An Exact Derivative Based Aero-Engine Modeling Method
Derivatives are involved in getting the Jacobian matrix for the component-level model (CLM) and the state-space model of aero-engines. However, the relationships among the variables of aero-engine are complex, and it is difficult to get analytical derivatives, which results in that the approximate d...
Ausführliche Beschreibung
Autor*in: |
Shuwei Pang [verfasserIn] Qiuhong Li [verfasserIn] Haibo Zhang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 6(2018), Seite 34516-34526 |
---|---|
Übergeordnetes Werk: |
volume:6 ; year:2018 ; pages:34516-34526 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2018.2849752 |
---|
Katalog-ID: |
DOAJ069661308 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ069661308 | ||
003 | DE-627 | ||
005 | 20230309085004.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2018.2849752 |2 doi | |
035 | |a (DE-627)DOAJ069661308 | ||
035 | |a (DE-599)DOAJ289e6a23e8af4d899d35aa69da6428e4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Shuwei Pang |e verfasserin |4 aut | |
245 | 1 | 3 | |a An Exact Derivative Based Aero-Engine Modeling Method |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Derivatives are involved in getting the Jacobian matrix for the component-level model (CLM) and the state-space model of aero-engines. However, the relationships among the variables of aero-engine are complex, and it is difficult to get analytical derivatives, which results in that the approximate derivatives are calculated by finite difference approaches and the real-time property is constrained. Thus, an exact derivative-based modeling method of aero-engine, which transforms the problem of derivative calculation to the problem of differential calculation with a chain-derivation method, is proposed. Also, the differential calculations can be executed along with the component models, and no extra aerothermodynamics calculation iteration is required. The proposed method is implemented in the steady state and transient-state calculation of the CLM, so the real-time property of the model is improved. Compared to the conventional models with centered difference method, the total time consuming of the CLM built by proposed method can be decreased more than 54% and 55% in the steady state calculation and transient-state calculation, respectively. | ||
650 | 4 | |a Aero-engine | |
650 | 4 | |a component level model | |
650 | 4 | |a exact derivative | |
650 | 4 | |a finite difference | |
650 | 4 | |a Jacobian matrix | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Qiuhong Li |e verfasserin |4 aut | |
700 | 0 | |a Haibo Zhang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 6(2018), Seite 34516-34526 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:6 |g year:2018 |g pages:34516-34526 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2018.2849752 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/289e6a23e8af4d899d35aa69da6428e4 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/8392695/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 6 |j 2018 |h 34516-34526 |
author_variant |
s p sp q l ql h z hz |
---|---|
matchkey_str |
article:21693536:2018----::nxcdrvtvbsdeonie |
hierarchy_sort_str |
2018 |
callnumber-subject-code |
TK |
publishDate |
2018 |
allfields |
10.1109/ACCESS.2018.2849752 doi (DE-627)DOAJ069661308 (DE-599)DOAJ289e6a23e8af4d899d35aa69da6428e4 DE-627 ger DE-627 rakwb eng TK1-9971 Shuwei Pang verfasserin aut An Exact Derivative Based Aero-Engine Modeling Method 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Derivatives are involved in getting the Jacobian matrix for the component-level model (CLM) and the state-space model of aero-engines. However, the relationships among the variables of aero-engine are complex, and it is difficult to get analytical derivatives, which results in that the approximate derivatives are calculated by finite difference approaches and the real-time property is constrained. Thus, an exact derivative-based modeling method of aero-engine, which transforms the problem of derivative calculation to the problem of differential calculation with a chain-derivation method, is proposed. Also, the differential calculations can be executed along with the component models, and no extra aerothermodynamics calculation iteration is required. The proposed method is implemented in the steady state and transient-state calculation of the CLM, so the real-time property of the model is improved. Compared to the conventional models with centered difference method, the total time consuming of the CLM built by proposed method can be decreased more than 54% and 55% in the steady state calculation and transient-state calculation, respectively. Aero-engine component level model exact derivative finite difference Jacobian matrix Electrical engineering. Electronics. Nuclear engineering Qiuhong Li verfasserin aut Haibo Zhang verfasserin aut In IEEE Access IEEE, 2014 6(2018), Seite 34516-34526 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:6 year:2018 pages:34516-34526 https://doi.org/10.1109/ACCESS.2018.2849752 kostenfrei https://doaj.org/article/289e6a23e8af4d899d35aa69da6428e4 kostenfrei https://ieeexplore.ieee.org/document/8392695/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 34516-34526 |
spelling |
10.1109/ACCESS.2018.2849752 doi (DE-627)DOAJ069661308 (DE-599)DOAJ289e6a23e8af4d899d35aa69da6428e4 DE-627 ger DE-627 rakwb eng TK1-9971 Shuwei Pang verfasserin aut An Exact Derivative Based Aero-Engine Modeling Method 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Derivatives are involved in getting the Jacobian matrix for the component-level model (CLM) and the state-space model of aero-engines. However, the relationships among the variables of aero-engine are complex, and it is difficult to get analytical derivatives, which results in that the approximate derivatives are calculated by finite difference approaches and the real-time property is constrained. Thus, an exact derivative-based modeling method of aero-engine, which transforms the problem of derivative calculation to the problem of differential calculation with a chain-derivation method, is proposed. Also, the differential calculations can be executed along with the component models, and no extra aerothermodynamics calculation iteration is required. The proposed method is implemented in the steady state and transient-state calculation of the CLM, so the real-time property of the model is improved. Compared to the conventional models with centered difference method, the total time consuming of the CLM built by proposed method can be decreased more than 54% and 55% in the steady state calculation and transient-state calculation, respectively. Aero-engine component level model exact derivative finite difference Jacobian matrix Electrical engineering. Electronics. Nuclear engineering Qiuhong Li verfasserin aut Haibo Zhang verfasserin aut In IEEE Access IEEE, 2014 6(2018), Seite 34516-34526 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:6 year:2018 pages:34516-34526 https://doi.org/10.1109/ACCESS.2018.2849752 kostenfrei https://doaj.org/article/289e6a23e8af4d899d35aa69da6428e4 kostenfrei https://ieeexplore.ieee.org/document/8392695/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 34516-34526 |
allfields_unstemmed |
10.1109/ACCESS.2018.2849752 doi (DE-627)DOAJ069661308 (DE-599)DOAJ289e6a23e8af4d899d35aa69da6428e4 DE-627 ger DE-627 rakwb eng TK1-9971 Shuwei Pang verfasserin aut An Exact Derivative Based Aero-Engine Modeling Method 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Derivatives are involved in getting the Jacobian matrix for the component-level model (CLM) and the state-space model of aero-engines. However, the relationships among the variables of aero-engine are complex, and it is difficult to get analytical derivatives, which results in that the approximate derivatives are calculated by finite difference approaches and the real-time property is constrained. Thus, an exact derivative-based modeling method of aero-engine, which transforms the problem of derivative calculation to the problem of differential calculation with a chain-derivation method, is proposed. Also, the differential calculations can be executed along with the component models, and no extra aerothermodynamics calculation iteration is required. The proposed method is implemented in the steady state and transient-state calculation of the CLM, so the real-time property of the model is improved. Compared to the conventional models with centered difference method, the total time consuming of the CLM built by proposed method can be decreased more than 54% and 55% in the steady state calculation and transient-state calculation, respectively. Aero-engine component level model exact derivative finite difference Jacobian matrix Electrical engineering. Electronics. Nuclear engineering Qiuhong Li verfasserin aut Haibo Zhang verfasserin aut In IEEE Access IEEE, 2014 6(2018), Seite 34516-34526 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:6 year:2018 pages:34516-34526 https://doi.org/10.1109/ACCESS.2018.2849752 kostenfrei https://doaj.org/article/289e6a23e8af4d899d35aa69da6428e4 kostenfrei https://ieeexplore.ieee.org/document/8392695/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 34516-34526 |
allfieldsGer |
10.1109/ACCESS.2018.2849752 doi (DE-627)DOAJ069661308 (DE-599)DOAJ289e6a23e8af4d899d35aa69da6428e4 DE-627 ger DE-627 rakwb eng TK1-9971 Shuwei Pang verfasserin aut An Exact Derivative Based Aero-Engine Modeling Method 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Derivatives are involved in getting the Jacobian matrix for the component-level model (CLM) and the state-space model of aero-engines. However, the relationships among the variables of aero-engine are complex, and it is difficult to get analytical derivatives, which results in that the approximate derivatives are calculated by finite difference approaches and the real-time property is constrained. Thus, an exact derivative-based modeling method of aero-engine, which transforms the problem of derivative calculation to the problem of differential calculation with a chain-derivation method, is proposed. Also, the differential calculations can be executed along with the component models, and no extra aerothermodynamics calculation iteration is required. The proposed method is implemented in the steady state and transient-state calculation of the CLM, so the real-time property of the model is improved. Compared to the conventional models with centered difference method, the total time consuming of the CLM built by proposed method can be decreased more than 54% and 55% in the steady state calculation and transient-state calculation, respectively. Aero-engine component level model exact derivative finite difference Jacobian matrix Electrical engineering. Electronics. Nuclear engineering Qiuhong Li verfasserin aut Haibo Zhang verfasserin aut In IEEE Access IEEE, 2014 6(2018), Seite 34516-34526 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:6 year:2018 pages:34516-34526 https://doi.org/10.1109/ACCESS.2018.2849752 kostenfrei https://doaj.org/article/289e6a23e8af4d899d35aa69da6428e4 kostenfrei https://ieeexplore.ieee.org/document/8392695/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 34516-34526 |
allfieldsSound |
10.1109/ACCESS.2018.2849752 doi (DE-627)DOAJ069661308 (DE-599)DOAJ289e6a23e8af4d899d35aa69da6428e4 DE-627 ger DE-627 rakwb eng TK1-9971 Shuwei Pang verfasserin aut An Exact Derivative Based Aero-Engine Modeling Method 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Derivatives are involved in getting the Jacobian matrix for the component-level model (CLM) and the state-space model of aero-engines. However, the relationships among the variables of aero-engine are complex, and it is difficult to get analytical derivatives, which results in that the approximate derivatives are calculated by finite difference approaches and the real-time property is constrained. Thus, an exact derivative-based modeling method of aero-engine, which transforms the problem of derivative calculation to the problem of differential calculation with a chain-derivation method, is proposed. Also, the differential calculations can be executed along with the component models, and no extra aerothermodynamics calculation iteration is required. The proposed method is implemented in the steady state and transient-state calculation of the CLM, so the real-time property of the model is improved. Compared to the conventional models with centered difference method, the total time consuming of the CLM built by proposed method can be decreased more than 54% and 55% in the steady state calculation and transient-state calculation, respectively. Aero-engine component level model exact derivative finite difference Jacobian matrix Electrical engineering. Electronics. Nuclear engineering Qiuhong Li verfasserin aut Haibo Zhang verfasserin aut In IEEE Access IEEE, 2014 6(2018), Seite 34516-34526 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:6 year:2018 pages:34516-34526 https://doi.org/10.1109/ACCESS.2018.2849752 kostenfrei https://doaj.org/article/289e6a23e8af4d899d35aa69da6428e4 kostenfrei https://ieeexplore.ieee.org/document/8392695/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 34516-34526 |
language |
English |
source |
In IEEE Access 6(2018), Seite 34516-34526 volume:6 year:2018 pages:34516-34526 |
sourceStr |
In IEEE Access 6(2018), Seite 34516-34526 volume:6 year:2018 pages:34516-34526 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Aero-engine component level model exact derivative finite difference Jacobian matrix Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Shuwei Pang @@aut@@ Qiuhong Li @@aut@@ Haibo Zhang @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ069661308 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ069661308</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309085004.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2018.2849752</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ069661308</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ289e6a23e8af4d899d35aa69da6428e4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Shuwei Pang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An Exact Derivative Based Aero-Engine Modeling Method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Derivatives are involved in getting the Jacobian matrix for the component-level model (CLM) and the state-space model of aero-engines. However, the relationships among the variables of aero-engine are complex, and it is difficult to get analytical derivatives, which results in that the approximate derivatives are calculated by finite difference approaches and the real-time property is constrained. Thus, an exact derivative-based modeling method of aero-engine, which transforms the problem of derivative calculation to the problem of differential calculation with a chain-derivation method, is proposed. Also, the differential calculations can be executed along with the component models, and no extra aerothermodynamics calculation iteration is required. The proposed method is implemented in the steady state and transient-state calculation of the CLM, so the real-time property of the model is improved. Compared to the conventional models with centered difference method, the total time consuming of the CLM built by proposed method can be decreased more than 54% and 55% in the steady state calculation and transient-state calculation, respectively.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aero-engine</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">component level model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">exact derivative</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">finite difference</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Jacobian matrix</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qiuhong Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haibo Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">6(2018), Seite 34516-34526</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2018</subfield><subfield code="g">pages:34516-34526</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2018.2849752</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/289e6a23e8af4d899d35aa69da6428e4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8392695/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2018</subfield><subfield code="h">34516-34526</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Shuwei Pang |
spellingShingle |
Shuwei Pang misc TK1-9971 misc Aero-engine misc component level model misc exact derivative misc finite difference misc Jacobian matrix misc Electrical engineering. Electronics. Nuclear engineering An Exact Derivative Based Aero-Engine Modeling Method |
authorStr |
Shuwei Pang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 An Exact Derivative Based Aero-Engine Modeling Method Aero-engine component level model exact derivative finite difference Jacobian matrix |
topic |
misc TK1-9971 misc Aero-engine misc component level model misc exact derivative misc finite difference misc Jacobian matrix misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Aero-engine misc component level model misc exact derivative misc finite difference misc Jacobian matrix misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Aero-engine misc component level model misc exact derivative misc finite difference misc Jacobian matrix misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
An Exact Derivative Based Aero-Engine Modeling Method |
ctrlnum |
(DE-627)DOAJ069661308 (DE-599)DOAJ289e6a23e8af4d899d35aa69da6428e4 |
title_full |
An Exact Derivative Based Aero-Engine Modeling Method |
author_sort |
Shuwei Pang |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
34516 |
author_browse |
Shuwei Pang Qiuhong Li Haibo Zhang |
container_volume |
6 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Shuwei Pang |
doi_str_mv |
10.1109/ACCESS.2018.2849752 |
author2-role |
verfasserin |
title_sort |
exact derivative based aero-engine modeling method |
callnumber |
TK1-9971 |
title_auth |
An Exact Derivative Based Aero-Engine Modeling Method |
abstract |
Derivatives are involved in getting the Jacobian matrix for the component-level model (CLM) and the state-space model of aero-engines. However, the relationships among the variables of aero-engine are complex, and it is difficult to get analytical derivatives, which results in that the approximate derivatives are calculated by finite difference approaches and the real-time property is constrained. Thus, an exact derivative-based modeling method of aero-engine, which transforms the problem of derivative calculation to the problem of differential calculation with a chain-derivation method, is proposed. Also, the differential calculations can be executed along with the component models, and no extra aerothermodynamics calculation iteration is required. The proposed method is implemented in the steady state and transient-state calculation of the CLM, so the real-time property of the model is improved. Compared to the conventional models with centered difference method, the total time consuming of the CLM built by proposed method can be decreased more than 54% and 55% in the steady state calculation and transient-state calculation, respectively. |
abstractGer |
Derivatives are involved in getting the Jacobian matrix for the component-level model (CLM) and the state-space model of aero-engines. However, the relationships among the variables of aero-engine are complex, and it is difficult to get analytical derivatives, which results in that the approximate derivatives are calculated by finite difference approaches and the real-time property is constrained. Thus, an exact derivative-based modeling method of aero-engine, which transforms the problem of derivative calculation to the problem of differential calculation with a chain-derivation method, is proposed. Also, the differential calculations can be executed along with the component models, and no extra aerothermodynamics calculation iteration is required. The proposed method is implemented in the steady state and transient-state calculation of the CLM, so the real-time property of the model is improved. Compared to the conventional models with centered difference method, the total time consuming of the CLM built by proposed method can be decreased more than 54% and 55% in the steady state calculation and transient-state calculation, respectively. |
abstract_unstemmed |
Derivatives are involved in getting the Jacobian matrix for the component-level model (CLM) and the state-space model of aero-engines. However, the relationships among the variables of aero-engine are complex, and it is difficult to get analytical derivatives, which results in that the approximate derivatives are calculated by finite difference approaches and the real-time property is constrained. Thus, an exact derivative-based modeling method of aero-engine, which transforms the problem of derivative calculation to the problem of differential calculation with a chain-derivation method, is proposed. Also, the differential calculations can be executed along with the component models, and no extra aerothermodynamics calculation iteration is required. The proposed method is implemented in the steady state and transient-state calculation of the CLM, so the real-time property of the model is improved. Compared to the conventional models with centered difference method, the total time consuming of the CLM built by proposed method can be decreased more than 54% and 55% in the steady state calculation and transient-state calculation, respectively. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
An Exact Derivative Based Aero-Engine Modeling Method |
url |
https://doi.org/10.1109/ACCESS.2018.2849752 https://doaj.org/article/289e6a23e8af4d899d35aa69da6428e4 https://ieeexplore.ieee.org/document/8392695/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Qiuhong Li Haibo Zhang |
author2Str |
Qiuhong Li Haibo Zhang |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2018.2849752 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-04T00:11:03.664Z |
_version_ |
1803605102994391041 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ069661308</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309085004.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2018.2849752</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ069661308</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ289e6a23e8af4d899d35aa69da6428e4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Shuwei Pang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An Exact Derivative Based Aero-Engine Modeling Method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Derivatives are involved in getting the Jacobian matrix for the component-level model (CLM) and the state-space model of aero-engines. However, the relationships among the variables of aero-engine are complex, and it is difficult to get analytical derivatives, which results in that the approximate derivatives are calculated by finite difference approaches and the real-time property is constrained. Thus, an exact derivative-based modeling method of aero-engine, which transforms the problem of derivative calculation to the problem of differential calculation with a chain-derivation method, is proposed. Also, the differential calculations can be executed along with the component models, and no extra aerothermodynamics calculation iteration is required. The proposed method is implemented in the steady state and transient-state calculation of the CLM, so the real-time property of the model is improved. Compared to the conventional models with centered difference method, the total time consuming of the CLM built by proposed method can be decreased more than 54% and 55% in the steady state calculation and transient-state calculation, respectively.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aero-engine</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">component level model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">exact derivative</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">finite difference</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Jacobian matrix</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qiuhong Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haibo Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">6(2018), Seite 34516-34526</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2018</subfield><subfield code="g">pages:34516-34526</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2018.2849752</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/289e6a23e8af4d899d35aa69da6428e4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8392695/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2018</subfield><subfield code="h">34516-34526</subfield></datafield></record></collection>
|
score |
7.4014397 |