2020.2997958 doi (DE-627)DOAJ069588236 (DE-599)DOAJc3756f8adddf46ce83102ab4ff9c3a5d DE-627 ger DE-627 rakwb eng TK1-9971 Jiaxing Song verfasserin aut Semantic Comprehension of Questions in Q&A System for Chinese Language Based on Semantic Element Combination 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Question understanding is an extremely important part of the question and answer (Q&A) system, which is the basis of subsequent information retrieval and answer extraction. In order to improve the semantic understanding of question, we propose a method of understanding the question based on the combination of semantic element for Chinese language. Firstly, the method uses lexical and rules recognition to extract the semantic elements of questions and recognizes the functions according to the preprocessing pattern. Secondly, combining the dependency analysis tree structure of the question and the function type, it can produce the semantic elements. Finally, a normalized semantic expression was generated. We extract the user questions in Baidu-Zhidao as the test set. The result shows that the accuracy of the proposed method is 97.8%, so the semantics of the Chinese language questions can be effectively understood by this method. Semantics system analysis and design logic testing Electrical engineering. Electronics. Nuclear engineering Feilong Liu verfasserin aut Kai Ding verfasserin aut Kai Du verfasserin aut Xiaonan Zhang verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 102971-102981 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:102971-102981 https://doi.org/10.1109/ACCESS.2020.2997958 kostenfrei https://doaj.org/article/c3756f8adddf46ce83102ab4ff9c3a5d kostenfrei https://ieeexplore.ieee.org/document/9102298/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 102971-102981 |
allfieldsSound |
10.1109/ACCESS.2020.2997958 doi (DE-627)DOAJ069588236 (DE-599)DOAJc3756f8adddf46ce83102ab4ff9c3a5d DE-627 ger DE-627 rakwb eng TK1-9971 Jiaxing Song verfasserin aut Semantic Comprehension of Questions in Q&A System for Chinese Language Based on Semantic Element Combination 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Question understanding is an extremely important part of the question and answer (Q&A) system, which is the basis of subsequent information retrieval and answer extraction. In order to improve the semantic understanding of question, we propose a method of understanding the question based on the combination of semantic element for Chinese language. Firstly, the method uses lexical and rules recognition to extract the semantic elements of questions and recognizes the functions according to the preprocessing pattern. Secondly, combining the dependency analysis tree structure of the question and the function type, it can produce the semantic elements. Finally, a normalized semantic expression was generated. We extract the user questions in Baidu-Zhidao as the test set. The result shows that the accuracy of the proposed method is 97.8%, so the semantics of the Chinese language questions can be effectively understood by this method. Semantics system analysis and design logic testing Electrical engineering. Electronics. Nuclear engineering Feilong Liu verfasserin aut Kai Ding verfasserin aut Kai Du verfasserin aut Xiaonan Zhang verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 102971-102981 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:102971-102981 https://doi.org/10.1109/ACCESS.2020.2997958 kostenfrei https://doaj.org/article/c3756f8adddf46ce83102ab4ff9c3a5d kostenfrei https://ieeexplore.ieee.org/document/9102298/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 102971-102981 |
language |
English |
source |
In IEEE Access 8(2020), Seite 102971-102981 volume:8 year:2020 pages:102971-102981 |
sourceStr |
In IEEE Access 8(2020), Seite 102971-102981 volume:8 year:2020 pages:102971-102981 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Semantics system analysis and design logic testing Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Jiaxing Song @@aut@@ Feilong Liu @@aut@@ Kai Ding @@aut@@ Kai Du @@aut@@ Xiaonan Zhang @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ069588236 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ069588236</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309084640.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2020.2997958</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ069588236</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc3756f8adddf46ce83102ab4ff9c3a5d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jiaxing Song</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Semantic Comprehension of Questions in Q&A System for Chinese Language Based on Semantic Element Combination</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Question understanding is an extremely important part of the question and answer (Q&A) system, which is the basis of subsequent information retrieval and answer extraction. In order to improve the semantic understanding of question, we propose a method of understanding the question based on the combination of semantic element for Chinese language. Firstly, the method uses lexical and rules recognition to extract the semantic elements of questions and recognizes the functions according to the preprocessing pattern. Secondly, combining the dependency analysis tree structure of the question and the function type, it can produce the semantic elements. Finally, a normalized semantic expression was generated. We extract the user questions in Baidu-Zhidao as the test set. The result shows that the accuracy of the proposed method is 97.8%, so the semantics of the Chinese language questions can be effectively understood by this method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semantics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">system analysis and design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">logic testing</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Feilong Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kai Ding</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kai Du</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaonan Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">8(2020), Seite 102971-102981</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:102971-102981</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2020.2997958</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c3756f8adddf46ce83102ab4ff9c3a5d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9102298/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="h">102971-102981</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Jiaxing Song |
spellingShingle |
Jiaxing Song misc TK1-9971 misc Semantics misc system analysis and design misc logic testing misc Electrical engineering. Electronics. Nuclear engineering Semantic Comprehension of Questions in Q&A System for Chinese Language Based on Semantic Element Combination |
authorStr |
Jiaxing Song |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 Semantic Comprehension of Questions in Q&A System for Chinese Language Based on Semantic Element Combination Semantics system analysis and design logic testing |
topic |
misc TK1-9971 misc Semantics misc system analysis and design misc logic testing misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Semantics misc system analysis and design misc logic testing misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Semantics misc system analysis and design misc logic testing misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
Semantic Comprehension of Questions in Q&A System for Chinese Language Based on Semantic Element Combination |
ctrlnum |
(DE-627)DOAJ069588236 (DE-599)DOAJc3756f8adddf46ce83102ab4ff9c3a5d |
title_full |
Semantic Comprehension of Questions in Q&A System for Chinese Language Based on Semantic Element Combination |
author_sort |
Jiaxing Song |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
102971 |
author_browse |
Jiaxing Song Feilong Liu Kai Ding Kai Du Xiaonan Zhang |
container_volume |
8 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Jiaxing Song |
doi_str_mv |
10.1109/ACCESS.2020.2997958 |
author2-role |
verfasserin |
title_sort |
semantic comprehension of questions in q&a system for chinese language based on semantic element combination |
callnumber |
TK1-9971 |
title_auth |
Semantic Comprehension of Questions in Q&A System for Chinese Language Based on Semantic Element Combination |
abstract |
Question understanding is an extremely important part of the question and answer (Q&A) system, which is the basis of subsequent information retrieval and answer extraction. In order to improve the semantic understanding of question, we propose a method of understanding the question based on the combination of semantic element for Chinese language. Firstly, the method uses lexical and rules recognition to extract the semantic elements of questions and recognizes the functions according to the preprocessing pattern. Secondly, combining the dependency analysis tree structure of the question and the function type, it can produce the semantic elements. Finally, a normalized semantic expression was generated. We extract the user questions in Baidu-Zhidao as the test set. The result shows that the accuracy of the proposed method is 97.8%, so the semantics of the Chinese language questions can be effectively understood by this method. |
abstractGer |
Question understanding is an extremely important part of the question and answer (Q&A) system, which is the basis of subsequent information retrieval and answer extraction. In order to improve the semantic understanding of question, we propose a method of understanding the question based on the combination of semantic element for Chinese language. Firstly, the method uses lexical and rules recognition to extract the semantic elements of questions and recognizes the functions according to the preprocessing pattern. Secondly, combining the dependency analysis tree structure of the question and the function type, it can produce the semantic elements. Finally, a normalized semantic expression was generated. We extract the user questions in Baidu-Zhidao as the test set. The result shows that the accuracy of the proposed method is 97.8%, so the semantics of the Chinese language questions can be effectively understood by this method. |
abstract_unstemmed |
Question understanding is an extremely important part of the question and answer (Q&A) system, which is the basis of subsequent information retrieval and answer extraction. In order to improve the semantic understanding of question, we propose a method of understanding the question based on the combination of semantic element for Chinese language. Firstly, the method uses lexical and rules recognition to extract the semantic elements of questions and recognizes the functions according to the preprocessing pattern. Secondly, combining the dependency analysis tree structure of the question and the function type, it can produce the semantic elements. Finally, a normalized semantic expression was generated. We extract the user questions in Baidu-Zhidao as the test set. The result shows that the accuracy of the proposed method is 97.8%, so the semantics of the Chinese language questions can be effectively understood by this method. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Semantic Comprehension of Questions in Q&A System for Chinese Language Based on Semantic Element Combination |
url |
https://doi.org/10.1109/ACCESS.2020.2997958 https://doaj.org/article/c3756f8adddf46ce83102ab4ff9c3a5d https://ieeexplore.ieee.org/document/9102298/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Feilong Liu Kai Ding Kai Du Xiaonan Zhang |
author2Str |
Feilong Liu Kai Ding Kai Du Xiaonan Zhang |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2020.2997958 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T23:54:23.901Z |
_version_ |
1803604054666903552 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ069588236</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309084640.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2020.2997958</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ069588236</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc3756f8adddf46ce83102ab4ff9c3a5d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jiaxing Song</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Semantic Comprehension of Questions in Q&A System for Chinese Language Based on Semantic Element Combination</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Question understanding is an extremely important part of the question and answer (Q&A) system, which is the basis of subsequent information retrieval and answer extraction. In order to improve the semantic understanding of question, we propose a method of understanding the question based on the combination of semantic element for Chinese language. Firstly, the method uses lexical and rules recognition to extract the semantic elements of questions and recognizes the functions according to the preprocessing pattern. Secondly, combining the dependency analysis tree structure of the question and the function type, it can produce the semantic elements. Finally, a normalized semantic expression was generated. We extract the user questions in Baidu-Zhidao as the test set. The result shows that the accuracy of the proposed method is 97.8%, so the semantics of the Chinese language questions can be effectively understood by this method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semantics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">system analysis and design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">logic testing</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Feilong Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kai Ding</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kai Du</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaonan Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">8(2020), Seite 102971-102981</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:102971-102981</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2020.2997958</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c3756f8adddf46ce83102ab4ff9c3a5d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9102298/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="h">102971-102981</subfield></datafield></record></collection>
|
score |
7.40077 |