Smart Autonomous Vehicle - One Proposed Realisation
The solution presented in this paper demonstrates that even a simple three layers deep, fully connected neural network has the capacity to learn relatively complex tasks as lane keeping and steering a model vehicle by just observing the images from the front facing QVGA camera.
Autor*in: |
Igor Ciganović [verfasserIn] Aleksandar Pluškoski [verfasserIn] Miloš Jovanović [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Robotica & Management - Editura Eftimie Murgu, 2016, 25(2020), 1, Seite 9-14 |
---|---|
Übergeordnetes Werk: |
volume:25 ; year:2020 ; number:1 ; pages:9-14 |
Links: |
---|
Katalog-ID: |
DOAJ070053642 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ070053642 | ||
003 | DE-627 | ||
005 | 20230502141857.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2020 xx |||||o 00| ||eng c | ||
035 | |a (DE-627)DOAJ070053642 | ||
035 | |a (DE-599)DOAJ45ae8d8879e641dcab176bbad5911b9d | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a T1-995 | |
050 | 0 | |a T55.4-60.8 | |
050 | 0 | |a T58.6-58.62 | |
100 | 0 | |a Igor Ciganović |e verfasserin |4 aut | |
245 | 1 | 0 | |a Smart Autonomous Vehicle - One Proposed Realisation |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The solution presented in this paper demonstrates that even a simple three layers deep, fully connected neural network has the capacity to learn relatively complex tasks as lane keeping and steering a model vehicle by just observing the images from the front facing QVGA camera. | ||
650 | 4 | |a artificial intelligence | |
650 | 4 | |a neural network | |
650 | 4 | |a autonomous vehicle | |
650 | 4 | |a computer vision | |
650 | 4 | |a robotics | |
653 | 0 | |a Technology (General) | |
653 | 0 | |a Industrial engineering. Management engineering | |
653 | 0 | |a Management information systems | |
700 | 0 | |a Aleksandar Pluškoski |e verfasserin |4 aut | |
700 | 0 | |a Miloš Jovanović |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Robotica & Management |d Editura Eftimie Murgu, 2016 |g 25(2020), 1, Seite 9-14 |w (DE-627)886127521 |w (DE-600)2893597-4 |x 23599855 |7 nnns |
773 | 1 | 8 | |g volume:25 |g year:2020 |g number:1 |g pages:9-14 |
856 | 4 | 0 | |u https://doaj.org/article/45ae8d8879e641dcab176bbad5911b9d |z kostenfrei |
856 | 4 | 0 | |u http://robotica-management.uem.ro/fileadmin/Robotica/2020_1/RM_2020_1_Pag_09_Ciganovic.pdf |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1453-2069 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2359-9855 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 25 |j 2020 |e 1 |h 9-14 |
author_variant |
i c ic a p ap m j mj |
---|---|
matchkey_str |
article:23599855:2020----::mratnmuvhcenpooe |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
T |
publishDate |
2020 |
allfields |
(DE-627)DOAJ070053642 (DE-599)DOAJ45ae8d8879e641dcab176bbad5911b9d DE-627 ger DE-627 rakwb eng T1-995 T55.4-60.8 T58.6-58.62 Igor Ciganović verfasserin aut Smart Autonomous Vehicle - One Proposed Realisation 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The solution presented in this paper demonstrates that even a simple three layers deep, fully connected neural network has the capacity to learn relatively complex tasks as lane keeping and steering a model vehicle by just observing the images from the front facing QVGA camera. artificial intelligence neural network autonomous vehicle computer vision robotics Technology (General) Industrial engineering. Management engineering Management information systems Aleksandar Pluškoski verfasserin aut Miloš Jovanović verfasserin aut In Robotica & Management Editura Eftimie Murgu, 2016 25(2020), 1, Seite 9-14 (DE-627)886127521 (DE-600)2893597-4 23599855 nnns volume:25 year:2020 number:1 pages:9-14 https://doaj.org/article/45ae8d8879e641dcab176bbad5911b9d kostenfrei http://robotica-management.uem.ro/fileadmin/Robotica/2020_1/RM_2020_1_Pag_09_Ciganovic.pdf kostenfrei https://doaj.org/toc/1453-2069 Journal toc kostenfrei https://doaj.org/toc/2359-9855 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 25 2020 1 9-14 |
spelling |
(DE-627)DOAJ070053642 (DE-599)DOAJ45ae8d8879e641dcab176bbad5911b9d DE-627 ger DE-627 rakwb eng T1-995 T55.4-60.8 T58.6-58.62 Igor Ciganović verfasserin aut Smart Autonomous Vehicle - One Proposed Realisation 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The solution presented in this paper demonstrates that even a simple three layers deep, fully connected neural network has the capacity to learn relatively complex tasks as lane keeping and steering a model vehicle by just observing the images from the front facing QVGA camera. artificial intelligence neural network autonomous vehicle computer vision robotics Technology (General) Industrial engineering. Management engineering Management information systems Aleksandar Pluškoski verfasserin aut Miloš Jovanović verfasserin aut In Robotica & Management Editura Eftimie Murgu, 2016 25(2020), 1, Seite 9-14 (DE-627)886127521 (DE-600)2893597-4 23599855 nnns volume:25 year:2020 number:1 pages:9-14 https://doaj.org/article/45ae8d8879e641dcab176bbad5911b9d kostenfrei http://robotica-management.uem.ro/fileadmin/Robotica/2020_1/RM_2020_1_Pag_09_Ciganovic.pdf kostenfrei https://doaj.org/toc/1453-2069 Journal toc kostenfrei https://doaj.org/toc/2359-9855 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 25 2020 1 9-14 |
allfields_unstemmed |
(DE-627)DOAJ070053642 (DE-599)DOAJ45ae8d8879e641dcab176bbad5911b9d DE-627 ger DE-627 rakwb eng T1-995 T55.4-60.8 T58.6-58.62 Igor Ciganović verfasserin aut Smart Autonomous Vehicle - One Proposed Realisation 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The solution presented in this paper demonstrates that even a simple three layers deep, fully connected neural network has the capacity to learn relatively complex tasks as lane keeping and steering a model vehicle by just observing the images from the front facing QVGA camera. artificial intelligence neural network autonomous vehicle computer vision robotics Technology (General) Industrial engineering. Management engineering Management information systems Aleksandar Pluškoski verfasserin aut Miloš Jovanović verfasserin aut In Robotica & Management Editura Eftimie Murgu, 2016 25(2020), 1, Seite 9-14 (DE-627)886127521 (DE-600)2893597-4 23599855 nnns volume:25 year:2020 number:1 pages:9-14 https://doaj.org/article/45ae8d8879e641dcab176bbad5911b9d kostenfrei http://robotica-management.uem.ro/fileadmin/Robotica/2020_1/RM_2020_1_Pag_09_Ciganovic.pdf kostenfrei https://doaj.org/toc/1453-2069 Journal toc kostenfrei https://doaj.org/toc/2359-9855 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 25 2020 1 9-14 |
allfieldsGer |
(DE-627)DOAJ070053642 (DE-599)DOAJ45ae8d8879e641dcab176bbad5911b9d DE-627 ger DE-627 rakwb eng T1-995 T55.4-60.8 T58.6-58.62 Igor Ciganović verfasserin aut Smart Autonomous Vehicle - One Proposed Realisation 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The solution presented in this paper demonstrates that even a simple three layers deep, fully connected neural network has the capacity to learn relatively complex tasks as lane keeping and steering a model vehicle by just observing the images from the front facing QVGA camera. artificial intelligence neural network autonomous vehicle computer vision robotics Technology (General) Industrial engineering. Management engineering Management information systems Aleksandar Pluškoski verfasserin aut Miloš Jovanović verfasserin aut In Robotica & Management Editura Eftimie Murgu, 2016 25(2020), 1, Seite 9-14 (DE-627)886127521 (DE-600)2893597-4 23599855 nnns volume:25 year:2020 number:1 pages:9-14 https://doaj.org/article/45ae8d8879e641dcab176bbad5911b9d kostenfrei http://robotica-management.uem.ro/fileadmin/Robotica/2020_1/RM_2020_1_Pag_09_Ciganovic.pdf kostenfrei https://doaj.org/toc/1453-2069 Journal toc kostenfrei https://doaj.org/toc/2359-9855 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 25 2020 1 9-14 |
allfieldsSound |
(DE-627)DOAJ070053642 (DE-599)DOAJ45ae8d8879e641dcab176bbad5911b9d DE-627 ger DE-627 rakwb eng T1-995 T55.4-60.8 T58.6-58.62 Igor Ciganović verfasserin aut Smart Autonomous Vehicle - One Proposed Realisation 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The solution presented in this paper demonstrates that even a simple three layers deep, fully connected neural network has the capacity to learn relatively complex tasks as lane keeping and steering a model vehicle by just observing the images from the front facing QVGA camera. artificial intelligence neural network autonomous vehicle computer vision robotics Technology (General) Industrial engineering. Management engineering Management information systems Aleksandar Pluškoski verfasserin aut Miloš Jovanović verfasserin aut In Robotica & Management Editura Eftimie Murgu, 2016 25(2020), 1, Seite 9-14 (DE-627)886127521 (DE-600)2893597-4 23599855 nnns volume:25 year:2020 number:1 pages:9-14 https://doaj.org/article/45ae8d8879e641dcab176bbad5911b9d kostenfrei http://robotica-management.uem.ro/fileadmin/Robotica/2020_1/RM_2020_1_Pag_09_Ciganovic.pdf kostenfrei https://doaj.org/toc/1453-2069 Journal toc kostenfrei https://doaj.org/toc/2359-9855 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 25 2020 1 9-14 |
language |
English |
source |
In Robotica & Management 25(2020), 1, Seite 9-14 volume:25 year:2020 number:1 pages:9-14 |
sourceStr |
In Robotica & Management 25(2020), 1, Seite 9-14 volume:25 year:2020 number:1 pages:9-14 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
artificial intelligence neural network autonomous vehicle computer vision robotics Technology (General) Industrial engineering. Management engineering Management information systems |
isfreeaccess_bool |
true |
container_title |
Robotica & Management |
authorswithroles_txt_mv |
Igor Ciganović @@aut@@ Aleksandar Pluškoski @@aut@@ Miloš Jovanović @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
886127521 |
id |
DOAJ070053642 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ070053642</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502141857.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ070053642</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ45ae8d8879e641dcab176bbad5911b9d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">T1-995</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">T55.4-60.8</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">T58.6-58.62</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Igor Ciganović</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Smart Autonomous Vehicle - One Proposed Realisation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The solution presented in this paper demonstrates that even a simple three layers deep, fully connected neural network has the capacity to learn relatively complex tasks as lane keeping and steering a model vehicle by just observing the images from the front facing QVGA camera.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">neural network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">autonomous vehicle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">computer vision</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">robotics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Industrial engineering. Management engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Management information systems</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Aleksandar Pluškoski</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Miloš Jovanović</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Robotica & Management</subfield><subfield code="d">Editura Eftimie Murgu, 2016</subfield><subfield code="g">25(2020), 1, Seite 9-14</subfield><subfield code="w">(DE-627)886127521</subfield><subfield code="w">(DE-600)2893597-4</subfield><subfield code="x">23599855</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:9-14</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/45ae8d8879e641dcab176bbad5911b9d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://robotica-management.uem.ro/fileadmin/Robotica/2020_1/RM_2020_1_Pag_09_Ciganovic.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1453-2069</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2359-9855</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2020</subfield><subfield code="e">1</subfield><subfield code="h">9-14</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Igor Ciganović |
spellingShingle |
Igor Ciganović misc T1-995 misc T55.4-60.8 misc T58.6-58.62 misc artificial intelligence misc neural network misc autonomous vehicle misc computer vision misc robotics misc Technology (General) misc Industrial engineering. Management engineering misc Management information systems Smart Autonomous Vehicle - One Proposed Realisation |
authorStr |
Igor Ciganović |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)886127521 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
T1-995 |
illustrated |
Not Illustrated |
issn |
23599855 |
topic_title |
T1-995 T55.4-60.8 T58.6-58.62 Smart Autonomous Vehicle - One Proposed Realisation artificial intelligence neural network autonomous vehicle computer vision robotics |
topic |
misc T1-995 misc T55.4-60.8 misc T58.6-58.62 misc artificial intelligence misc neural network misc autonomous vehicle misc computer vision misc robotics misc Technology (General) misc Industrial engineering. Management engineering misc Management information systems |
topic_unstemmed |
misc T1-995 misc T55.4-60.8 misc T58.6-58.62 misc artificial intelligence misc neural network misc autonomous vehicle misc computer vision misc robotics misc Technology (General) misc Industrial engineering. Management engineering misc Management information systems |
topic_browse |
misc T1-995 misc T55.4-60.8 misc T58.6-58.62 misc artificial intelligence misc neural network misc autonomous vehicle misc computer vision misc robotics misc Technology (General) misc Industrial engineering. Management engineering misc Management information systems |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Robotica & Management |
hierarchy_parent_id |
886127521 |
hierarchy_top_title |
Robotica & Management |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)886127521 (DE-600)2893597-4 |
title |
Smart Autonomous Vehicle - One Proposed Realisation |
ctrlnum |
(DE-627)DOAJ070053642 (DE-599)DOAJ45ae8d8879e641dcab176bbad5911b9d |
title_full |
Smart Autonomous Vehicle - One Proposed Realisation |
author_sort |
Igor Ciganović |
journal |
Robotica & Management |
journalStr |
Robotica & Management |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
9 |
author_browse |
Igor Ciganović Aleksandar Pluškoski Miloš Jovanović |
container_volume |
25 |
class |
T1-995 T55.4-60.8 T58.6-58.62 |
format_se |
Elektronische Aufsätze |
author-letter |
Igor Ciganović |
author2-role |
verfasserin |
title_sort |
smart autonomous vehicle - one proposed realisation |
callnumber |
T1-995 |
title_auth |
Smart Autonomous Vehicle - One Proposed Realisation |
abstract |
The solution presented in this paper demonstrates that even a simple three layers deep, fully connected neural network has the capacity to learn relatively complex tasks as lane keeping and steering a model vehicle by just observing the images from the front facing QVGA camera. |
abstractGer |
The solution presented in this paper demonstrates that even a simple three layers deep, fully connected neural network has the capacity to learn relatively complex tasks as lane keeping and steering a model vehicle by just observing the images from the front facing QVGA camera. |
abstract_unstemmed |
The solution presented in this paper demonstrates that even a simple three layers deep, fully connected neural network has the capacity to learn relatively complex tasks as lane keeping and steering a model vehicle by just observing the images from the front facing QVGA camera. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Smart Autonomous Vehicle - One Proposed Realisation |
url |
https://doaj.org/article/45ae8d8879e641dcab176bbad5911b9d http://robotica-management.uem.ro/fileadmin/Robotica/2020_1/RM_2020_1_Pag_09_Ciganovic.pdf https://doaj.org/toc/1453-2069 https://doaj.org/toc/2359-9855 |
remote_bool |
true |
author2 |
Aleksandar Pluškoski Miloš Jovanović |
author2Str |
Aleksandar Pluškoski Miloš Jovanović |
ppnlink |
886127521 |
callnumber-subject |
T - General Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
callnumber-a |
T1-995 |
up_date |
2024-07-04T01:39:23.697Z |
_version_ |
1803610660482842624 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ070053642</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502141857.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ070053642</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ45ae8d8879e641dcab176bbad5911b9d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">T1-995</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">T55.4-60.8</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">T58.6-58.62</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Igor Ciganović</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Smart Autonomous Vehicle - One Proposed Realisation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The solution presented in this paper demonstrates that even a simple three layers deep, fully connected neural network has the capacity to learn relatively complex tasks as lane keeping and steering a model vehicle by just observing the images from the front facing QVGA camera.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">neural network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">autonomous vehicle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">computer vision</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">robotics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Industrial engineering. Management engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Management information systems</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Aleksandar Pluškoski</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Miloš Jovanović</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Robotica & Management</subfield><subfield code="d">Editura Eftimie Murgu, 2016</subfield><subfield code="g">25(2020), 1, Seite 9-14</subfield><subfield code="w">(DE-627)886127521</subfield><subfield code="w">(DE-600)2893597-4</subfield><subfield code="x">23599855</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:9-14</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/45ae8d8879e641dcab176bbad5911b9d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://robotica-management.uem.ro/fileadmin/Robotica/2020_1/RM_2020_1_Pag_09_Ciganovic.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1453-2069</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2359-9855</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2020</subfield><subfield code="e">1</subfield><subfield code="h">9-14</subfield></datafield></record></collection>
|
score |
7.401144 |