Research on Deadbeat Current Prediction Vector Control System of Axial Flux Permanent Magnet Synchronous Motor for Electric Bus Based on Efficiency Optimal Torque Distribution Method
In order to improve the cruising range of electric bus, this paper studies the deadbeat current prediction vector control system of axial flux permanent magnet synchronous motor (AFPMSM) for electric bus based on the optimal torque distribution method. Firstly, the mathematical model of the three st...
Ausführliche Beschreibung
Autor*in: |
Jianfei Zhao [verfasserIn] Lixiao Zheng [verfasserIn] Shuang Wang [verfasserIn] Minqi Hua [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 7(2019), Seite 128384-128393 |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:2019 ; pages:128384-128393 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2019.2939759 |
---|
Katalog-ID: |
DOAJ069716129 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ069716129 | ||
003 | DE-627 | ||
005 | 20230309085240.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2019.2939759 |2 doi | |
035 | |a (DE-627)DOAJ069716129 | ||
035 | |a (DE-599)DOAJ90f483a04adc4580b14cf244e52c40d0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Jianfei Zhao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Research on Deadbeat Current Prediction Vector Control System of Axial Flux Permanent Magnet Synchronous Motor for Electric Bus Based on Efficiency Optimal Torque Distribution Method |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In order to improve the cruising range of electric bus, this paper studies the deadbeat current prediction vector control system of axial flux permanent magnet synchronous motor (AFPMSM) for electric bus based on the optimal torque distribution method. Firstly, the mathematical model of the three stators-double rotors AFPMSM is established. Secondly, in order to improve the high efficiency range, the efficiency optimal torque distribution method is proposed based on the average torque distribution method and the back propagation (BP) neural network is used to find the optimal torque distribution method. Then a current control strategy based on deadbeat current prediction control is proposed to improve the torque tracking characteristics. Finally, a drive control system is developed for the proposed control strategy, and experimental research and vehicle testing are carried out. The experimental results show that the BP neural network-based torque distribution method designed in this paper increases the high efficiency range of the drive system and improves the cruising range of the electric bus. The drive system using a current controller based on deadbeat current prediction control exhibits good dynamic and steady state performance. | ||
650 | 4 | |a Electric bus | |
650 | 4 | |a AFPMSM | |
650 | 4 | |a BP neural network | |
650 | 4 | |a efficiency optimal torque distribution | |
650 | 4 | |a deadbeat current prediction control | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Lixiao Zheng |e verfasserin |4 aut | |
700 | 0 | |a Shuang Wang |e verfasserin |4 aut | |
700 | 0 | |a Minqi Hua |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 7(2019), Seite 128384-128393 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:2019 |g pages:128384-128393 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2019.2939759 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/90f483a04adc4580b14cf244e52c40d0 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/8826575/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 7 |j 2019 |h 128384-128393 |
author_variant |
j z jz l z lz s w sw m h mh |
---|---|
matchkey_str |
article:21693536:2019----::eerhnedeturnpeitovcocnrlytmfxafupraetantycrnumtroeetibsaeo |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
TK |
publishDate |
2019 |
allfields |
10.1109/ACCESS.2019.2939759 doi (DE-627)DOAJ069716129 (DE-599)DOAJ90f483a04adc4580b14cf244e52c40d0 DE-627 ger DE-627 rakwb eng TK1-9971 Jianfei Zhao verfasserin aut Research on Deadbeat Current Prediction Vector Control System of Axial Flux Permanent Magnet Synchronous Motor for Electric Bus Based on Efficiency Optimal Torque Distribution Method 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In order to improve the cruising range of electric bus, this paper studies the deadbeat current prediction vector control system of axial flux permanent magnet synchronous motor (AFPMSM) for electric bus based on the optimal torque distribution method. Firstly, the mathematical model of the three stators-double rotors AFPMSM is established. Secondly, in order to improve the high efficiency range, the efficiency optimal torque distribution method is proposed based on the average torque distribution method and the back propagation (BP) neural network is used to find the optimal torque distribution method. Then a current control strategy based on deadbeat current prediction control is proposed to improve the torque tracking characteristics. Finally, a drive control system is developed for the proposed control strategy, and experimental research and vehicle testing are carried out. The experimental results show that the BP neural network-based torque distribution method designed in this paper increases the high efficiency range of the drive system and improves the cruising range of the electric bus. The drive system using a current controller based on deadbeat current prediction control exhibits good dynamic and steady state performance. Electric bus AFPMSM BP neural network efficiency optimal torque distribution deadbeat current prediction control Electrical engineering. Electronics. Nuclear engineering Lixiao Zheng verfasserin aut Shuang Wang verfasserin aut Minqi Hua verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 128384-128393 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:128384-128393 https://doi.org/10.1109/ACCESS.2019.2939759 kostenfrei https://doaj.org/article/90f483a04adc4580b14cf244e52c40d0 kostenfrei https://ieeexplore.ieee.org/document/8826575/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 128384-128393 |
spelling |
10.1109/ACCESS.2019.2939759 doi (DE-627)DOAJ069716129 (DE-599)DOAJ90f483a04adc4580b14cf244e52c40d0 DE-627 ger DE-627 rakwb eng TK1-9971 Jianfei Zhao verfasserin aut Research on Deadbeat Current Prediction Vector Control System of Axial Flux Permanent Magnet Synchronous Motor for Electric Bus Based on Efficiency Optimal Torque Distribution Method 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In order to improve the cruising range of electric bus, this paper studies the deadbeat current prediction vector control system of axial flux permanent magnet synchronous motor (AFPMSM) for electric bus based on the optimal torque distribution method. Firstly, the mathematical model of the three stators-double rotors AFPMSM is established. Secondly, in order to improve the high efficiency range, the efficiency optimal torque distribution method is proposed based on the average torque distribution method and the back propagation (BP) neural network is used to find the optimal torque distribution method. Then a current control strategy based on deadbeat current prediction control is proposed to improve the torque tracking characteristics. Finally, a drive control system is developed for the proposed control strategy, and experimental research and vehicle testing are carried out. The experimental results show that the BP neural network-based torque distribution method designed in this paper increases the high efficiency range of the drive system and improves the cruising range of the electric bus. The drive system using a current controller based on deadbeat current prediction control exhibits good dynamic and steady state performance. Electric bus AFPMSM BP neural network efficiency optimal torque distribution deadbeat current prediction control Electrical engineering. Electronics. Nuclear engineering Lixiao Zheng verfasserin aut Shuang Wang verfasserin aut Minqi Hua verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 128384-128393 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:128384-128393 https://doi.org/10.1109/ACCESS.2019.2939759 kostenfrei https://doaj.org/article/90f483a04adc4580b14cf244e52c40d0 kostenfrei https://ieeexplore.ieee.org/document/8826575/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 128384-128393 |
allfields_unstemmed |
10.1109/ACCESS.2019.2939759 doi (DE-627)DOAJ069716129 (DE-599)DOAJ90f483a04adc4580b14cf244e52c40d0 DE-627 ger DE-627 rakwb eng TK1-9971 Jianfei Zhao verfasserin aut Research on Deadbeat Current Prediction Vector Control System of Axial Flux Permanent Magnet Synchronous Motor for Electric Bus Based on Efficiency Optimal Torque Distribution Method 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In order to improve the cruising range of electric bus, this paper studies the deadbeat current prediction vector control system of axial flux permanent magnet synchronous motor (AFPMSM) for electric bus based on the optimal torque distribution method. Firstly, the mathematical model of the three stators-double rotors AFPMSM is established. Secondly, in order to improve the high efficiency range, the efficiency optimal torque distribution method is proposed based on the average torque distribution method and the back propagation (BP) neural network is used to find the optimal torque distribution method. Then a current control strategy based on deadbeat current prediction control is proposed to improve the torque tracking characteristics. Finally, a drive control system is developed for the proposed control strategy, and experimental research and vehicle testing are carried out. The experimental results show that the BP neural network-based torque distribution method designed in this paper increases the high efficiency range of the drive system and improves the cruising range of the electric bus. The drive system using a current controller based on deadbeat current prediction control exhibits good dynamic and steady state performance. Electric bus AFPMSM BP neural network efficiency optimal torque distribution deadbeat current prediction control Electrical engineering. Electronics. Nuclear engineering Lixiao Zheng verfasserin aut Shuang Wang verfasserin aut Minqi Hua verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 128384-128393 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:128384-128393 https://doi.org/10.1109/ACCESS.2019.2939759 kostenfrei https://doaj.org/article/90f483a04adc4580b14cf244e52c40d0 kostenfrei https://ieeexplore.ieee.org/document/8826575/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 128384-128393 |
allfieldsGer |
10.1109/ACCESS.2019.2939759 doi (DE-627)DOAJ069716129 (DE-599)DOAJ90f483a04adc4580b14cf244e52c40d0 DE-627 ger DE-627 rakwb eng TK1-9971 Jianfei Zhao verfasserin aut Research on Deadbeat Current Prediction Vector Control System of Axial Flux Permanent Magnet Synchronous Motor for Electric Bus Based on Efficiency Optimal Torque Distribution Method 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In order to improve the cruising range of electric bus, this paper studies the deadbeat current prediction vector control system of axial flux permanent magnet synchronous motor (AFPMSM) for electric bus based on the optimal torque distribution method. Firstly, the mathematical model of the three stators-double rotors AFPMSM is established. Secondly, in order to improve the high efficiency range, the efficiency optimal torque distribution method is proposed based on the average torque distribution method and the back propagation (BP) neural network is used to find the optimal torque distribution method. Then a current control strategy based on deadbeat current prediction control is proposed to improve the torque tracking characteristics. Finally, a drive control system is developed for the proposed control strategy, and experimental research and vehicle testing are carried out. The experimental results show that the BP neural network-based torque distribution method designed in this paper increases the high efficiency range of the drive system and improves the cruising range of the electric bus. The drive system using a current controller based on deadbeat current prediction control exhibits good dynamic and steady state performance. Electric bus AFPMSM BP neural network efficiency optimal torque distribution deadbeat current prediction control Electrical engineering. Electronics. Nuclear engineering Lixiao Zheng verfasserin aut Shuang Wang verfasserin aut Minqi Hua verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 128384-128393 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:128384-128393 https://doi.org/10.1109/ACCESS.2019.2939759 kostenfrei https://doaj.org/article/90f483a04adc4580b14cf244e52c40d0 kostenfrei https://ieeexplore.ieee.org/document/8826575/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 128384-128393 |
allfieldsSound |
10.1109/ACCESS.2019.2939759 doi (DE-627)DOAJ069716129 (DE-599)DOAJ90f483a04adc4580b14cf244e52c40d0 DE-627 ger DE-627 rakwb eng TK1-9971 Jianfei Zhao verfasserin aut Research on Deadbeat Current Prediction Vector Control System of Axial Flux Permanent Magnet Synchronous Motor for Electric Bus Based on Efficiency Optimal Torque Distribution Method 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In order to improve the cruising range of electric bus, this paper studies the deadbeat current prediction vector control system of axial flux permanent magnet synchronous motor (AFPMSM) for electric bus based on the optimal torque distribution method. Firstly, the mathematical model of the three stators-double rotors AFPMSM is established. Secondly, in order to improve the high efficiency range, the efficiency optimal torque distribution method is proposed based on the average torque distribution method and the back propagation (BP) neural network is used to find the optimal torque distribution method. Then a current control strategy based on deadbeat current prediction control is proposed to improve the torque tracking characteristics. Finally, a drive control system is developed for the proposed control strategy, and experimental research and vehicle testing are carried out. The experimental results show that the BP neural network-based torque distribution method designed in this paper increases the high efficiency range of the drive system and improves the cruising range of the electric bus. The drive system using a current controller based on deadbeat current prediction control exhibits good dynamic and steady state performance. Electric bus AFPMSM BP neural network efficiency optimal torque distribution deadbeat current prediction control Electrical engineering. Electronics. Nuclear engineering Lixiao Zheng verfasserin aut Shuang Wang verfasserin aut Minqi Hua verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 128384-128393 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:128384-128393 https://doi.org/10.1109/ACCESS.2019.2939759 kostenfrei https://doaj.org/article/90f483a04adc4580b14cf244e52c40d0 kostenfrei https://ieeexplore.ieee.org/document/8826575/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 128384-128393 |
language |
English |
source |
In IEEE Access 7(2019), Seite 128384-128393 volume:7 year:2019 pages:128384-128393 |
sourceStr |
In IEEE Access 7(2019), Seite 128384-128393 volume:7 year:2019 pages:128384-128393 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Electric bus AFPMSM BP neural network efficiency optimal torque distribution deadbeat current prediction control Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Jianfei Zhao @@aut@@ Lixiao Zheng @@aut@@ Shuang Wang @@aut@@ Minqi Hua @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ069716129 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ069716129</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309085240.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2019.2939759</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ069716129</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ90f483a04adc4580b14cf244e52c40d0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jianfei Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Research on Deadbeat Current Prediction Vector Control System of Axial Flux Permanent Magnet Synchronous Motor for Electric Bus Based on Efficiency Optimal Torque Distribution Method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In order to improve the cruising range of electric bus, this paper studies the deadbeat current prediction vector control system of axial flux permanent magnet synchronous motor (AFPMSM) for electric bus based on the optimal torque distribution method. Firstly, the mathematical model of the three stators-double rotors AFPMSM is established. Secondly, in order to improve the high efficiency range, the efficiency optimal torque distribution method is proposed based on the average torque distribution method and the back propagation (BP) neural network is used to find the optimal torque distribution method. Then a current control strategy based on deadbeat current prediction control is proposed to improve the torque tracking characteristics. Finally, a drive control system is developed for the proposed control strategy, and experimental research and vehicle testing are carried out. The experimental results show that the BP neural network-based torque distribution method designed in this paper increases the high efficiency range of the drive system and improves the cruising range of the electric bus. The drive system using a current controller based on deadbeat current prediction control exhibits good dynamic and steady state performance.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electric bus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">AFPMSM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">BP neural network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">efficiency optimal torque distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deadbeat current prediction control</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lixiao Zheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shuang Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Minqi Hua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">7(2019), Seite 128384-128393</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:128384-128393</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2019.2939759</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/90f483a04adc4580b14cf244e52c40d0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8826575/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2019</subfield><subfield code="h">128384-128393</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Jianfei Zhao |
spellingShingle |
Jianfei Zhao misc TK1-9971 misc Electric bus misc AFPMSM misc BP neural network misc efficiency optimal torque distribution misc deadbeat current prediction control misc Electrical engineering. Electronics. Nuclear engineering Research on Deadbeat Current Prediction Vector Control System of Axial Flux Permanent Magnet Synchronous Motor for Electric Bus Based on Efficiency Optimal Torque Distribution Method |
authorStr |
Jianfei Zhao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 Research on Deadbeat Current Prediction Vector Control System of Axial Flux Permanent Magnet Synchronous Motor for Electric Bus Based on Efficiency Optimal Torque Distribution Method Electric bus AFPMSM BP neural network efficiency optimal torque distribution deadbeat current prediction control |
topic |
misc TK1-9971 misc Electric bus misc AFPMSM misc BP neural network misc efficiency optimal torque distribution misc deadbeat current prediction control misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Electric bus misc AFPMSM misc BP neural network misc efficiency optimal torque distribution misc deadbeat current prediction control misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Electric bus misc AFPMSM misc BP neural network misc efficiency optimal torque distribution misc deadbeat current prediction control misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
Research on Deadbeat Current Prediction Vector Control System of Axial Flux Permanent Magnet Synchronous Motor for Electric Bus Based on Efficiency Optimal Torque Distribution Method |
ctrlnum |
(DE-627)DOAJ069716129 (DE-599)DOAJ90f483a04adc4580b14cf244e52c40d0 |
title_full |
Research on Deadbeat Current Prediction Vector Control System of Axial Flux Permanent Magnet Synchronous Motor for Electric Bus Based on Efficiency Optimal Torque Distribution Method |
author_sort |
Jianfei Zhao |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
128384 |
author_browse |
Jianfei Zhao Lixiao Zheng Shuang Wang Minqi Hua |
container_volume |
7 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Jianfei Zhao |
doi_str_mv |
10.1109/ACCESS.2019.2939759 |
author2-role |
verfasserin |
title_sort |
research on deadbeat current prediction vector control system of axial flux permanent magnet synchronous motor for electric bus based on efficiency optimal torque distribution method |
callnumber |
TK1-9971 |
title_auth |
Research on Deadbeat Current Prediction Vector Control System of Axial Flux Permanent Magnet Synchronous Motor for Electric Bus Based on Efficiency Optimal Torque Distribution Method |
abstract |
In order to improve the cruising range of electric bus, this paper studies the deadbeat current prediction vector control system of axial flux permanent magnet synchronous motor (AFPMSM) for electric bus based on the optimal torque distribution method. Firstly, the mathematical model of the three stators-double rotors AFPMSM is established. Secondly, in order to improve the high efficiency range, the efficiency optimal torque distribution method is proposed based on the average torque distribution method and the back propagation (BP) neural network is used to find the optimal torque distribution method. Then a current control strategy based on deadbeat current prediction control is proposed to improve the torque tracking characteristics. Finally, a drive control system is developed for the proposed control strategy, and experimental research and vehicle testing are carried out. The experimental results show that the BP neural network-based torque distribution method designed in this paper increases the high efficiency range of the drive system and improves the cruising range of the electric bus. The drive system using a current controller based on deadbeat current prediction control exhibits good dynamic and steady state performance. |
abstractGer |
In order to improve the cruising range of electric bus, this paper studies the deadbeat current prediction vector control system of axial flux permanent magnet synchronous motor (AFPMSM) for electric bus based on the optimal torque distribution method. Firstly, the mathematical model of the three stators-double rotors AFPMSM is established. Secondly, in order to improve the high efficiency range, the efficiency optimal torque distribution method is proposed based on the average torque distribution method and the back propagation (BP) neural network is used to find the optimal torque distribution method. Then a current control strategy based on deadbeat current prediction control is proposed to improve the torque tracking characteristics. Finally, a drive control system is developed for the proposed control strategy, and experimental research and vehicle testing are carried out. The experimental results show that the BP neural network-based torque distribution method designed in this paper increases the high efficiency range of the drive system and improves the cruising range of the electric bus. The drive system using a current controller based on deadbeat current prediction control exhibits good dynamic and steady state performance. |
abstract_unstemmed |
In order to improve the cruising range of electric bus, this paper studies the deadbeat current prediction vector control system of axial flux permanent magnet synchronous motor (AFPMSM) for electric bus based on the optimal torque distribution method. Firstly, the mathematical model of the three stators-double rotors AFPMSM is established. Secondly, in order to improve the high efficiency range, the efficiency optimal torque distribution method is proposed based on the average torque distribution method and the back propagation (BP) neural network is used to find the optimal torque distribution method. Then a current control strategy based on deadbeat current prediction control is proposed to improve the torque tracking characteristics. Finally, a drive control system is developed for the proposed control strategy, and experimental research and vehicle testing are carried out. The experimental results show that the BP neural network-based torque distribution method designed in this paper increases the high efficiency range of the drive system and improves the cruising range of the electric bus. The drive system using a current controller based on deadbeat current prediction control exhibits good dynamic and steady state performance. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Research on Deadbeat Current Prediction Vector Control System of Axial Flux Permanent Magnet Synchronous Motor for Electric Bus Based on Efficiency Optimal Torque Distribution Method |
url |
https://doi.org/10.1109/ACCESS.2019.2939759 https://doaj.org/article/90f483a04adc4580b14cf244e52c40d0 https://ieeexplore.ieee.org/document/8826575/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Lixiao Zheng Shuang Wang Minqi Hua |
author2Str |
Lixiao Zheng Shuang Wang Minqi Hua |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2019.2939759 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-04T00:23:32.230Z |
_version_ |
1803605887923781632 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ069716129</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309085240.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2019.2939759</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ069716129</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ90f483a04adc4580b14cf244e52c40d0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jianfei Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Research on Deadbeat Current Prediction Vector Control System of Axial Flux Permanent Magnet Synchronous Motor for Electric Bus Based on Efficiency Optimal Torque Distribution Method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In order to improve the cruising range of electric bus, this paper studies the deadbeat current prediction vector control system of axial flux permanent magnet synchronous motor (AFPMSM) for electric bus based on the optimal torque distribution method. Firstly, the mathematical model of the three stators-double rotors AFPMSM is established. Secondly, in order to improve the high efficiency range, the efficiency optimal torque distribution method is proposed based on the average torque distribution method and the back propagation (BP) neural network is used to find the optimal torque distribution method. Then a current control strategy based on deadbeat current prediction control is proposed to improve the torque tracking characteristics. Finally, a drive control system is developed for the proposed control strategy, and experimental research and vehicle testing are carried out. The experimental results show that the BP neural network-based torque distribution method designed in this paper increases the high efficiency range of the drive system and improves the cruising range of the electric bus. The drive system using a current controller based on deadbeat current prediction control exhibits good dynamic and steady state performance.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electric bus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">AFPMSM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">BP neural network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">efficiency optimal torque distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deadbeat current prediction control</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lixiao Zheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shuang Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Minqi Hua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">7(2019), Seite 128384-128393</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:128384-128393</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2019.2939759</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/90f483a04adc4580b14cf244e52c40d0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8826575/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2019</subfield><subfield code="h">128384-128393</subfield></datafield></record></collection>
|
score |
7.402916 |