Hydrogen Sulfide (H<sub<2</sub<S) and Polysulfide (H<sub<2</sub<S<sub<n</sub<) Signaling: The First 25 Years
Since the first description of hydrogen sulfide (H<sub<2</sub<S) as a toxic gas in 1713 by Bernardino Ramazzini, most studies on H<sub<2</sub<S have concentrated on its toxicity. In 1989, Warenycia et al. demonstrated the existence of endogenous H<sub<2</sub<S in...
Ausführliche Beschreibung
Autor*in: |
Hideo Kimura [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Biomolecules - MDPI AG, 2013, 11(2021), 6, p 896 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2021 ; number:6, p 896 |
Links: |
---|
DOI / URN: |
10.3390/biom11060896 |
---|
Katalog-ID: |
DOAJ070245991 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ070245991 | ||
003 | DE-627 | ||
005 | 20240412174116.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/biom11060896 |2 doi | |
035 | |a (DE-627)DOAJ070245991 | ||
035 | |a (DE-599)DOAJe790b81818d744bb86b492292282dd7e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QR1-502 | |
100 | 0 | |a Hideo Kimura |e verfasserin |4 aut | |
245 | 1 | 0 | |a Hydrogen Sulfide (H<sub<2</sub<S) and Polysulfide (H<sub<2</sub<S<sub<n</sub<) Signaling: The First 25 Years |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Since the first description of hydrogen sulfide (H<sub<2</sub<S) as a toxic gas in 1713 by Bernardino Ramazzini, most studies on H<sub<2</sub<S have concentrated on its toxicity. In 1989, Warenycia et al. demonstrated the existence of endogenous H<sub<2</sub<S in the brain, suggesting that H<sub<2</sub<S may have physiological roles. In 1996, we demonstrated that hydrogen sulfide (H<sub<2</sub<S) is a potential signaling molecule, which can be produced by cystathionine β-synthase (CBS) to modify neurotransmission in the brain. Subsequently, we showed that H<sub<2</sub<S relaxes vascular smooth muscle in synergy with nitric oxide (NO) and that cystathionine γ-lyase (CSE) is another producing enzyme. This study also opened up a new research area of a crosstalk between H<sub<2</sub<S and NO. The cytoprotective effect, anti-inflammatory activity, energy formation, and oxygen sensing by H<sub<2</sub<S have been subsequently demonstrated. Two additional pathways for the production of H<sub<2</sub<S with 3-mercaptopyruvate sulfurtransferase (3MST) from <span style="font-variant: small-caps;"<l</span<- and <span style="font-variant: small-caps;"<d</span<-cysteine have been identified. We also discovered that hydrogen polysulfides (H<sub<2</sub<S<sub<n</sub<, n ≥ 2) are potential signaling molecules produced by 3MST. H<sub<2</sub<S<sub<n</sub< regulate the activity of ion channels and enzymes, as well as even the growth of tumors. <i<S</i<-Sulfuration (<i<S</i<-sulfhydration) proposed by Snyder is the main mechanism for H<sub<2</sub<S/H<sub<2</sub<S<sub<n</sub< underlying regulation of the activity of target proteins. This mini review focuses on the key findings on H<sub<2</sub<S/H<sub<2</sub<S<sub<n</sub< signaling during the first 25 years. | ||
650 | 4 | |a hydrogen sulfide | |
650 | 4 | |a polysulfides | |
650 | 4 | |a <i<S</i<-sulfuration | |
650 | 4 | |a nitric oxide | |
650 | 4 | |a hydrogen peroxide | |
650 | 4 | |a <i<S</i<-nitrosylation | |
653 | 0 | |a Microbiology | |
773 | 0 | 8 | |i In |t Biomolecules |d MDPI AG, 2013 |g 11(2021), 6, p 896 |w (DE-627)735688915 |w (DE-600)2701262-1 |x 2218273X |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2021 |g number:6, p 896 |
856 | 4 | 0 | |u https://doi.org/10.3390/biom11060896 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/e790b81818d744bb86b492292282dd7e |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2218-273X/11/6/896 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2218-273X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2021 |e 6, p 896 |
author_variant |
h k hk |
---|---|
matchkey_str |
article:2218273X:2021----::yrgnufdhu2usnplsliesbsbsbsbi |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
QR |
publishDate |
2021 |
allfields |
10.3390/biom11060896 doi (DE-627)DOAJ070245991 (DE-599)DOAJe790b81818d744bb86b492292282dd7e DE-627 ger DE-627 rakwb eng QR1-502 Hideo Kimura verfasserin aut Hydrogen Sulfide (H<sub<2</sub<S) and Polysulfide (H<sub<2</sub<S<sub<n</sub<) Signaling: The First 25 Years 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Since the first description of hydrogen sulfide (H<sub<2</sub<S) as a toxic gas in 1713 by Bernardino Ramazzini, most studies on H<sub<2</sub<S have concentrated on its toxicity. In 1989, Warenycia et al. demonstrated the existence of endogenous H<sub<2</sub<S in the brain, suggesting that H<sub<2</sub<S may have physiological roles. In 1996, we demonstrated that hydrogen sulfide (H<sub<2</sub<S) is a potential signaling molecule, which can be produced by cystathionine β-synthase (CBS) to modify neurotransmission in the brain. Subsequently, we showed that H<sub<2</sub<S relaxes vascular smooth muscle in synergy with nitric oxide (NO) and that cystathionine γ-lyase (CSE) is another producing enzyme. This study also opened up a new research area of a crosstalk between H<sub<2</sub<S and NO. The cytoprotective effect, anti-inflammatory activity, energy formation, and oxygen sensing by H<sub<2</sub<S have been subsequently demonstrated. Two additional pathways for the production of H<sub<2</sub<S with 3-mercaptopyruvate sulfurtransferase (3MST) from <span style="font-variant: small-caps;"<l</span<- and <span style="font-variant: small-caps;"<d</span<-cysteine have been identified. We also discovered that hydrogen polysulfides (H<sub<2</sub<S<sub<n</sub<, n ≥ 2) are potential signaling molecules produced by 3MST. H<sub<2</sub<S<sub<n</sub< regulate the activity of ion channels and enzymes, as well as even the growth of tumors. <i<S</i<-Sulfuration (<i<S</i<-sulfhydration) proposed by Snyder is the main mechanism for H<sub<2</sub<S/H<sub<2</sub<S<sub<n</sub< underlying regulation of the activity of target proteins. This mini review focuses on the key findings on H<sub<2</sub<S/H<sub<2</sub<S<sub<n</sub< signaling during the first 25 years. hydrogen sulfide polysulfides <i<S</i<-sulfuration nitric oxide hydrogen peroxide <i<S</i<-nitrosylation Microbiology In Biomolecules MDPI AG, 2013 11(2021), 6, p 896 (DE-627)735688915 (DE-600)2701262-1 2218273X nnns volume:11 year:2021 number:6, p 896 https://doi.org/10.3390/biom11060896 kostenfrei https://doaj.org/article/e790b81818d744bb86b492292282dd7e kostenfrei https://www.mdpi.com/2218-273X/11/6/896 kostenfrei https://doaj.org/toc/2218-273X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 6, p 896 |
spelling |
10.3390/biom11060896 doi (DE-627)DOAJ070245991 (DE-599)DOAJe790b81818d744bb86b492292282dd7e DE-627 ger DE-627 rakwb eng QR1-502 Hideo Kimura verfasserin aut Hydrogen Sulfide (H<sub<2</sub<S) and Polysulfide (H<sub<2</sub<S<sub<n</sub<) Signaling: The First 25 Years 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Since the first description of hydrogen sulfide (H<sub<2</sub<S) as a toxic gas in 1713 by Bernardino Ramazzini, most studies on H<sub<2</sub<S have concentrated on its toxicity. In 1989, Warenycia et al. demonstrated the existence of endogenous H<sub<2</sub<S in the brain, suggesting that H<sub<2</sub<S may have physiological roles. In 1996, we demonstrated that hydrogen sulfide (H<sub<2</sub<S) is a potential signaling molecule, which can be produced by cystathionine β-synthase (CBS) to modify neurotransmission in the brain. Subsequently, we showed that H<sub<2</sub<S relaxes vascular smooth muscle in synergy with nitric oxide (NO) and that cystathionine γ-lyase (CSE) is another producing enzyme. This study also opened up a new research area of a crosstalk between H<sub<2</sub<S and NO. The cytoprotective effect, anti-inflammatory activity, energy formation, and oxygen sensing by H<sub<2</sub<S have been subsequently demonstrated. Two additional pathways for the production of H<sub<2</sub<S with 3-mercaptopyruvate sulfurtransferase (3MST) from <span style="font-variant: small-caps;"<l</span<- and <span style="font-variant: small-caps;"<d</span<-cysteine have been identified. We also discovered that hydrogen polysulfides (H<sub<2</sub<S<sub<n</sub<, n ≥ 2) are potential signaling molecules produced by 3MST. H<sub<2</sub<S<sub<n</sub< regulate the activity of ion channels and enzymes, as well as even the growth of tumors. <i<S</i<-Sulfuration (<i<S</i<-sulfhydration) proposed by Snyder is the main mechanism for H<sub<2</sub<S/H<sub<2</sub<S<sub<n</sub< underlying regulation of the activity of target proteins. This mini review focuses on the key findings on H<sub<2</sub<S/H<sub<2</sub<S<sub<n</sub< signaling during the first 25 years. hydrogen sulfide polysulfides <i<S</i<-sulfuration nitric oxide hydrogen peroxide <i<S</i<-nitrosylation Microbiology In Biomolecules MDPI AG, 2013 11(2021), 6, p 896 (DE-627)735688915 (DE-600)2701262-1 2218273X nnns volume:11 year:2021 number:6, p 896 https://doi.org/10.3390/biom11060896 kostenfrei https://doaj.org/article/e790b81818d744bb86b492292282dd7e kostenfrei https://www.mdpi.com/2218-273X/11/6/896 kostenfrei https://doaj.org/toc/2218-273X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 6, p 896 |
allfields_unstemmed |
10.3390/biom11060896 doi (DE-627)DOAJ070245991 (DE-599)DOAJe790b81818d744bb86b492292282dd7e DE-627 ger DE-627 rakwb eng QR1-502 Hideo Kimura verfasserin aut Hydrogen Sulfide (H<sub<2</sub<S) and Polysulfide (H<sub<2</sub<S<sub<n</sub<) Signaling: The First 25 Years 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Since the first description of hydrogen sulfide (H<sub<2</sub<S) as a toxic gas in 1713 by Bernardino Ramazzini, most studies on H<sub<2</sub<S have concentrated on its toxicity. In 1989, Warenycia et al. demonstrated the existence of endogenous H<sub<2</sub<S in the brain, suggesting that H<sub<2</sub<S may have physiological roles. In 1996, we demonstrated that hydrogen sulfide (H<sub<2</sub<S) is a potential signaling molecule, which can be produced by cystathionine β-synthase (CBS) to modify neurotransmission in the brain. Subsequently, we showed that H<sub<2</sub<S relaxes vascular smooth muscle in synergy with nitric oxide (NO) and that cystathionine γ-lyase (CSE) is another producing enzyme. This study also opened up a new research area of a crosstalk between H<sub<2</sub<S and NO. The cytoprotective effect, anti-inflammatory activity, energy formation, and oxygen sensing by H<sub<2</sub<S have been subsequently demonstrated. Two additional pathways for the production of H<sub<2</sub<S with 3-mercaptopyruvate sulfurtransferase (3MST) from <span style="font-variant: small-caps;"<l</span<- and <span style="font-variant: small-caps;"<d</span<-cysteine have been identified. We also discovered that hydrogen polysulfides (H<sub<2</sub<S<sub<n</sub<, n ≥ 2) are potential signaling molecules produced by 3MST. H<sub<2</sub<S<sub<n</sub< regulate the activity of ion channels and enzymes, as well as even the growth of tumors. <i<S</i<-Sulfuration (<i<S</i<-sulfhydration) proposed by Snyder is the main mechanism for H<sub<2</sub<S/H<sub<2</sub<S<sub<n</sub< underlying regulation of the activity of target proteins. This mini review focuses on the key findings on H<sub<2</sub<S/H<sub<2</sub<S<sub<n</sub< signaling during the first 25 years. hydrogen sulfide polysulfides <i<S</i<-sulfuration nitric oxide hydrogen peroxide <i<S</i<-nitrosylation Microbiology In Biomolecules MDPI AG, 2013 11(2021), 6, p 896 (DE-627)735688915 (DE-600)2701262-1 2218273X nnns volume:11 year:2021 number:6, p 896 https://doi.org/10.3390/biom11060896 kostenfrei https://doaj.org/article/e790b81818d744bb86b492292282dd7e kostenfrei https://www.mdpi.com/2218-273X/11/6/896 kostenfrei https://doaj.org/toc/2218-273X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 6, p 896 |
allfieldsGer |
10.3390/biom11060896 doi (DE-627)DOAJ070245991 (DE-599)DOAJe790b81818d744bb86b492292282dd7e DE-627 ger DE-627 rakwb eng QR1-502 Hideo Kimura verfasserin aut Hydrogen Sulfide (H<sub<2</sub<S) and Polysulfide (H<sub<2</sub<S<sub<n</sub<) Signaling: The First 25 Years 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Since the first description of hydrogen sulfide (H<sub<2</sub<S) as a toxic gas in 1713 by Bernardino Ramazzini, most studies on H<sub<2</sub<S have concentrated on its toxicity. In 1989, Warenycia et al. demonstrated the existence of endogenous H<sub<2</sub<S in the brain, suggesting that H<sub<2</sub<S may have physiological roles. In 1996, we demonstrated that hydrogen sulfide (H<sub<2</sub<S) is a potential signaling molecule, which can be produced by cystathionine β-synthase (CBS) to modify neurotransmission in the brain. Subsequently, we showed that H<sub<2</sub<S relaxes vascular smooth muscle in synergy with nitric oxide (NO) and that cystathionine γ-lyase (CSE) is another producing enzyme. This study also opened up a new research area of a crosstalk between H<sub<2</sub<S and NO. The cytoprotective effect, anti-inflammatory activity, energy formation, and oxygen sensing by H<sub<2</sub<S have been subsequently demonstrated. Two additional pathways for the production of H<sub<2</sub<S with 3-mercaptopyruvate sulfurtransferase (3MST) from <span style="font-variant: small-caps;"<l</span<- and <span style="font-variant: small-caps;"<d</span<-cysteine have been identified. We also discovered that hydrogen polysulfides (H<sub<2</sub<S<sub<n</sub<, n ≥ 2) are potential signaling molecules produced by 3MST. H<sub<2</sub<S<sub<n</sub< regulate the activity of ion channels and enzymes, as well as even the growth of tumors. <i<S</i<-Sulfuration (<i<S</i<-sulfhydration) proposed by Snyder is the main mechanism for H<sub<2</sub<S/H<sub<2</sub<S<sub<n</sub< underlying regulation of the activity of target proteins. This mini review focuses on the key findings on H<sub<2</sub<S/H<sub<2</sub<S<sub<n</sub< signaling during the first 25 years. hydrogen sulfide polysulfides <i<S</i<-sulfuration nitric oxide hydrogen peroxide <i<S</i<-nitrosylation Microbiology In Biomolecules MDPI AG, 2013 11(2021), 6, p 896 (DE-627)735688915 (DE-600)2701262-1 2218273X nnns volume:11 year:2021 number:6, p 896 https://doi.org/10.3390/biom11060896 kostenfrei https://doaj.org/article/e790b81818d744bb86b492292282dd7e kostenfrei https://www.mdpi.com/2218-273X/11/6/896 kostenfrei https://doaj.org/toc/2218-273X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 6, p 896 |
allfieldsSound |
10.3390/biom11060896 doi (DE-627)DOAJ070245991 (DE-599)DOAJe790b81818d744bb86b492292282dd7e DE-627 ger DE-627 rakwb eng QR1-502 Hideo Kimura verfasserin aut Hydrogen Sulfide (H<sub<2</sub<S) and Polysulfide (H<sub<2</sub<S<sub<n</sub<) Signaling: The First 25 Years 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Since the first description of hydrogen sulfide (H<sub<2</sub<S) as a toxic gas in 1713 by Bernardino Ramazzini, most studies on H<sub<2</sub<S have concentrated on its toxicity. In 1989, Warenycia et al. demonstrated the existence of endogenous H<sub<2</sub<S in the brain, suggesting that H<sub<2</sub<S may have physiological roles. In 1996, we demonstrated that hydrogen sulfide (H<sub<2</sub<S) is a potential signaling molecule, which can be produced by cystathionine β-synthase (CBS) to modify neurotransmission in the brain. Subsequently, we showed that H<sub<2</sub<S relaxes vascular smooth muscle in synergy with nitric oxide (NO) and that cystathionine γ-lyase (CSE) is another producing enzyme. This study also opened up a new research area of a crosstalk between H<sub<2</sub<S and NO. The cytoprotective effect, anti-inflammatory activity, energy formation, and oxygen sensing by H<sub<2</sub<S have been subsequently demonstrated. Two additional pathways for the production of H<sub<2</sub<S with 3-mercaptopyruvate sulfurtransferase (3MST) from <span style="font-variant: small-caps;"<l</span<- and <span style="font-variant: small-caps;"<d</span<-cysteine have been identified. We also discovered that hydrogen polysulfides (H<sub<2</sub<S<sub<n</sub<, n ≥ 2) are potential signaling molecules produced by 3MST. H<sub<2</sub<S<sub<n</sub< regulate the activity of ion channels and enzymes, as well as even the growth of tumors. <i<S</i<-Sulfuration (<i<S</i<-sulfhydration) proposed by Snyder is the main mechanism for H<sub<2</sub<S/H<sub<2</sub<S<sub<n</sub< underlying regulation of the activity of target proteins. This mini review focuses on the key findings on H<sub<2</sub<S/H<sub<2</sub<S<sub<n</sub< signaling during the first 25 years. hydrogen sulfide polysulfides <i<S</i<-sulfuration nitric oxide hydrogen peroxide <i<S</i<-nitrosylation Microbiology In Biomolecules MDPI AG, 2013 11(2021), 6, p 896 (DE-627)735688915 (DE-600)2701262-1 2218273X nnns volume:11 year:2021 number:6, p 896 https://doi.org/10.3390/biom11060896 kostenfrei https://doaj.org/article/e790b81818d744bb86b492292282dd7e kostenfrei https://www.mdpi.com/2218-273X/11/6/896 kostenfrei https://doaj.org/toc/2218-273X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 6, p 896 |
language |
English |
source |
In Biomolecules 11(2021), 6, p 896 volume:11 year:2021 number:6, p 896 |
sourceStr |
In Biomolecules 11(2021), 6, p 896 volume:11 year:2021 number:6, p 896 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
hydrogen sulfide polysulfides <i<S</i<-sulfuration nitric oxide hydrogen peroxide <i<S</i<-nitrosylation Microbiology |
isfreeaccess_bool |
true |
container_title |
Biomolecules |
authorswithroles_txt_mv |
Hideo Kimura @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
735688915 |
id |
DOAJ070245991 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ070245991</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412174116.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/biom11060896</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ070245991</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe790b81818d744bb86b492292282dd7e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QR1-502</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hideo Kimura</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hydrogen Sulfide (H<sub<2</sub<S) and Polysulfide (H<sub<2</sub<S<sub<n</sub<) Signaling: The First 25 Years</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Since the first description of hydrogen sulfide (H<sub<2</sub<S) as a toxic gas in 1713 by Bernardino Ramazzini, most studies on H<sub<2</sub<S have concentrated on its toxicity. In 1989, Warenycia et al. demonstrated the existence of endogenous H<sub<2</sub<S in the brain, suggesting that H<sub<2</sub<S may have physiological roles. In 1996, we demonstrated that hydrogen sulfide (H<sub<2</sub<S) is a potential signaling molecule, which can be produced by cystathionine β-synthase (CBS) to modify neurotransmission in the brain. Subsequently, we showed that H<sub<2</sub<S relaxes vascular smooth muscle in synergy with nitric oxide (NO) and that cystathionine γ-lyase (CSE) is another producing enzyme. This study also opened up a new research area of a crosstalk between H<sub<2</sub<S and NO. The cytoprotective effect, anti-inflammatory activity, energy formation, and oxygen sensing by H<sub<2</sub<S have been subsequently demonstrated. Two additional pathways for the production of H<sub<2</sub<S with 3-mercaptopyruvate sulfurtransferase (3MST) from <span style="font-variant: small-caps;"<l</span<- and <span style="font-variant: small-caps;"<d</span<-cysteine have been identified. We also discovered that hydrogen polysulfides (H<sub<2</sub<S<sub<n</sub<, n ≥ 2) are potential signaling molecules produced by 3MST. H<sub<2</sub<S<sub<n</sub< regulate the activity of ion channels and enzymes, as well as even the growth of tumors. <i<S</i<-Sulfuration (<i<S</i<-sulfhydration) proposed by Snyder is the main mechanism for H<sub<2</sub<S/H<sub<2</sub<S<sub<n</sub< underlying regulation of the activity of target proteins. This mini review focuses on the key findings on H<sub<2</sub<S/H<sub<2</sub<S<sub<n</sub< signaling during the first 25 years.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hydrogen sulfide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">polysulfides</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<S</i<-sulfuration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nitric oxide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hydrogen peroxide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<S</i<-nitrosylation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Microbiology</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Biomolecules</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">11(2021), 6, p 896</subfield><subfield code="w">(DE-627)735688915</subfield><subfield code="w">(DE-600)2701262-1</subfield><subfield code="x">2218273X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:6, p 896</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/biom11060896</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e790b81818d744bb86b492292282dd7e</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2218-273X/11/6/896</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2218-273X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2021</subfield><subfield code="e">6, p 896</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Hideo Kimura |
spellingShingle |
Hideo Kimura misc QR1-502 misc hydrogen sulfide misc polysulfides misc <i<S</i<-sulfuration misc nitric oxide misc hydrogen peroxide misc <i<S</i<-nitrosylation misc Microbiology Hydrogen Sulfide (H<sub<2</sub<S) and Polysulfide (H<sub<2</sub<S<sub<n</sub<) Signaling: The First 25 Years |
authorStr |
Hideo Kimura |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)735688915 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QR1-502 |
illustrated |
Not Illustrated |
issn |
2218273X |
topic_title |
QR1-502 Hydrogen Sulfide (H<sub<2</sub<S) and Polysulfide (H<sub<2</sub<S<sub<n</sub<) Signaling: The First 25 Years hydrogen sulfide polysulfides <i<S</i<-sulfuration nitric oxide hydrogen peroxide <i<S</i<-nitrosylation |
topic |
misc QR1-502 misc hydrogen sulfide misc polysulfides misc <i<S</i<-sulfuration misc nitric oxide misc hydrogen peroxide misc <i<S</i<-nitrosylation misc Microbiology |
topic_unstemmed |
misc QR1-502 misc hydrogen sulfide misc polysulfides misc <i<S</i<-sulfuration misc nitric oxide misc hydrogen peroxide misc <i<S</i<-nitrosylation misc Microbiology |
topic_browse |
misc QR1-502 misc hydrogen sulfide misc polysulfides misc <i<S</i<-sulfuration misc nitric oxide misc hydrogen peroxide misc <i<S</i<-nitrosylation misc Microbiology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Biomolecules |
hierarchy_parent_id |
735688915 |
hierarchy_top_title |
Biomolecules |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)735688915 (DE-600)2701262-1 |
title |
Hydrogen Sulfide (H<sub<2</sub<S) and Polysulfide (H<sub<2</sub<S<sub<n</sub<) Signaling: The First 25 Years |
ctrlnum |
(DE-627)DOAJ070245991 (DE-599)DOAJe790b81818d744bb86b492292282dd7e |
title_full |
Hydrogen Sulfide (H<sub<2</sub<S) and Polysulfide (H<sub<2</sub<S<sub<n</sub<) Signaling: The First 25 Years |
author_sort |
Hideo Kimura |
journal |
Biomolecules |
journalStr |
Biomolecules |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Hideo Kimura |
container_volume |
11 |
class |
QR1-502 |
format_se |
Elektronische Aufsätze |
author-letter |
Hideo Kimura |
doi_str_mv |
10.3390/biom11060896 |
title_sort |
hydrogen sulfide (h<sub<2</sub<s) and polysulfide (h<sub<2</sub<s<sub<n</sub<) signaling: the first 25 years |
callnumber |
QR1-502 |
title_auth |
Hydrogen Sulfide (H<sub<2</sub<S) and Polysulfide (H<sub<2</sub<S<sub<n</sub<) Signaling: The First 25 Years |
abstract |
Since the first description of hydrogen sulfide (H<sub<2</sub<S) as a toxic gas in 1713 by Bernardino Ramazzini, most studies on H<sub<2</sub<S have concentrated on its toxicity. In 1989, Warenycia et al. demonstrated the existence of endogenous H<sub<2</sub<S in the brain, suggesting that H<sub<2</sub<S may have physiological roles. In 1996, we demonstrated that hydrogen sulfide (H<sub<2</sub<S) is a potential signaling molecule, which can be produced by cystathionine β-synthase (CBS) to modify neurotransmission in the brain. Subsequently, we showed that H<sub<2</sub<S relaxes vascular smooth muscle in synergy with nitric oxide (NO) and that cystathionine γ-lyase (CSE) is another producing enzyme. This study also opened up a new research area of a crosstalk between H<sub<2</sub<S and NO. The cytoprotective effect, anti-inflammatory activity, energy formation, and oxygen sensing by H<sub<2</sub<S have been subsequently demonstrated. Two additional pathways for the production of H<sub<2</sub<S with 3-mercaptopyruvate sulfurtransferase (3MST) from <span style="font-variant: small-caps;"<l</span<- and <span style="font-variant: small-caps;"<d</span<-cysteine have been identified. We also discovered that hydrogen polysulfides (H<sub<2</sub<S<sub<n</sub<, n ≥ 2) are potential signaling molecules produced by 3MST. H<sub<2</sub<S<sub<n</sub< regulate the activity of ion channels and enzymes, as well as even the growth of tumors. <i<S</i<-Sulfuration (<i<S</i<-sulfhydration) proposed by Snyder is the main mechanism for H<sub<2</sub<S/H<sub<2</sub<S<sub<n</sub< underlying regulation of the activity of target proteins. This mini review focuses on the key findings on H<sub<2</sub<S/H<sub<2</sub<S<sub<n</sub< signaling during the first 25 years. |
abstractGer |
Since the first description of hydrogen sulfide (H<sub<2</sub<S) as a toxic gas in 1713 by Bernardino Ramazzini, most studies on H<sub<2</sub<S have concentrated on its toxicity. In 1989, Warenycia et al. demonstrated the existence of endogenous H<sub<2</sub<S in the brain, suggesting that H<sub<2</sub<S may have physiological roles. In 1996, we demonstrated that hydrogen sulfide (H<sub<2</sub<S) is a potential signaling molecule, which can be produced by cystathionine β-synthase (CBS) to modify neurotransmission in the brain. Subsequently, we showed that H<sub<2</sub<S relaxes vascular smooth muscle in synergy with nitric oxide (NO) and that cystathionine γ-lyase (CSE) is another producing enzyme. This study also opened up a new research area of a crosstalk between H<sub<2</sub<S and NO. The cytoprotective effect, anti-inflammatory activity, energy formation, and oxygen sensing by H<sub<2</sub<S have been subsequently demonstrated. Two additional pathways for the production of H<sub<2</sub<S with 3-mercaptopyruvate sulfurtransferase (3MST) from <span style="font-variant: small-caps;"<l</span<- and <span style="font-variant: small-caps;"<d</span<-cysteine have been identified. We also discovered that hydrogen polysulfides (H<sub<2</sub<S<sub<n</sub<, n ≥ 2) are potential signaling molecules produced by 3MST. H<sub<2</sub<S<sub<n</sub< regulate the activity of ion channels and enzymes, as well as even the growth of tumors. <i<S</i<-Sulfuration (<i<S</i<-sulfhydration) proposed by Snyder is the main mechanism for H<sub<2</sub<S/H<sub<2</sub<S<sub<n</sub< underlying regulation of the activity of target proteins. This mini review focuses on the key findings on H<sub<2</sub<S/H<sub<2</sub<S<sub<n</sub< signaling during the first 25 years. |
abstract_unstemmed |
Since the first description of hydrogen sulfide (H<sub<2</sub<S) as a toxic gas in 1713 by Bernardino Ramazzini, most studies on H<sub<2</sub<S have concentrated on its toxicity. In 1989, Warenycia et al. demonstrated the existence of endogenous H<sub<2</sub<S in the brain, suggesting that H<sub<2</sub<S may have physiological roles. In 1996, we demonstrated that hydrogen sulfide (H<sub<2</sub<S) is a potential signaling molecule, which can be produced by cystathionine β-synthase (CBS) to modify neurotransmission in the brain. Subsequently, we showed that H<sub<2</sub<S relaxes vascular smooth muscle in synergy with nitric oxide (NO) and that cystathionine γ-lyase (CSE) is another producing enzyme. This study also opened up a new research area of a crosstalk between H<sub<2</sub<S and NO. The cytoprotective effect, anti-inflammatory activity, energy formation, and oxygen sensing by H<sub<2</sub<S have been subsequently demonstrated. Two additional pathways for the production of H<sub<2</sub<S with 3-mercaptopyruvate sulfurtransferase (3MST) from <span style="font-variant: small-caps;"<l</span<- and <span style="font-variant: small-caps;"<d</span<-cysteine have been identified. We also discovered that hydrogen polysulfides (H<sub<2</sub<S<sub<n</sub<, n ≥ 2) are potential signaling molecules produced by 3MST. H<sub<2</sub<S<sub<n</sub< regulate the activity of ion channels and enzymes, as well as even the growth of tumors. <i<S</i<-Sulfuration (<i<S</i<-sulfhydration) proposed by Snyder is the main mechanism for H<sub<2</sub<S/H<sub<2</sub<S<sub<n</sub< underlying regulation of the activity of target proteins. This mini review focuses on the key findings on H<sub<2</sub<S/H<sub<2</sub<S<sub<n</sub< signaling during the first 25 years. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
6, p 896 |
title_short |
Hydrogen Sulfide (H<sub<2</sub<S) and Polysulfide (H<sub<2</sub<S<sub<n</sub<) Signaling: The First 25 Years |
url |
https://doi.org/10.3390/biom11060896 https://doaj.org/article/e790b81818d744bb86b492292282dd7e https://www.mdpi.com/2218-273X/11/6/896 https://doaj.org/toc/2218-273X |
remote_bool |
true |
ppnlink |
735688915 |
callnumber-subject |
QR - Microbiology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/biom11060896 |
callnumber-a |
QR1-502 |
up_date |
2024-07-03T13:47:04.247Z |
_version_ |
1803565844926562304 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ070245991</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412174116.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/biom11060896</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ070245991</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe790b81818d744bb86b492292282dd7e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QR1-502</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hideo Kimura</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hydrogen Sulfide (H<sub<2</sub<S) and Polysulfide (H<sub<2</sub<S<sub<n</sub<) Signaling: The First 25 Years</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Since the first description of hydrogen sulfide (H<sub<2</sub<S) as a toxic gas in 1713 by Bernardino Ramazzini, most studies on H<sub<2</sub<S have concentrated on its toxicity. In 1989, Warenycia et al. demonstrated the existence of endogenous H<sub<2</sub<S in the brain, suggesting that H<sub<2</sub<S may have physiological roles. In 1996, we demonstrated that hydrogen sulfide (H<sub<2</sub<S) is a potential signaling molecule, which can be produced by cystathionine β-synthase (CBS) to modify neurotransmission in the brain. Subsequently, we showed that H<sub<2</sub<S relaxes vascular smooth muscle in synergy with nitric oxide (NO) and that cystathionine γ-lyase (CSE) is another producing enzyme. This study also opened up a new research area of a crosstalk between H<sub<2</sub<S and NO. The cytoprotective effect, anti-inflammatory activity, energy formation, and oxygen sensing by H<sub<2</sub<S have been subsequently demonstrated. Two additional pathways for the production of H<sub<2</sub<S with 3-mercaptopyruvate sulfurtransferase (3MST) from <span style="font-variant: small-caps;"<l</span<- and <span style="font-variant: small-caps;"<d</span<-cysteine have been identified. We also discovered that hydrogen polysulfides (H<sub<2</sub<S<sub<n</sub<, n ≥ 2) are potential signaling molecules produced by 3MST. H<sub<2</sub<S<sub<n</sub< regulate the activity of ion channels and enzymes, as well as even the growth of tumors. <i<S</i<-Sulfuration (<i<S</i<-sulfhydration) proposed by Snyder is the main mechanism for H<sub<2</sub<S/H<sub<2</sub<S<sub<n</sub< underlying regulation of the activity of target proteins. This mini review focuses on the key findings on H<sub<2</sub<S/H<sub<2</sub<S<sub<n</sub< signaling during the first 25 years.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hydrogen sulfide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">polysulfides</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<S</i<-sulfuration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nitric oxide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hydrogen peroxide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<S</i<-nitrosylation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Microbiology</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Biomolecules</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">11(2021), 6, p 896</subfield><subfield code="w">(DE-627)735688915</subfield><subfield code="w">(DE-600)2701262-1</subfield><subfield code="x">2218273X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:6, p 896</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/biom11060896</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e790b81818d744bb86b492292282dd7e</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2218-273X/11/6/896</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2218-273X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2021</subfield><subfield code="e">6, p 896</subfield></datafield></record></collection>
|
score |
7.401477 |